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Abstract

This document is a proposal for a joint research team, TRIPOP, of Inria Grenoble Rhone-Alpes and of
the Laboratoire Jean Kuntzmann. This new team is a follow up of the BIPOP team (2003–2017). The
team is mainly concerned by the modeling, the mathematical analysis, the simulation and the control
of nonsmooth dynamical systems. Nonsmooth dynamics concerns the study of the time evolution of
systems that are not smooth in the mathematical sense, i.e., systems that are characterized by a lack of
differentiability, either of the mappings in their formulations, or of their solutions with respect to time.
In mechanics, the main instances of nonsmooth dynamical systems are multibody systems with Signorini
unilateral contact, set-valued (Coulomb-like) friction and impacts. In Electronics, examples are found in
switched electrical circuits with ideal components (diodes, switches, transistors). In Control, nonsmooth
systems arise in the sliding mode control theory and in optimal control. A lot of examples can also be
found in cyber-physical systems (hybrid systems), in transportation sciences, in mathematical biology
or in finance.

1 General scope and motivations

Nonsmooth dynamics concerns the study of the time evolution of systems that are not smooth in the
mathematical sense, i.e., systems that are characterized by a lack of differentiability, either of the map-
pings in their formulations, or of their solutions with respect to time. The class of nonsmooth dynamical
systems recovers a large variety of dynamical systems that arise in many applications. The term “nons-
mooth”, as the term “nonlinear”, does not precisely define the scope of the systems we are interested in
but, and most importantly, they are characterized by the mathematical and numerical properties that
they share. To give more insight of what are nonsmooth dynamical systems, we give in the sequel a very
brief introduction of their salient features. For more details, we refer to [37, 8, 22, 53, 33, 40, 14].

1.1 A flavor of nonsmooth dynamical systems

As a first illustration, let us consider a linear finite-dimensional system described by its state x(t) ∈ IRn
over a time-interval t ∈ [0, T ]:

ẋ(t) = Ax(t) + a, A ∈ IRn×n, a ∈ IRn, (1)

subjected to a set of m inequality (unilateral) constraints:

y(t) = Cx(t) + c ≥ 0, C ∈ IRm×n, c ∈ IRm. (2)
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Figure 1: Complementarity condition 0 ≤ y ⊥ λ ≥ 0.

If the constraints are physical constraints, a standard modeling approach is to augment the dynamics
in (1) by an input vector λ(t) ∈ IRm that plays the role of a Lagrange multiplier vector. The multiplier
restricts the trajectory of the system in order to respect the constraints. Furthermore, as in the continuous
optimization theory, the multiplier must be signed and must vanish if the constraint is not active. This
is usually formulated as a complementarity condition:

0 ≤ y(t) ⊥ λ(t) ≥ 0, (3)

which models the one-sided effect of the inequality constraints. The notation y ≥ 0 holds component–
wise and y ⊥ λ means yTλ = 0. All together we end up with a Linear Complementarity System (LCS)
of the form,  ẋ(t) = Ax(t) + a+Bλ(t)

y(t) = Cx(t) + c
0 ≤ y(t) ⊥ λ(t) ≥ 0

(4)

where B ∈ IRn×m is the matrix that models the input generated by the constraints. In a more general
way, the constraints may also involve the Lagrange multiplier,

y(t) = Cx(t) + c+Dλ(t) ≥ 0, D ∈ IRm×m, (5)

leading to a general definition of LCS as ẋ(t) = Ax(t) + a+B λ(t)
y(t) = C x(t) + c+Dλ(t)
0 ≤ y(t) ⊥ λ(t) ≥ 0.

(6)

The complementarity condition, illustrated in Figure 1 is the archetype of a nonsmooth graph that
we extensively use in nonsmooth dynamics. The mapping y 7→ λ is a multi-valued (set-valued) mapping,
that is nonsmooth at the origin. It has a lot of interesting mathematical properties and reformulations
that come mainly from convex analysis and variational inequality theory. Let us introduce the indicator
function of IR+ as

ΨIR+
(x) =

{
0 if x ≥ 0,

+∞ if x < 0.
(7)

This function is convex, proper and can be sub-differentiated [43]. The definition of the subdifferential
of a convex function f : IRm → IR is defined as:

∂f(x) = {x? ∈ IRm | f(z) ≥ f(x) + (z − x)>x?,∀z}. (8)

A basic result of convex analysis reads as

0 ≤ y ⊥ λ ≥ 0⇐⇒ −λ ∈ ∂ΨIR+
(y) (9)

that gives a first functional meaning to the set-valued mapping y 7→ λ. Another interpretation of ∂ΨIR+

is based on the normal cone to a closed and nonempty convex set C:

NC(x) = {v ∈ IRm|v>(z − x) ≤ 0 for all z ∈ K}. (10)
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It is easy to check that ∂ΨIR+
= NIR+

(x) and it follows that

0 ≤ y ⊥ λ ≥ 0⇐⇒ −λ ∈ NIR+
(y). (11)

Finally, the definition of the normal cone yields a variational inequality:

0 ≤ y ⊥ λ ≥ 0⇐⇒ λ>(y − z) ≤ 0,∀z ≥ 0. (12)

The relations (11) and (12) allow one to formulate the complementarity system with D = 0 as a
differential inclusion based on a normal cone (see (15)) or as a differential variational inequality. By
extending the definition to other types of convex functions, possibly nonsmooth, and using more general
variational inequalities, the same framework applies to the nonsmooth laws depicted in Figure 2 that
includes the case of piecewise smooth systems.

The mathematical concept of solutions depends strongly on the nature of the matrix quadruplet
(A,B,C,D) in (6). If D is a positive definite matrix (or a P -matrix), the Linear Complementarity
problem

0 ≤ Cx+ c+Dλ ⊥ λ ≥ 0, (13)

admits a unique solution λ(x) which is a Lipschitz continuous mapping. It follows that the Ordinary
Differential Equation (ODE)

ẋ(t) = Ax(t) + a+Bλ(x(t)), (14)

is a standard ODE with a Lipschitz right-hand side with a C1 solution for the initial value problem. If
D = 0, the system can be written as a differential inclusion in a normal cone as

− ẋ(t) +Ax(t) + a ∈ BNIR+
(Cx(t)), (15)

that admits a solution that is absolutely continuous if CB is a definite positive matrix and the initial con-
dition satisfies the constraints. The time derivative ẋ(t) and the multiplier λ(t) may have jumps and are
generally considered as functions of bounded variations. If CB = 0, the order of nonsmoothness increases
and the Lagrange multiplier may contain Dirac atoms and must be considered as a measure. Higher–
order index, or higher relative degree systems yield solutions in terms of distributions and derivatives of
distributions [10].

A lot of variants can be derived from the basic form of linear complementarity systems, by changing
the form of the dynamics including nonlinear terms or by changing the complementarity relation by
other multivalued maps. In particular the nonnegative orthant may be replaced by any convex closed
cone K ⊂ IRm leading to complementarity over cones

K? 3 y ⊥ λ ∈ K, (16)

where K? its dual cone given by

K? = {x ∈ IRm | x>y ≥ 0 for all y ∈ K}. (17)

In Figure 2, we illustrate some other basic maps that can used for defining the relation between λ and y.
The saturation map, depicted in Figure 2(a) is a single valued continuous function which is an archetype
of piece-wise smooth map. In Figure 2(b), the relay multi-function is illustrated. If the upper and the
lower limits of λ are respectively equal to 1 and −1, we obtain the multivalued sign function defined as

Sgn(y) =

 1, y > 0
[− 1, 1], y = 0
−1, y < 0.

(18)

Using again convex analysis, the multivalued sign function may be formulated as an inclusion into a
normal cone as

λ ∈ Sgn(y)⇐⇒ y ∈ N[−1,1](λ). (19)

More generally, any system of the type,
ẋ(t) = Ax(t) + a+Bλ(t)

y(t) = Cx(t) + a

−λ(t) ∈ Sgn(y(t)),

(20)
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Figure 2: Examples of multivalued piecewise linear models

can reformulated in terms of the following set-valued system
ẋ(t) = Ax(t) + a+Bλ(t)

y(t) = Cx(t) + c

−y(t) ∈ N[−1,1]m(λ(t)).

(21)

The system (21) appears in a lot of applications; among them, we can cite the sliding mode control,
electrical circuits with relay and Zener diodes [4], or mechanical systems with friction [8].

