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Introduction to nonsmooth dynamical systems

Motivations

Nonsmooth dynamical systems

nonsmooth = lack of continuity/differentiability
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I nonsmooth solutions in time (jumps, kinks, distributions, measures)

I nonsmooth modeling and constitutive laws (set–valued mapping, inequality
constraints, complementarity, impact laws)
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Introduction to nonsmooth dynamical systems

Motivations

Application fields.

I Computational mechanics. Plasticity. Unilateral contact, Coulomb friction and
impacts : multi-body systems, robotic systems, frictional contact oscillators,
granular materials.

I Electronics. Switched electrical circuits (digital/analog converters and power
electronics, diodes, transistors, switchs).

I Computer science. Hybrid and Cyber–physical systems

I Bio-mathematics. Gene regulatory networks

I Transportation science. Fluid transportation networks with queues.

I Economy and Finance. Oligopolistic market equilibrium

Nonsmooth approach is crucial for a correct modeling and a efficient simulation
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Introduction to nonsmooth dynamical systems

Motivations

Sources of nonsmoothness

I Two largely different time-scales of evolution:

1. a slow smooth dynamics (free flight of the bouncing ball)
2. a very fast dynamics (events, transitions, impacts) that can be modeled as a

punctual event.
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Introduction to nonsmooth dynamical systems

Motivations

Nonsmooth dynamical systems

Difficulty
Standard tools of numerical analysis and simulation (in finite dimension) are no longer
suitable due to the lack of regularity.

Specific tools
Differential measure theory. Convex, nonsmooth and variational Analysis (Clarke,
Wets & Rockafellar). Complementarity theory. Maximal monotone operators.

Examples of nonsmooth dynamical systems

I Piecewise smooth systems

I Complementarity systems and differential variational inequality.

I Specific differential inclusions (Filippov, Moreau sweeping process, Normal cone
inclusion).
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Introduction to nonsmooth dynamical systems

An archetypal example: a RLC circuit with an ideal diode

Example (The RLC circuit with a diode. A half wave rectifier)
A LC oscillator supplying a load resistor through a half-wave rectifier.

CVC

iC

LVL

iL

RVR

iR
VD

1

Figure: Electrical oscillator with half-wave rectifier
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Introduction to nonsmooth dynamical systems

An archetypal example: a RLC circuit with an ideal diode

Example (The RLC circuit with a diode. A half wave rectifier)
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Introduction to nonsmooth dynamical systems

An archetypal example: a RLC circuit with an ideal diode

Example (The RLC circuit with a diode. A half wave rectifier)
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Introduction to nonsmooth dynamical systems

An archetypal example: a RLC circuit with an ideal diode

Example (The RLC circuit with a diode. A half wave rectifier)

I Kirchhoff laws :
vL = vC
vR + vD = vC
iC + iL + iR = 0
iR = iD

I Branch constitutive equations for linear devices are :

iC = Cv̇C
vL = Li̇L
vR = RiR

I ”branch constitutive equation” of the ideal diode ?
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Introduction to nonsmooth dynamical systems

An archetypal example: a RLC circuit with an ideal diode

Example (The RLC circuit with a diode. A half wave rectifier)

VD

iD

(a) A diode

−vD

iD

(b) Shockley’s law iD = is (exp(− vD
nvT

)− 1)

Figure: A nonlinear model of diode
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Introduction to nonsmooth dynamical systems

An archetypal example: a RLC circuit with an ideal diode

Example (The RLC circuit with a diode. A half wave rectifier)

VD

iD
−vD

iD

−vD

iD

Figure: A ideal diode

Complementarity condition :

iD > 0,−vD > 0, iDvD = 0⇐⇒ 0 6 iD ⊥ −vD > 0
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Introduction to nonsmooth dynamical systems

An archetypal example: a RLC circuit with an ideal diode

Example (The RLC circuit with a diode. A half wave rectifier)

I Kirchhoff laws :
vL = vC
vR + vD = vC
iC + iL + iR = 0
iR = iD

I Branch constitutive equations for linear devices are :

iC = Cv̇C
vL = Li̇L
vR = RiR

I ”branch constitutive equation” of the ideal diode

0 6 iD ⊥ −vD > 0
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Introduction to nonsmooth dynamical systems

An archetypal example: a RLC circuit with an ideal diode

Example (The RLC circuit with a diode. A half wave rectifier)
The following linear complementarity system is obtained :(

v̇L
i̇L

)
=

(
0 −1

C
1
L

0

)
·
(

vL
iL

)
+

( −1
C
0

)
· iD

together with a state variable x and one of the complementary variables λ :

x =

(
vL
iL

)
, λ = iD , y = −vD

and
y = −vD =

(
−1 0

)
x +

(
R
)
λ,

Standard form for LCS  ẋ = Ax + Bλ
y = Cx + Dλ
0 6 y ⊥ λ > 0
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Introduction to nonsmooth dynamical systems