Though this class of systems seems to be rather specific, it includes as well more general dynamical
systems such as piecewise smooth systems and discontinuous ordinary differential equations. Indeed, the
system (20) for scalars y and λ can be viewed as a discontinuous differential equation:

ẋ(t) =

{
Ax+ a+B if Cx+ c > 0
Ax+ a−B if Cx+ c < 0.

(22)

One of the most well-known mathematical framework to deal with such systems is the Filippov theory [37]
that embed the discontinuous differential equations into a differential inclusion. In the case of a single
discontinuity surface given in our example by S = {x | Cx + c = 0}, the Filippov differential inclusion
based on the convex hull of the vector fields in the neighborhood of S is equivalent to the use of the
multivalued sign function in (20). Conversely, as it has been shown in [12], a piecewise smooth system
can be formulated as a nonsmooth system based on products of multivalued sign functions.

1.2 Nonsmooth Dynamical systems in the large

Generally, the nonsmooth dynamical systems we propose to study mainly concern systems that possess
the following features:

(i) A nonsmooth formulation of the constitutive/behavioral laws that define the system. Examples of
nonsmooth formulations are piecewise smooth functions, multi–valued functions, inequality con-
straints, yielding various definitions of dynamical systems such as piecewise smooth systems, dis-
continuous ordinary differential equations, complementarity systems, projected dynamical systems,
evolution or differential variational inequalities and differential inclusions (into normal cones). Fun-
damental mathematical tools come from convex analysis [63, 44, 43], complementarity theory [32],
and variational inequalities theory [36].

(ii) A concept of solutions that does not require continuously differentiable functions of time. For
instance, absolutely continuous, Lipschitz continuous functions or functions of local bounded vari-
ation are the basis for solution concepts. Measures or distributions are also solutions of interest
for differential inclusions or evolution variational inequalities.

4



1.3 Nonsmooth systems versus hybrid systems

The nonsmooth dynamical systems we are dealing with, have a nonempty intersection with hybrid
systems and cyber-physical systems, as it is briefly discussed in Sect. 3.1.4. Like in hybrid systems,
nonsmooth dynamical systems define continuous–time dynamics that can be identified to modes sepa-
rated by guards, defined by the constraints. However, the strong mathematical structure of nonsmooth
dynamical systems allows us to state results on the following points:

(i) Mathematical concept of solutions: well-posedness (existence, and possibly, uniqueness properties,
(dis)continuous dependence on initial conditions).

(ii) Dynamical systems theoretic properties: existence of invariants (equilibria, limit cycles, periodic
solutions,. . . ) and their stability, existence of oscillations, periodic and quasi-periodic solutions
and propagation of waves.

(iii) Control theoretic properties: passivity, controllability, observability, stabilization, robustness.

These latter properties, that are common for smooth nonlinear dynamical systems, distinguish the non-
smooth dynamical systems from the very general definition of hybrid or cyber-physical systems [16, 42].
Indeed, it is difficult to give a precise mathematical concept of solutions for hybrid systems since the
general definition of hybrid automata is usually too loose.

1.4 Numerical methods for nonsmooth dynamical systems

To conclude this brief exposition of nonsmooth dynamical systems, let us recall an important fact related
to numerical methods. Beyond their intrinsic mathematical interest, and the fact that they model real
physical systems, using nonsmooth dynamical systems as a model is interesting, because it exists a large
set of robust and efficient numerical techniques to simulate them. Without entering into deeper details,
let us give two examples of these techniques:

• Numerical time integration methods: convergence, efficiency (order of consistency, stability, sym-
plectic properties). For the nonsmooth dynamical systems described above, there exist event–
capturing time–stepping schemes with strong mathematical results. These schemes have the ability
to numerically integrate the initial value problem without performing an event location, but by cap-
turing the event within a time step. We call an event, or a transition, every change into the index
set of the active constraints in the complementarity formulation or in the normal cone inclusion.
Hence these schemes are able to simulate systems with a huge number of transitions or even worth
finite accumulation of events (Zeno behavior). Furthermore, the schemes are not suffering from
the weaknesses of the standard schemes based on a regularization (smoothing) of the multi-valued
mapping resulting in stiff ordinary differential equations. For the time–integration of the initial
value problem (IVP), or Cauchy problem, a lot of improvements of the standard time–stepping
schemes for nonsmooth dynamics (Moreau–Jean time-stepping scheme) have been proposed in the
last decade, in terms of accuracy and dissipation properties [1, 2, 64, 65, 3, 31, 27, 66, 29]. An
important part of these schemes has been developed by members of the BIPOP team and has been
implemented in the Siconos software (see Sect. 4.1).

• Numerical solution procedure for the time–discretized problem, mainly through well-identified prob-
lems studied in the optimization and mathematical programming community. Another very inter-
esting feature is the fact that the discretized problem that we have to solve at each time–step is
generally a well-known problem in optimization. For instance, for LCSs, we have to solve a linear
complementarity problem [32] for which there exist efficient solvers in the literature. Comparing to
the brute force algorithm with exponential complexity that consists in enumerating all the possible
modes, the algorithms for linear complementarity problem have polynomial complexity when the
problem is monotone.

In the Axis 2 of the research program (see Sect. 3.2), we propose to perform new research on the
geometric time-integration schemes of nonsmooth dynamical systems, to develop new integration schemes
for Boundary Value Problem (BVP), and to work on specific methods for two time-discretized problems:
the Mathematical Program with Equilibrium Constraints (MPEC) for optimal control and Second Order
Cone Complementarity Problems (SOCCP) for discrete frictional contact systems.
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1.5 Application fields

Nonsmooth dynamical systems arise in a lot of application fields. We briefly expose here some appli-
cations that have been treated in the BIPOP team and that we will continue in the TRIPOP team,
as a validation for the research axes and also in terms of transfer (Sect. 4.2). In mechanics, the main
instances of nonsmooth dynamical systems are multibody systems with Signorini’s unilateral contact,
set-valued (Coulomb-like) friction and impacts, or in continuum mechanics, ideal plasticity, fracture or
damage. Some illustrations are given in Figure 3(a-f). Other instances of nonsmooth dynamical systems
can also be found in electrical circuits with ideal components (see Figure 3(g)) and in control theory,
mainly with sliding mode control and variable structure systems (see Figure 3(h)). More generally, every
time a piecewise, possibly set–valued, model of systems is invoked, we end up with a nonsmooth system.
This is the case, for instance, for hybrid systems in nonlinear control or for piecewise linear modeling
of gene regulatory networks in mathematical biology (see Figure 3(i)). Another common example of
nonsmooth dynamics is also found when the vector field of a dynamical system is defined as a solution
of an optimization problem under constraints, or a variational inequality. Examples of this kind are
found in the optimal control theory, in dynamic Nash equilibrium or in the theory of dynamic flows over
networks.
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(a) Circuit breakers mechanisms [15] (b) Granular flows

(c) Robots (ESA ExoMars Rover [6]) (d) Rockfall [21, 20, 35]
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(e) Frictional interface and solitary waves in the Burridge-Knopoff model [57]

(f) Sliding blocks

Figure 3: Application fields of nonsmooth dynamics (mechanics)
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Figure 3: Application fields of nonsmooth dynamics (continued)
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2 TRIPOP team

This section describes the composition of the team and its complementarity.

2.1 Members

The members of the team are:

• Research Scientists

– Vincent Acary Inria, DR2 (LJK, HdR, Team Leader)

– Franck Bourrier, IRSTEA1, CR1 (LJK)

– Bernard Brogliato, Inria, DR1 (LJK, HdR)

– Arnaud Tonnelier, Inria, CRN (LJK)

• Faculty members

– Guillaume James, Grenoble INP, Professor (LJK, HdR)

• External collaborator

– Christophe Prieur, CNRS, DR1 (Gipsa-Lab UMR 5216, HdR)

• Post-doctoral fellows

– Kirill Vorotnikov, Inria (2016–2018, G. James and B. Brogliato)

– Achref El Mansour, Inria granted by STRMTG Grenoble2 (co-supervision V. Acary, M. Weiss
(STRMTG))

– Post-doctoral fellow or starting research position granted by the FUI project Modeliscale
coordinated by Dassault Systems to recruited in 2018.

• PhD students

– Alexandre Vieira, Grenoble INP (2015–2018, B. Brogliato, C. Prieur)

– Rami Sayoud, Schneider Electric, CIFRE grant (2018–2021, V. Acary, B. Brogliato)

– Charlélie Bertrand granted by ENTPE (Ecole Nationale des Travaux Publics) (2018–2021)
(co-supervision V. Acary, C. Lamarque (ENTPE))

– PhD thesis, granted by Inria IPL Modeliscale to be recruited in 2018, (co-supervision V.
Acary, B. Brogliato, B.Caillaud)

• Technical staff

– Franck Pérignon, CNRS, IR2 (LJK, 20%)

– Maurice Brémond, Inria, IR1 (LJK, SED, 40%)

2.2 Team members complementarity

The members of the proposal for TRIPOP possess different, complementary scientific skills and interests:

• Vincent Acary (Computational Mechanics, Control): graduated from the Ecole Centrale Marseille
(Mechanical Engineering), Inria researcher since 2003. He got a PhD in 2001 in Mechanics from
the University Aix–Marseille II and an HdR in 2015 from the Grenoble University (doctoral school
EDMSTII). His current research interests are the modeling and the numerical methods for nons-
mooth dynamical systems and the sliding-mode control. He is the main designer of the siconos
software enabling industrial applications towards multibody systems with contact and Coulomb
friction. He has supervised 4 PhD and 4 post-doc students.

• Franck Bourrier (Impact Mechanics, granular material, geomechanics, natural hazards) graduated
from INSA Lyon (Mechanics) in 2002 and got a PhD in Mechanics from INP Grenoble in 2008. He
is researcher in Irstea Grenoble since 2009. His research focuses on the modeling of the effect of
forests on natural hazards, in particular rockfall. This applied research field is closely related with
the modeling of nonsmooth dynamical systems in the context of complex materials and geometry.
He participated in the design of numerous block propagation models used by practitioners and to

1http://www.irstea.fr/linstitut/nos-centres/grenoble
2Service Technique des Remontées Mécaniques et des Transports Guidés, http://www.strmtg.developpement-durable.

gouv.fr/
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several expertises in the field of rockfall hazard mitigation. He supervised 3 PhD and 3 post-doc
students.

• Bernard Brogliato (Control, Impact Mechanics, Dissipative Systems): graduated from the Ecole
Normale Supérieure de Cachan (Mechanical Engineering), got a PhD and an HdR from the Grenoble
Institute of Technology in Control, in 1991 and 1995 respectively. He is Senior Researcher at Inria
since 2001, and was founder and leader of the BIPOP team. His current research interests are in
impact mechanics, control and state observation of nonsmooth mechanical systems, and a little bit
of mathematical analysis for nonsmooth systems. He has supervised and co-supervised 15 PhD
and 9 post-doc students.

• Guillaume James (Theoretical and applied nonlinear waves): graduated from the University of
Nice - Sophia Antipolis, MSc (1996), got a PhD Univ. Nice - Sophia Antipolis (1999) and an
Habilitation Thesis Univ. Paul Sabatier Toulouse 3 (2005). His research concerns the mathemat-
ical modeling and analysis of nonlinear wave phenomena. His current research work applies to
granular metamaterials (compression waves, vibrations) and frictional systems (stick-slip). His re-
search focuses mainly on the occurrence of solitary waves (localized traveling waves) and breathers
(localized oscillations) in nonlinear media, with an emphasis on the effect of spatial discreteness.
Understanding these phenomena requires to address a variety of infinite-dimensional dynamical
systems ranging from lattice differential equations and advance-delay equations to PDEs.

• Christophe Prieur (Control, Nonlinear Dynamics, infinite–dimensional systems, PDE): graduated
from the Ecole Normale Supérieure de Cachan (Mathematics), got a PhD from the Université
Paris-Sud in Applied Mathematics in 2001 and an HdR from Université de Toulouse in 2009. He is
a CNRS Senior Researcher at Gipsa-lab, Grenoble. His current research interests include nonlin-
ear control theory (for finite and infinite-dimensional systems), and control of partial differential
equations.

• Arnaud Tonnelier (Nonlinear Dynamics, Mechanical waves, Excitable systems): graduated from
ENSIMAG, is an Inria researcher in Applied Mathematics since 2003. He got a PhD in applied
mathematics from the Joseph Fourier University in 2001. He was a researcher at the Loria (Nancy)
and he joined the Inria Grenoble research centre in 2006. His research interests are in the ap-
plications of nonlinear dynamical systems and, in particular, in the study of neural systems and
excitable mechanical systems. He has supervised 3 post-doc and one PhD students.

To complete the description of Team members complementarity, we give in Figure 4 a graph of PhD
and Post-doc supervisions.

2.3 Recruitments

The Tripop team is aware about the fact that we need to increase our supervision rate in terms of PhD
students and post-doctoral fellows. In this perspective, we will propose the following PhD subjects to
calls for PhD grants:

• PhD thesis on control of linear complementarity systems (B. Brogliato, C. Prieur)

• PhD thesis on numerical optimization for discrete frictional contact problems (V. Acary, P. Ar-
mand)

• PhD thesis on non-smooth modeling and simulation of energy dissipation processes during rockfall
(V. Acary, F. Bourrier)

We will also continue discussion with industrial partners on the following projects:

• PhD thesis CIFRE grants with the companies POMA3, IMSRN4 in discussion for 2018

• Post-doctoral fellow or CIFRE PhD granted by ANSYS France in discussion for 2018.

For the permanent staff, our link with the LJK laboratory would be reinforced by a recruitment of
an associate professor (“Mâıtre de Conférences”). For this purpose, a proposition of position has been
made at the interface between EDP team and TRIPOP team, on numerical modeling in geosciences.
Concerning an INRIA permanent researcher, an excellent candidate in one of the research themes of the
project would be very valuable. An emphasis on a numerical method and high performance scientific
computing in view of our new industrial applications, will be encouraged.

3http://www.poma.net/
4Ingénierie des Mouvements de Sol et des Risques Naturels, http://www.imsrn.com/en/
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3 Scientific objectives

In this section, we develop our scientific program. In the framework of nonsmooth dynamical systems,
the activities of the project–team will be on focused on the following research axes:

• Axis 1: Modeling and analysis (detailed in Sect. 3.1).

• Axis 2: Numerical methods and simulation (detailed in Sect. 3.2).

• Axis 3: Automatic Control (detailed in Sect. 3.3)

These research axes will be developed with a strong emphasis on the software development and the
industrial transfer that are detailed respectively in Sect. 4.1 and Sect. 4.2.

Timeline and priorities The research program detailed in this section is quite dense and all the
scientific objectives will not be started at the beginning of the project. Most of these scientific objectives
are also subjected to the recruitment and the financial support. This aspect will also affect the way we
start and develop out scientific program. Nevertheless, we specify for each action the subjects that we
could start right at the beginning of the project (short-term actions, within 4 years) and a list of subjects
that are on a longer term (4-8 years).

3.1 Axis 1: Modeling and analysis

This axis is dedicated to the modeling and the mathematical analysis of nonsmooth dynamical systems.
It consists of four main directions. Two directions are in the continuation of BIPOP activities: 1)
multibody vibro-impact systems (Sect. 3.1.1) and 2) excitable systems (Sect. 3.1.2). Two directions are
completely new with respect to BIPOP: 3) Nonsmooth geomechanics and natural hazards assessment
(Sect. 3.1.3) and 4) Cyber-physical systems (hybrid systems) (Sect. 3.1.4).

3.1.1 Multibody vibro-impact systems

Participants: B. Brogliato, F. Bourrier, G. James, V. Acary

• Multiple impacts with or without friction (short-term): there are many different approaches to
model collisions, especially simultaneous impacts (so-called multiple impacts)[60]. One of our
objectives is on one hand to determine the range of application of the models (for instance, when
can one use “simplified” rigid contact models relying on kinematic, kinetic or energetic coefficients
of restitution?) on typical benchmark examples (chains of aligned beads, rocking block systems).
On the other hand, try to take advantage of the new results on nonlinear waves phenomena, to
better understand multiple impacts in 2D and 3D granular systems. The study of multiple impacts
with (unilateral) nonlinear visco-elastic models (Simon-Hunt-Crossley, Kuwabara-Kono), or visco-
elasto-plastic models (assemblies of springs, dashpots and dry friction elements), is also a topic of
interest, since these models are widely used.