An archetypal example: a RLC circuit with an ideal diode

Example (The RLC circuit with a diode. A half wave rectifier){
y = Cx + Dλ
0 6 y ⊥ λ > 0

⇒
{
−vD = −vL + R iD
0 6 −vD ⊥ iD > 0

(1)

• iD = 0,−vD = −vL > 0, vL 6 0

• iD > 0,−vD = 0, iD = VL
R
,VL > 0

}
⇒ iD = max(0,

vL

R
) (2)

iD

−vD
−vD = −vL + RiD

(0,−vL)

iD

−vD
−vD = −vL + RiD

(vL/R, 0)

2020-10-19 11:28 Introduction to nonsmooth dynamical systems V. Acary – 9/27



Introduction to nonsmooth dynamical systems

An archetypal example: a RLC circuit with an ideal diode

Example (The RLC circuit with a diode. A half wave rectifier)
Note that the matrix of the LCP is D =

(
R
)
> 0 is a scalar :{

y = Cx + Dλ
0 6 y ⊥ λ > 0

⇐⇒ λ = max(0,−D−1Cx)

In the application, iD = max(0, vL
R

) and we get(
v̇L
i̇L

)
=

(
0 −1

C
1
L

0

)
·
(

vL
iL

)
+

( −1
C
0

)
·max(0,

vL

R
)

Since max is a Lipschitz operator, we get a standard ODE with Lipschitz r.h.s.
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Nonsmooth analysis

Standard (smooth) analysis

Definition (differentiability)
A function f : Rn → Rm is said to be differentiable at a point x0 if there exists a linear
map J : Rm → Rn such that

lim
‖h‖→0

‖f (x + h)− f (x) + J(h)‖
‖h‖

(1)

I If a function is differentiable at x0, then all of the partial derivatives exist at x0,
and the linear map J is given by the Jacobian matrix.

I If a function is differentiable for all x ∈ Rn then the function is said to be C1

function.
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Nonsmooth analysis

If the function is not C1, how can we extend the notion of differentiability ?

Extension of the notion of differentiability

I Convex functions and the notion of subdifferential

I Clarke nonsmooth analysis for locally Lipschitz functions

I Mordukhovich generalized differentiation

I . . .
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Convex sets

Definition (Convex set)
A set C ∈ Rn is said to be convex if, for all x and y in C and all α in the interval
(0, 1), the point (1− α)x + αy also belongs to C :

∀α ∈ (0, 1), ∀x ∈ C , ∀y ∈ C =⇒ (1− α)x + αy ∈ C (2)
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Convex sets

Definition (Convex set)
A set C ∈ Rn is said to be convex if, for all x and y in C and all α in the interval
(0, 1), the point (1− α)x + αy also belongs to C :

∀α ∈ (0, 1), ∀x ∈ C , ∀y ∈ C =⇒ (1− α)x + αy ∈ C (2)

Properties

I Closed under convex combinations (possible alternative definition)
If C is a convex set in Rn, then for any collection of r vectors u1, . . . ur in C
(r > 1) and for any r numbers αi > 0 such that

∑r
i αi = 1, we have

r∑
i

αiui ∈ C (3)

I Rn and ∅ are convex

I Any intersection of convex sets is convex
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Extended real-valued functions

In Convex analysis, we use extended real-valued functions.

Definition (Extended real–valued function)
An extended real–valued function is a function f : Rn → R ∪+∞ = (−∞,+∞]

Conventions for calculus in R ∪ +∞
Obvious rules are generally adopted in convex analysis:

addition and subtraction:
α+∞ =∞+ α =∞ for −∞ < α 6∞
α−∞ = −∞+ α =∞ for −∞ 6 α <∞
multiplication:
α∞ =∞α =∞, α(−∞) = (−∞)α = −∞ for 0 < α 6∞
α∞ =∞α = −∞, α(−∞) = (−∞)α =∞ for −∞ 6 α < 0
0∞ =∞0 = 0 = 0(−∞) = (−∞)0, −(−∞) =∞
infimum and supremum :
inf ∅ =∞, sup ∅ = −∞

(4)

Some combinations as +∞−∞ and −∞+∞ are undefined and forbidden
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Convex functions

Definition (Convex function)
A function f : Rn → R ∪+∞ is a convex function if it satisfies

f (αx1 + (1− α)x2) 6 αf (x1) + (1− α)f (x2) for all x1, x2 ∈ Rn, α ∈ [0, 1] (5)

x

f (x)

1
2

(x1 + x2)x1 x2
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Convex functions

Definition (Proper convex function)
A convex function f : Rn → R ∪+∞ is proper if f 6≡ +∞

Definition (Domain of a convex function)
Let f : Rn → R ∪+∞ be a convex function. Its domain D(f ) is defined by