• Artificial or manufactured or ordered granular crystals, meta-materials (short-term): Granular
metamaterials (or more general nonlinear mechanical metamaterials) offer many perspectives for
the passive control of waves originating from impacts or vibrations. The analysis of waves in
such systems is delicate due to spatial discreteness, nonlinearity and non-smoothness of contact
laws [62, 48, 49, 55]. We will use a variety of approaches, both theoretical (e.g. bifurcation theory,
modulation equations) and numerical, in order to describe nonlinear waves in such systems, with
special emphasis on energy localization phenomena (excitation of solitary waves, fronts, breathers).

• Systems with clearances, modeling of friction (long-term): joint clearances in kinematic chains
deserve specific analysis, especially concerning friction modeling[15]. Indeed contacts in joints are
often conformal, which involve large contact surfaces between bodies. Lubrication models should
also be investigated.

• Painlevé paradoxes (long-term): the goal is to extend the results in [39], which deal with single-
contact systems, to multi-contact systems. One central difficulty here is the understanding and the
analysis of singularities that may occur in sliding regimes of motion.

As a continuation of the work in the BIPOP team, our software code, Siconos (see Sect. 4.1) will be our
favorite software platform for the integration of these new modeling results.
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3.1.2 Excitable systems (short-term)

Participants: A. Tonnelier, G. James
An excitable system elicits a strong response when the applied perturbation is greater than a threshold

[57, 58, 19, 67]. This property has been clearly identified in numerous natural and physical systems. In
mechanical systems, non-monotonic friction law (of spinodal-type) leads to excitability. Similar behavior
may be found in electrical systems such as active compounds of neuristor type. Models of excitable
systems incorporate strong non-linearities that can be captured by non-smooth dynamical systems. Two
properties are deeply associated with excitable systems: oscillations and propagation of nonlinear waves
(autowaves in coupled excitable systems). We aim at understanding these two dynamical states in
excitable systems through theoretical analysis and numerical simulations. Specifically we plan to study:

• Threshold-like models in biology: spiking neurons, gene networks.

• Frictional contact oscillators (slider block, Burridge-Knopoff model).

• Dynamics of active electrical devices : memristors, neuristors.

3.1.3 Nonsmooth geomechanics and natural hazards assessment

Participants: F. Bourrier, B. Brogliato, G. James, V. Acary

• Rockfall impact modeling (short-term): Trajectory analysis of falling rocks during rockfall events
is limited by a rough modeling of the impact phase [21, 20, 54]. The goal of this work is to better
understand the link between local impact laws at contact with refined geometries and the efficient
impact laws written for a point mass with a full reset map. A continuum of models in terms of
accuracy and complexity will be also developed for the trajectory studies. In particular, nonsmooth
models of rolling friction, or rolling resistance will be developed and formulated using optimization
problems.

• Experimental validation (short-term): The participation of IRSTEA with F. Bourrier makes pos-
sible the experimental validation of models and simulations through comparisons with real data.
IRSTEA has a large experience of lab and in-situ experiments for rockfall trajectories model-
ing [21, 20]. It is a unique opportunity to strengthen our model and to prove that nonsmooth
modeling of impacts is reliable for such experiments and forecast of natural hazards.

• Rock fracturing (long-term): When a rock falls from a steep cliff, it stores a large amount of kinetic
energy that is partly dissipated though the impact with the ground. If the ground is composed
of rocks and the kinetic energy is sufficiently high, the probability of the fracture of the rock is
high and yields an extra amount of dissipated energy but also an increase of the number of blocks
that fall. In this item, we want to use the capability of the nonsmooth dynamical framework for
modeling cohesion and fracture [50, 13] to propose new impact models.

• Rock/forest interaction (long-term): To prevent damages and incidents to infrastructures, a smart
use of the forest is one of the ways to control trajectories (decrease of the run-out distance, jump
heights and the energy) of the rocks that fall under gravity [34, 35]. From the modeling point
of view and to be able to improve the protective function of the forest, an accurate modeling of
impacts between rocks and trees is required. Due to the aspect ratio of the trees, they must be
considered as flexible bodies that may be damaged by the impact. This new aspect offers interesting
modeling research perspectives.

More generally, our collaboration with IRSTEA opens new long term perspectives on granular flows
applications such as debris and mud flows, granular avalanches and the design of structural protections.
The numerical methods that go with these new modeling approaches will be implemented in our software
code, Siconos (see Sect. 4.1)

3.1.4 Cyber-physical systems (hybrid systems)

Participants: V. Acary, B. Brogliato, C. Prieur, A. Tonnelier
Nonsmooth systems have a non-empty intersection with hybrid systems and cyber–physical systems.

However, nonsmooth systems enjoy strong mathematical properties (concept of solutions, existence and
uniqueness) and efficient numerical tools. This is often the result of the fact that nonsmooth dynamical
systems are models of physical systems, and then, take advantage of their intrinsic property (conservation
or dissipation of energy, passivity, stability). A standard example is a circuit with n ideal diodes. From
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the hybrid point of view, this circuit is a piecewise smooth dynamical system with 2n modes, that can
be quite cumbersome to enumerate in order to determinate the current mode. As a nonsmooth system,
this circuit can be formulated as a complementarity system for which there exist efficient time–stepping
schemes and polynomial time algorithms for the computation of the current mode. The key idea of this
research action is to take benefit of this observation to improve the hybrid system modeling tools.

Research actions: There are two main actions in this research direction that will be implemented in
the framework of the Inria Project Lab (IPL “ Modeliscale”, see https://team.inria.fr/modeliscale/ for
partners and details of the research program):

• Structural analysis of multimode DAE (short-term): When a hybrid system is described by a
Differential Algebraic Equation (DAE) with different differential indices in each continuous mode, the
structural analysis has to be completely rethought. In particular, the re-initialization rule, when a
switching occurs from a mode to another one, has to be consistently designed. We propose in this
action to use our knowledge in complementarity and (distribution) differential inclusions [10] to design
consistent re-initialization rule for systems with nonuniform relative degree vector (r1, r2, . . . , rm) and
ri 6= rj , i 6= j.

• Cyber–physical in hybrid systems modeling languages (short-term): Nowadays, some hybrid mod-
eling languages and tools are widely used to describe and to simulate hybrid systems (modelica,
simulink, and see [30] for references therein). Nevertheless, the compilers and the simulation engines
behind these languages and tools suffer from several serious weaknesses (failure, weird output or huge
sensitivity to simulation parameters), especially when some components, that are standard in nonsmooth
dynamics, are introduced (piecewise smooth characteristic, unilateral constraints and complementarity
condition, relay characteristic, saturation, dead zone, . . . ). One of the main reasons is the fact that
most of the compilers reduce the hybrid system to a set of smooth modes modeled by differential al-
gebraic equations and some guards and reinitialization rules between these modes. Sliding mode and
Zeno–behaviour are really harsh for hybrid systems and relatively simple for nonsmooth systems. With
B. Caillaud (Inria HYCOMES) and M. Pouzet (Inria PARKAS), we propose to improve this situation by
implementing a module able to identify/describe nonsmooth elements and to efficiently handle them with
siconos as the simulation engine. They have already carried out a first implementation [28] in Zelus, a
synchronous language for hybrid systems http://zelus.di.ens.fr. Removing the weaknesses related to the
nonsmoothness of solutions should improve hybrid systems towards robustness and certification.

• A general solver for piecewise smooth systems (long-term) This direction is the continuation of
the promising result on modeling and the simulation of piecewise smooth systems [12]. As for general
hybrid automata, the notion or concept of solutions is not rigorously defined from the mathematical
point of view. For piecewise smooth systems, multiplicity of solutions can happen and sliding solutions
are common. The objective is to recast general piecewise smooth systems in the framework of differential
inclusions with Aizerman–Pyatnitskii extension [12, 37]. This operation provides a precise meaning to
the concept of solutions. Starting from this point, the goal is to design and study an efficient numerical
solver (time–integration scheme and optimization solver) based on an equivalent formulation as mixed
complementarity systems of differential variational inequalities. We are currently discussing the issues
in the mathematical analysis. The goal is to prove the convergence of the time–stepping scheme to get
an existence theorem. With this work, we should also be able to discuss the general Lyapunov stability
of stationary points of piecewise smooth systems.

3.2 Axis 2: Numerical methods and simulation

This axis is dedicated to the numerical methods and simulation for nonsmooth dynamical systems.
As we mentioned in the introduction, the standard numerical methods have been largely improved
in terms of accuracy and dissipation properties in the last decade. Nevertheless, the question of the
geometric time–integration techniques remains largely open. It constitutes the objective of the first
research direction in Sect. 3.2.1. Beside the standard IVP, the question of normal mode analysis for
nonsmooth systems is also a research topic that emerged in the recent years. More generally, the
goal of the second research direction (Sect. 3.2.2) is to develop numerical methods to solve boundary
value problems in the nonsmooth framework. This will serve as a basis for the computation of the
stability and numerical continuation of invariants. Finally, once the time-integration method is chosen,
it remains to solve the one-step nonsmooth problem, which is, most of time, a numerical optimization
problem. In Sect. 3.2.3, we propose to study two specific problems with a lot of applications: the
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Mathematical Program with Equilibrium Constraints (MPEC) for optimal control, and Second Order
Cone Complementarity Problems (SOCCP) for discrete frictional contact systems. After some possible
prototypes in scripting languages (Python and Matlab), we will be attentive that all these developments
of numerical methods will be integrated in Siconos.

3.2.1 Geometric time–integration schemes for nonsmooth Initial Value Problem (IVP)
(short-term)

Participants: V. Acary, B. Brogliato, G. James, F. Pérignon
The objective of this research item is to continue to improve classical time–stepping schemes for nons-
mooth systems to ensure some qualitative properties in discrete-time. In particular, the following points
will be developed

• Conservative and dissipative systems. The question of the energy conservation and the preservation
of dissipativity properties in the Willems sense [41] will be pursued and extended to new kinds
of systems (nonlinear mechanical systems with nonlinear potential energy, systems with limited
differentiability (rigid impacts vs. compliant models)).

• Lie–group integration schemes for finite rotations for the multi-body systems extending recent
progresses in that directions for smooth systems [17].

• Conservation and preservation of the dispersion properties of the (non)-dispersive system.

3.2.2 Stability and numerical continuation of invariants

Participants: G. James, V. Acary, A. Tonnelier, F. Pérignon,
By invariants, we mean equilibria, periodic solutions, limit cycles or waves. Our preliminary work on

this subject raised the following research perspectives:

• Computation of periodic solutions of discrete mechanical systems (short-term). The modal anal-
ysis, i.e., a spectral decomposition of the problem into linear normal modes is one of the basic
tools for mechanical engineers to study dynamic response and resonance phenomena of an elastic
structure. Since several years, the concept of nonlinear normal modes [51], that is closely related
to the computation of quasi-periodic solutions that live in a nonlinear manifold, has emerged as
the nonlinear extension of the modal analysis. One of the fundamental question is: what remains
valid if we add unilateral contact conditions ? The computation of nonsmooth modes amounts
to computing periodic solutions, performing the parametric continuation of solution branches and
studying the stability of these branches. This calls for time integration schemes for IVP an BVP
that satisfy some geometric criteria: conservation of energy, reduced numerical dispersion, sym-
plecticity as we described before. Though the question of conservation of energy for unilateral
contact has been discussed in [3], the other questions remain open. For the shooting technique
and the study of stability, we need to compute the Jacobian matrix of the flow with respect to
initial conditions, the so-called saltation matrix [52, 61] for nonsmooth flows. The eigenvalues of
this matrix are the Floquet multipliers that give some information on the stability of the periodic
solutions. The question of an efficient computation of this matrix is also an open question. For the
continuation, the question is also largely open since the continuity of the solutions with respect to
the parameters is not ensured.

• Extension to elastic continuum media (long-term). This is a difficult task. First of all, the question
of the mathematical model for the dynamic continuum problem with unilateral contact raises some
problems of well–posedness. For instance, the need for an impact law is not clear in some cases. If
we perform a semi–discretization in space with classical techniques (Finite Element Methods, Finite
Difference Schemes), we obtain a discrete system for which the impact law is needed. Besides all the
difficulties that we enumerate for discrete systems in the previous paragraph, the space discretiza-
tion also induces numerical dispersion that may destroy the periodic solutions or renders their
computation difficult. The main targeted applications for this research are cable–systems, string
musical instruments, and seismic response of electrical circuit breakers with Schneider Electric.

• Computation of solutions of nonsmooth time Boundary Value Problems (BVP) (collocation, shoot-
ing) (long-term). The technique developed in the two previous items can serve as a basis for the
development of more general solvers for nonsmooth BVP that can be for instance found when
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we solve optimal control problems by direct or indirect methods, or the computation of nonlinear
waves. Two directions can be envisaged:

– Shooting and multiple shooting techniques. In such methods, we reformulate the BVP into
a sequence of IVPs that are iterated through a Newton based technique. This implies the
computation of Jacobians for nonsmooth flows, the question of the continuity w.r.t to initial
condition and the use of semi-smooth Newton methods.

– Finite differences and collocations techniques. In such methods, the discretization will result
into a large sparse optimization problems to solve. The open questions are as follows: a) the
study of convergence, b) how to locally improve the order if the solution is locally smooth,
and c) how to take benefit of spectral methods.

• Continuation techniques of solutions with respect to a parameter. Standard continuation technique
requires smoothness. What types of methods can be extended in the nonsmooth case (arc-length
technique, nonsmooth (semi-smooth) Newton, Asymptotical Numerical Methods (ANM))

3.2.3 Numerical optimization for discrete nonsmooth problems

Participants: V. Acary, M. Brémond, F. Pérignon, B. Brogliato, C. Prieur

• Mathematical Program with Equilibrium Constraints (MPEC) for optimal control (long-term).
The discrete problem that arises in nonsmooth optimal control is generally a MPEC [68]. This
problem is intrinsically nonconvex and potentially nonsmooth. Its study from a theoretical point
of view has started 10 years ago but there is no consensus for its numerical solving. The goal is
to work with world experts of this problem (in particular M. Ferris from Wisconsin University)
to develop dedicated algorithms for solving MPEC, and provide to the optimization community
challenging problems.

• Second Order Cone Complementarity Problems (SOCCP) for discrete frictional systems (short-
term): After some extensive comparisons of existing solvers on a large collection of examples [7,
5], the numerical treatment of constraints redundancy by the proximal point technique and the
augmented Lagrangian formulation seems to be a promising path for designing new methods. From
the comparison results, it appears that the redundancy of constraints prevents the use of second
order methods such as semi–smooth Newton methods or interior point methods. With P. Armand
(XLIM, U. de Limoges), we propose to adapt recent advances for regularizing constraints for the
quadratic problem [38] for the second-order cone complementarity problem. The other question is
the improvement of the efficiency of the algorithms by using accelerated schemes for the proximal
gradient method that come from large–scale machine learning and image processing problems.
Learning from the experience in large–scale machine learning and image processing problems, the
accelerated version of the classical gradient algorithm [59] and the proximal point algorithm [18],
and many of their further extensions, could be of interest for solving discrete frictional contact
problems. Following the visit of Y. Kanno (University of Tokyo) and his preliminary experience
on frictionless problems, we will extend its use to frictional contact problem. When we face large-
scale problems, the main available solvers is based on a Gauss–Seidel strategy that is intrinsically
sequential. Accelerated first-order methods could be a good alternative to take benefit of the
distributed scientific computing architectures.

3.3 Axis 3: Automatic Control

Participants: B. Brogliato, C. Prieur, V. Acary
This last axis is dedicated to the automatic control of nonsmooth dynamical systems, or the non-

smooth control of smooth systems. The first item concerns the discrete-time sliding mode control for
which significant results on the implicit implementation have been obtained in the BIPOP team. The
idea is to pursue this research towards state observers and differentiators (Sect 3.3.1). The second direc-
tion concerns the optimal control which brings of nonsmoothness in their solution and their formulation.
After the preliminary work in BIPOP on the quadratic optimal control of Linear Complementarity
systems(LCS), we propose to go further to the minimal time problem, to impacting systems and opti-
mal control with state constraints (Sect. 3.3.2). In Sect 3.3.3, the objective is to study the control of
nonsmooth systems that contain unilateral constraint, impact and friction. The targeted systems are
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cable–driven systems, multi-body systems with clearances and granular materials. In Sect 3.3.4, we will
continue our work on the higher order Moreau sweeping process. Up to now, the work of BIPOP was
restricted to finite-dimensional systems. In Sect 3.3.5, we propose to extend our approach to the control
of elastic structures subjected to contact unilateral constraints.

It is noteworthy that most of the problems listed below, will make strong use of the numerical tools
analyzed in Axis 2, and of the Modeling analysis of Axis 1. For instance all optimal control problems yield
BVPs. Control of granular materials will undoubtedly use models and numerical simulation developed
in Axis 1 and 2. And so on. It has to be stressed that the type of nonsmooth models we are working
with, deserve specific numerical algorithms which cannot be found in commercial software packages. One
of the goals is to continue to extend our software package Siconos, and in particular the siconos/control
toolbox with these developments.

3.3.1 Discrete-time Sliding-Mode Control (SMC) and State Observers (SMSO) (short-
term)

• SMSO, exact differentiators: we have introduced and obtained significant results on the implicit
discretization of various classes of sliding-mode controllers [9, 11, 45, 56, 24], with successful ex-
perimental validations [46, 45, 47, 69]. Our objective is to prove that the implicit discretization
can also bring advantages for sliding-mode state observers and Levant’s exact differentiators, com-
pared with the usual explicit digital implementation that generates chattering. In particular the
implicit discretization guarantees Lyapunov stability and finite-time convergence properties which
are absent in explicit methods.

• High-Order SMC (HOSMC): this family of controllers has become quite popular in the sliding-mode
scientific community since its introduction by Levant in the nineties. We want here to continue the
study of implicit discretization of HOSMC (twisting, super-twisting algorithms) and especially we
would like to investigate the comparisons between classical (first order) SMC and HOSMC, when
both are implicitly discretized, in terms of performance, accuracy, chattering suppression. Another
topic of interest is stabilization in finite-time of systems with impacts and unilateral constraints,
in a discrete-time setting.

3.3.2 Optimal Control

• Linear Complementarity Systems (LCS) (short-term): With the PhD thesis of A. Vieira, we have
started to study the quadratic optimal control of LCS. Our objective is to go further with minimum-
time problems. Applications of LCS are mainly in electrical circuits with set-valued components
such as ideal diodes, transistors, etc. Such problems naturally yield MPEC when numerical solvers
are sought. It is therefore intimately linked with Axis 2 objectives.

• Impacting systems (long-term): the optimal control of mechanical systems with unilateral con-
straints and impacts, largely remains an open issue. The problem can be tackled from various
approaches: vibro-impact systems (no persistent contact modes) that may be transformed into
discrete-time mappings via the impact Poincaré map; or the classical integral action minimization
(Bolza problem) subjected to the complementarity Lagrangian dynamics including impacts.

• State constraints, generalized control (long-term): this problem differs from the previous two, since
it yields Pontryagin’s first order necessary conditions that take the form of an LCS with higher
relative degree between the complementarity variables. This is related to the numerical techniques
for the higher order sweeping process [10].

3.3.3 Control of nonsmooth discrete Lagrangian systems (short-term)

• Cable–driven systems: these systems are typically different from the cable-car systems, and are
closer in their mechanical structure to so-called tensegrity structures. The objective is to actuate
a system via cables supposed in a first instance to be flexible (slack mode) but non-extensible in
their longitudinal direction. This gives rise to complementarity conditions, one big difference with
usual complementarity Lagrangian systems being that the control actions operate directly in one of
the complementary variables (and not in the smooth dynamics as in cable-car systems). Therefore
both the cable models and the control properties are expected to differ a lot from what we may use
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for cableway systems (for which guaranteeing a positive cable tension is usually not an issue, hence
avoiding slack modes, but the deformation of the cables due to the nacelles and cables weights, is
an important factor). Tethered systems are a close topic.

• Multi-body systems with clearances: our approach is to use models of clearances with dynamical
impact effects, i.e. within Lagrangian complementarity systems. Such systems are strongly under-
actuated due to mechanical play at the joints. However their structure, as underactuated systems,
is quite different from what has been usually considered in the Robotics and Control literature.
In the recent past we have proposed a thorough numerical robustness analysis of various feedback
collocated and non-collocated controllers (PD, linearization, passivity-based). We propose here to
investigate specific control strategies tailored to such underactuated systems [23].

• Granular systems: the context is the feedback control of granular materials. To fix the ideas, one
may think of a “juggling” system whose “object” (uncontrolled) part consists of a chain of aligned
beads. Once the modeling step has been fixed (choice of a suitable multiple impact law), one has
to determine the output to be controlled: all the beads, some of the beads, the chain’s center of
mass (position, velocity, vibrational magnitude and frequency), etc. Then we aim at investigating
which type of controller may be used (output or state feedback, “classical” or sinusoidal input
with feedback through the magnitude and frequency) and especially which variables may be mea-
sured/observed (positions and/or velocities of all or some of the beads, position and/or velocity
of the chain’s center of gravity). This topic follows previous results we obtained on the control of
juggling systems [25], with increasing complexity of the “object”’s dynamics. The next step would
be to extend to 2D and then 3D granular materials. Applications concern vibrators, screening,
transport in mining and manufacturing processes.

• Stability of structures: our objective here is to study the stability of stacked blocks in 2D or 3D,
and the influence on the observed behavior (numerically and/or analytically) of the contact/impact
model.

3.3.4 Switching LCS and DAEs, higher-order sweeping process (HOSwP) (short-term)

• We have gained a strong experience in the field of complementarity systems and distribution dif-
ferential inclusions [10, 26], that may be seen as some kind of switching DAEs. We plan to go
further with non-autonomous HOSwP with switching feedback inputs and non-uniform vector rel-
ative degrees. Switching linear complementarity systems can also be studied, though the exact
relationships between both point of views remain unclear at the present time. This axis of research
is closely related to cyber-physical systems in section 3.1.

3.3.5 Control of Elastic (Visco-plastic) systems with contact, impact and friction (short-
term)

• Stabilization, trajectory tracking: until now we have focused on the stability and the feedback
control of systems of rigid bodies. The proposal here is to study the stabilization of flexible systems
(for instance, a “simple” beam) subjected to unilateral contacts with or without set-valued friction
(contacts with obstacles, or impacts with external objects line particle/beam impacts). This gives
rise to varying (in time and space) boundary conditions. The best choice of a good contact law is
a hard topic discussed in the literature.

• Cableway systems (STRMTG, POMA): cable-car systems present challenging control problems be-
cause they usually are underactuated systems, with large flexibilities and deformations. Simplified
models of cables should be used (Ritz-Galerkin approach), and two main classes of systems may
be considered: those with moving cable and only actuator at the station, and those with fixed
cable but actuated nacelles. It is expected that they possess quite different control properties and
thus deserve separate studies. The nonsmoothness arises mainly from the passage of the nacelles
on the pylons, which induces frictional effects and impacts. It may certainly be considered as a
nonsmooth set-valued disturbance within the overall control problem.

3.4 Scientific novelty and new applications

In this section, we discussed briefly our positioning with respect to the BIPOP team.
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New composition of the team Four members of BIPOP will not participate in TRIPOP: C.
Lemaréchal (retired in April 2014), J. Malick (left in January 2016, now in charge of team DAO at
LJK), P.B. Wieber (plans to launch a new team on biped robotics), F. Bertails-Descoubes (now in
charge of the team ELAN at Inria). G. James joined BIPOP four years ago. F. Bourrier has joined
the team to complete our experience in impact mechanics, geophysical natural hazards and real-case
applications on rockfall risks.

Novelty in the scientific contents BIPOP was originally constructed around nonsmooth optimiza-
tion and contact mechanics. Activities linked with biped Robotics, theoretical Optimization (combina-
torial, algorithms for machine learning), and applications to Computer Graphics, will no longer exist
in TRIPOP. The new team TRIPOP will be focused on nonsmooth dynamical systems, with strong
emphasis on mechanics and control. Though these scientific topics were already present in BIPOP, we
plan to launch many completely new activities among them

• hybrid and cyber-physical systems (Sect. 3.1.4),

• nonsmooth geomechanics (Sect. 3.1.3)

• excitable systems and nonlinear waves in discrete media (Sect 3.1.1 and 3.1.2),

• nonsmooth dynamics and normal modes of flexible systems (Sect 3.1.1 and 3.2.2),

• optimal control of nonsmooth dynamical systems (Sect. 3.3.2),

• control of cable-driven robots (Sect. 3.3.5 and 3.3.3) and granular material (Sect. 3.3.3),

with completely new applications and domains

• natural hazards modeling (Sect. 3.1.3 and 4.2),

• cable transport systems (Sect. 3.1.1 and 4.2),

• circuits with memristors and neuristors(Sect. 3.1.2).

3.5 Collaboration within the team via co-supervision of PhD students and
postdoctoral fellows

Here we list of PhD subjects which could rise to co-supervisions in the team and we give a graph repre-
sentation of this collaboration in Figure 4. When the PhD and Post-doc will be granted by governmental
funds (Inria CORDI, Doctoral schools), the priority will be given to co-supervised subjects 5.

PhD 1 Influence of the vibrational environment on the functional conditions of circuit breakers
CIFRE granted by Schneider Electric co-supervised by V. Acary and B. Brogliato

PhD 2 Trajectory tracking for complementary systems co-supervised by B. Brogliato and C. Prieur.

PhD 3 Modeling and control of flexible structures with unilateral contact and friction co-supervised
by B. Brogliato and C. Prieur.

PhD 4 Modeling and control of cable-driven systems co-supervised by B. Brogliato and C. Prieur.

PhD 5 Robust numerical methods for block trajectory simulations integrating block fragmentation
co-supervised by V. Acary, F. Bourrier, and B. Brogliato.

PhD 6 Painlevé paradoxes in multibody systems with friction co-supervised by B. Brogliato and G.
James.

PhD 7 Excitable mechanical systems with contact and friction co-supervised by G. James and A.
Tonnelier.

PhD 8 Simplified impact model for the wave-propagation in granular media co-supervised by B.
Brogliato and G. James.

PhD 9 Numerical modeling of rockfall fence and avalanche prevention protection systems co-
supervised by V. Acary and F. Bourrier.

PhD 10 Control of systems with clearances co-supervised by V. Acary and B. Brogliato.

5The name of the advisors are given in alphabetical order
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PhD 11 Implicit discrete time observers and differentiators co-supervised by V. Acary and B. Brogliato.

PhD 12 Structural analysis of multi-mode LCS co-supervised by V. Acary and B. Brogliato.

PhD 12 Optimal control of impacting systems LCS co-supervised by V. Acary, B. Brogliato. and C.
Prieur

Post-doc 1 Numerical modeling of the dynamics cable transport systems Post doctoral fellow granted
by STRMTG co-supervised by V. Acary and B. Brogliato

Post-doc 2 Modeling and analysis of electrical circuits with neuristors and memresitors co-supervised
by V. Acary and A. Tonnelier.
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Figure 4: Graph of co-supervisions

4 Software developments and industrial transfer

4.1 Software platform: siconos

The aim of this development is to provide a common platform for the modeling, simulation, analysis
and control of general nonsmooth dynamical systems. Besides usual quality attributes for scientific
computing software, we want to provide a common framework for various scientific fields, to be able to
rely on the existing developments (numerical algorithms, description and modeling software), to support
exchanges and comparisons of methods, to disseminate the know-how to other fields of research and
industry, and to take into account the diversity of users (end-users, algorithm developers, framework
builders) in building user interfaces in Python and industry oriented applications.

In the framework of the FP5 European project Siconos (2002-2006), V. Acary was the leader of
the Work Package 2 (WP2), dedicated to the numerical methods and the software design for nonsmooth
dynamical systems. This gave rise to the platform Siconos in 2004 which was the main software de-
velopment task in the Bipop team. We invested an important part of our activities developing new
algorithms and maintaining the software architecture to answer to new challenges that come from appli-
cations. Siconos is now a mature software that can be used as a stand–alone software, as a module in
Python or as a computational engine or library inside a package dedicated to a specific community. The

19



software consists in around 370 000 lines of codes in C++, C, Fortran 77 and Python distributed under
the Apache 2.0 license on github. The goal is to pursue this effort of development in TRIPOP.

Users community and assessment Siconos is used for research, education and by industrial part-
ners with approximately 30 frequent users (200 registered users to the user-list “siconos-users”). In
the Bipop Team, a large number of publications and also in the PhD thesis and post-doc fellows uses
Siconos. For instance, in control’s papers, there is no alternative to Siconos for the simulation of our
system. Let us list the main use cases in other teams:

• Education : siconos is used for teaching simulation of nonsmooth systems at the University of
Limoges.

• Research: B. Caillaud (Hycomes team) for simulation of hybrid an cyber-physical systems, S. Adly
and H. Massias (XLIM, University of Limoges) for simulation of electrical circuits, P. Masareti
and M. Fancello (Politecnico de Milano). siconos has been coupled to MBDyn (main open–
source software for the simulation of multi-body–systems), C. Touzé (IMSIA, ENSTA ParisTech),
C. Issanchou (Institut Jean Le Rond D’Alembert/UPMC). siconos is used for the simulation of
strings with impacts in musical instruments to synthesize digital sounds , M. Ferris and O. Huber
(University of Madison, Wisconsin). siconos is used for developing new algorithms for contact
and friction based on PathVI approach, R. Kikuuwe (Kyushu University, Japan). siconos is
used for control and simulation of nonsmooth robotic systems, Gazebo users. Through the work
of S. Sinclair in the ADT Rope6(Inria technological development action), siconos is coupled to
gazebo7 which is now a standard de facto for the simulation of robotic systems inside ROS (Robot
Operating system8)

• Industry: Schneider Electric uses siconos in production for virtual prototyping of circuit breakers,
and in particular, for the robustness analysis of circuit breakers to manufacturing tolerances, Trasys
Space for the simulation of the ExoMars Rover9 of European Space Agency [6], Electricité de France
uses siconos in the Saladyn project to simulate hydraulic dams made of concrete and rocky blocks,
ϕ− Ingeneria (Chile) uses siconos for the simulation of flows of granular material in ore processes.

Siconos increases also a lot our visibility. Without siconos, it would have been difficult to get
our collaboration with ANSYS and to continue with Schneider Electric, and all–day use of the R&D
engineers. In the same spirit, the book on switched electrical circuits and partly the book on numerical
methods would not have been written. Up to now, this software is mainly used by experts through various
interfaces. Our goal is to extend its use by interfacing Siconos with several open–source software codes
that are standard or widespread in their own community (gazebo, modelica compiler, FreeCAD).

Description of the state of the art and placement siconos is the unique software that simu-
lates general nonsmooth dynamical systems in a quite abstract form. This allows for applications from
mechanical, electrical and control engineering to gene networks in biology. In computational mechanics,
there are mainly three related research software codes.

• LMGC90 is a companion software of siconos for applications in mechanical engineering and multi–
physic simulation. Now, we are seriously thinking how to merge our development, to increase the
critical mass and to create a consortium to answer to industrial requests.

• MBsim10. This software, mainly developed at TUM (Technische Universität München) provides a
subset of functionalities of Siconos concerning the simulation of multibody systems with contact
and friction.

• chrono Engine11 is an open–source tools for simulation of mechanical systems. Although the
choice of solvers is quite restrictive, a massive investment by DARPA and NVidia through the
SBEL lab12 in developing GUI rendering tools and GPU parallel computation renders this project
very attractive. Unfortunately, the European context renders difficult the same kind of development
for siconos. We hope to bridge partly this gap thanks to a consortium with LMGC90.

6http://www.inrialpes.fr/bipop/people/acary/publications/Misc/ROPE adt 2015-final.pdf
7http://gazebosim.org
8http://www.ros.org
9http://exploration.esa.int/mars/45084-exomars-rover/

10https://github.com/mbsim-env/mbsim
11http://chronoengine.info/chronoengine/
12http://sbel.wisc.edu
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Priorities for the next 4 years The objectives for the next 4 years for the development of function-
alities in Siconos are:

• Optimal control solvers for nonsmooth dynamics and state constraints.

• Space discretization and spectral methods of flexible mechanical systems in particular cable sys-
tems.

• Complete our integration in Gazebo.

• Numerical methods for rockfall trajectory (IRSTEA collaboration), geomaterials mainly granular
materials (Material Point Method and Finite Element Method) for debris and mud flows, rock
avalanches and the design of structural protections.

• Developments of various dedicated interfaces towards commercial software (ANSYS RDB, Dymola
(Dassault systems)) and towards standard de facto for geotechnics.

Software’s web site:

• General web site: http://siconos.gforge.inria.fr

• Developer’s site: https://github.com/siconos/siconos

• Dashboard: http://cdash-bipop.inrialpes.fr

• Travis: https://travis-ci.org/siconos/siconos

• Youtube channel: https://www.youtube.com/channel/UCgv2siTCJeSdWFPTDk71Iyw

4.2 Industrial transfer

Prototyping of multibody systems (Schneider Electric, European Space Agency (ESA),
ANSYS)
Participants: V. Acary, B. Brogliato, F. Pérignon, M. Brémond, G. James
With Schneider Electric, we want to apply the new methods for vibrations, modes and quasi-periodic
solutions in nonsmooth flexible mechanical systems to the study of the robustness of circuit breakers to
vibratory environments and seismic excitations, in order to answer to recent more stringent international
norms.

Cableways transportation (STRMTG, POMA)
Participants: V. Acary, B. Brogliato, M. Brémond, G. James, C. Prieur
We have recently contacted both STRMTG and the POMA company about modelling, simulation and
control of cable-transport systems. In such systems, the question of the coupling between the nonlinear
dynamics of cables and their supports with unilateral contact and friction appears now to be determi-
nant in order to increase the performances of the cableway systems, especially for urban transportation
systems.

Natural hazards (IMSRN, INDURA) and Mining industries (Inria Chile, Codelco, Timin-
ing)
Participants: F. Bourrier, V. Acary, B. Brogliato, G. James, S. Sinclair, S. Candela
Through a starting collaboration with F. Bourrier (IRSTEA Grenoble), we will use our software siconos
to assess the natural risk related to rockfalls and the rock slope stability. These questions are also di-
rectly related to the applications to mining industries that we want to continue with Inria Chile. More
generally, the question of granular flows, rock fracture and rock pre-conditioning in mining industries
will provide us with very interesting applications of our simulation techniques.

Cyber-physical modeling and Simulation (Dassault Systems)
Participants: V. Acary, B. Brogliato, M. Brémond, A. Tonnelier
In the framework of the Inria IPL Modeliscale and in a FUI project in construction in the Systematic
cluster (Paris Region Digital Ecosystem), these research developments will be used and implemented
by Dassault Systems in the dymola software, and used by EdF for modeling smart grids and piping
systems. We have started discussions with them to understand exactly what are their priorities. We
want together to extend the modelica toolboxes with nonsmooth components in mechanics, electronics,
hydraulics and control.
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5 Institutional context and positioning

5.1 Positioning inside Inria

We are the only team at Inria dealing all these aspects of nonsmooth systems with strong skills on
complementarity problems and variational inequalities, their analysis, control and numerical simulation.

In the framework of the Inria Project Lab (IPL) and the FUI Modeliscale, we strongly collaborate with
HYCOMES (Inria Rennes Atlantique, B. Cailllaud), PARKAS (Inria Paris, M. Pouzet) on the analysis,
simulation of cyberphysical systems. With the NON-A (POST) team (A. Polyakov, D. Efimov), we
jointly work on the implicit discretization for sliding-mode control and observation. In 2018, an ANR
project DIGITSLID (coordinator B. Brogliato) has been submitted to continue this effort.

Other Inria teams with which our scientific activities have non void intersection are:

• COMMANDS (Inria Paris-Saclay): optimal control with constraints.

• IBIS (Inria Grenoble), BIOCORE (Inria Sophia Antipolis): control and simulation of piecewise
linear systems.

• HEPHAISTOS (Inria Sophia Antipolis): control of cable-driven systems.

• DEFROST (Inria Lille): control of deformable mechanical systems.

• NON-A (Inria Lille):

• POEMS (Inria Paris): wave propagation and nonlinear wave analysis.

• SPHINX (Inria Nancy): control and stabilization of partial differential equations.

• MATHNEURO (Inria Sophia Antipolis)

5.2 Local and national contexts

Again, we do not know other multi-disciplinary teams in France that work on all the aspects of nonsmooth
dynamical systems (modeling, analysis, simulation and control) in a general setting.

In this section, we list the French laboratories that work on nonsmooth dynamical systems, however
focusing on one aspect only. We classify them by scientific domains, and we specify laboratories with
which we have collaborations, and the other that could be considered as future collaborators.

Mechanical engineering and computational mechanics We actively work with the following
laboratories, which represent the main actors in the domain of mechanical systems with contact and
friction:

• LMGC (P. Alart, F. Dubois): simulation and analysis of granular material, software development.

• LTDS-ENTPE (C. Lamarque): nonlinear dynamics of cables with contact and friction within the
co-supervision of the PhD thesis of C. Bertrand.

Another collaboration on musical instruments with contact exists with others French labs that are
not expert on nonsmooth mechanics, but interested in this aspect for applications:

• Institut Jean Le Rond dAlembert, Equipe LAM, Sorbonne Université. J.L. Le Carrou

• IMSIA, ENSTA ParisTech-CNRS-EDF-CEA, Universite Paris Saclay, Palaiseau. C. Touzé.

Possible collaborations could be considered with other labs that are not expert on nonsmooth mechanics,
on the following aspects: LAUM (Laboratoire d’Acoustique de l’Université du Maine) (granular crystals),
LMA (Laboratoire de Mécanique et d’Acoustique) (nonlinear modes in mechanics, B. Cochelin) and
LIRMM (cable-driven systems, M. Gouttefarde),

Hybrid and Cyber-Physical systems In the framework of the Inria Project Lab (IPL) and the FUI
Modeliscale, we collaborate with groups outside INRIA:

• L2S (A. Girard): cyberphysical systems analysis and control.

• VERIMAG (G. Frehse) cyberphysical systems verification

Mathematical analysis and control

• LAAS (A. Tanwani): analysis, control, state observation of set-valued dynamical systems, Lur’e
set-valued systems.
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• LS2N, Ecole Centrale de Nantes (F. Plestan, Y. Aoustin, M. Ghanes): discrete time sliding–mode
control.

• Laboratoire PIMENT, université de la Réunion (D. Goeleven): stability and analysis of nonsmooth
dynamical systems.

• Laboratoire XLIM, universit de Limoges (S. Adly, P. Armand): mathematical analysis of nons-
mooth systems and numerical optimization for SOCCP.

5.3 International context

A non-exhaustive list of people whose scientific interests partly match with ours (those with whom we
have or had collaborations are marked with (**)):

• (**) University of Stuttgart, Mechanical Engineering (R.I. Leine): nonsmooth mechanical systems
analysis and control, impact mechanics.

• University of Groningen (K. Camlibel): Lur’e set-valued systems, dissipativity and complementar-
ity.

• Technology University of Eindhoven (N. van de Wouw): control of nonsmooth systems.

• University of Bristol (A. Champneys, N. Hogan): analysis of Painlevé paradoxes.

• (**) University of Naples (A. Frasca, L. Iannelli): complementarity systems analysis and compu-
tation.

• (**) Kyushu University (R. Kikuuwe) and Tokyo Institute of Technology (Y. Kanno): discrete-time
sliding-mode control and observers, optimization of structures.

• Rensselaer Polytechnic Institute, Mathematics of robotics (J. Trinkle): complementarity in robotics.

• (**) McGill University, Mechanical Engineering (M. Legrand, J. Kovecses): nonlinear modes in
nonsmooth mechanical systems, numerical solvers for contact mechanics, impact mechanics. J.
Kocveses was invited professor for 2 months in 2017 in the BIPOP team, and M. Legrand will be
hosted 3 months in 2018 in the TRIPOP team.

• (**) Technion, Mechanical Engineering (Y. Starosvetsky): nonlinear waves in discrete mechanical
systems.

• (**) Université de Liège, Aerospace and Mechanical Engineering (O. Brüls) and Centro de Inves-
tigación de Métodos Computacionales (CIMEC), Sante FE, Argentina (A. Cardona): numerical
analysis for nonsmooth systems and DAEs.

• (**) Universidad de Santiago de Chile, Mathematics Department, Universidad Técnica Federico
Santa Maŕıa (Juan Peypouquet, Eduardo Cerpa): algorithms for constrained variational inequali-
ties, optimization problems, control and stabilization of nonlinear partial differential equations.

• (**) Cinvestav Mexico, Departamento de Control Automàtico (F. Castanos): passivity-based con-
trol of constrained mechancal systems, discrete-time sliding-mode control, robust control and max-
imal monotone differential inclusions.

• Universita di Parma (A. Tasora): mechanics with impacts and friction, software development
(chrono).

• University of Wisconsin at Madison (M. Ferris): optimization algorithms for MPEC.

• (**) Peking University PKU (C. Liu): impact mechanics.
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