D(f ) = {x | f (x) < +∞} (5)

Theorem (Regularity)
If f : R→ R ∪+∞ is a convex function, then f is Lipschitz continuous on all compact
interval I ⊂ D(f ).
If f : Rn → R ∪+∞ is a convex function, then f is locally Lipschitz continuous on all
open set Ω ⊂ D(f ).
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Epigraph

Definition (Epigraph)
f : Rn → R ∪+∞ a proper function (not necessarily convex)

epif = {(y , x) | y > f (x)} (6)

x

|x |

epif

Lemma
A function is convex if and only if its epigraph is convex
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Subdifferential of convex functions

Convex functions are not necessarily differentiable. We have only Lipschitz continuity
property. How to extend the definition of differentiability to any convex functions?

Definition (Subgradient of convex functions)
f : Rn → R ∪+∞ a convex function.
A vector p ∈ Rn is said to be a subgradient of f at x if

f (y) > f (x) + pT (y − x) for all y ∈ Rn (7)

Geometrical interpretation

I If f is finite in x , the graph of the affine function

h(y) = f (x) + pT (y − x) (8)

is the (non vertical) supporting hyperplane to the convex set, epif at (x , f (x)).

I In the scalar case, p is the slope.
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Subdifferential of convex functions

x

f (x)

1

p = 1, h(y) = p(y − 1)

p = 1/2, h(y) = p(y − 1)
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Subdifferential of convex functions

Definition (Subdifferential of convex functions)
f : Rn → R ∪+∞ a convex function.

∂f (x) = {p ∈ Rn | f (y) > f (x) + pT (y − x) for all y ∈ Rn} (9)

Definition (Subdifferential of convex functions)
A convex function f : Rn → R ∪+∞ is subdifferentiable at x is ∂f (x) 6= ∅

Remarks
I The subdifferential is the set of subgradients. It is a closed convex set.

I The subdifferential can always be computed if the function is proper

I The subdifferential is a set that can be empty. For instance, if x 6∈ D(f ) then
f (x) = +∞ and ∂f (x) = ∅ if the function is proper.

Standard cases
I If f : R→ R is continuously differentiable, ∂f (x) = f ′(x)

I If f : Rn → R is continuously differentiable, ∂f (x) = ∇f (x)
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Subdifferential of convex functions

Example (Absolute value function f (x) = |x |)

x

|x |

Figure: Absolute value function
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Subdifferential of convex functions

Example (Absolute value function f (x) = |x |)
|y | − |x | > p(y − x)

I x > 0, |x | = x , |y | − x > p(y − x)

y = x ⇒ p ∈ R
y > x > 0, y − x > p(y − x) ⇒ p 6 1
x > y > 0, y − x > p(y − x) ⇒ p > 1
y 6 0, −y − x > p(y − x) ⇒ p = 1

⇒ p = 1 (10)

I x < 0, |x | = x , |y |+ x > p(y − x)

y = x ⇒ p ∈ R
0 > y > x , −(y − x) > p(y − x) ⇒ p > −1
y 6 x < 0, −(y − x) > p(y − x) ⇒ p 6 −1
y > 0, y + x > p(y − x) ⇒ p = −1

⇒ p = −1 (11)

I x = 0 |y | > py ⇒ p ∈ [−1, 1]
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Subdifferential of convex functions

Example (Absolute value function f (x) = |x |)

∂|x | =

 −1 if x < 0
1 if x > 0
[− 1, 1] if x = 0

= sgn(x) (10)

where sgn() is the multivalued signum function

x

|x |

x

sgn(x) = ∂|x |

Figure: Absolute value function
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Indicator function of a convex set

Definition (Indicator function of a convex set)
Let C be a nonempty convex set. The indicator of a convex function ΨC (x) is defined
by

ΨC (x) =

{
0 if x ∈ C

+∞ if x 6∈ C
(11)

Remark
If C is convex, the epigraph of ΨC is convex and ΨC is a convex function.

x

ΨC (x)

C

+∞ +∞
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Indicator function of a convex set – Subdifferential

Standard examples
C = R+ ⊂ R.

ΨR+ (x) =

{
0 if x > 0

+∞ otherwise .
(12)

I x > 0, f (y) > p(y − x)

y > 0, 0 > p(y − x) =⇒ p = 0
y < 0, +∞ > p(y − x) =⇒ p ∈ R

}
=⇒ p = 0 (13)

I x = 0, f (y) > py

y > 0, 0 > py =⇒ p 6 0
y < 0, +∞ > py =⇒ p ∈ R

}
=⇒ p 6 0 (14)

I x < 0, f (y)−∞ > p(y − x)

y > 0 −∞ > p(y − x) =⇒ ∅
y < 0 forbidden

}
=⇒ ∅ (15)
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Indicator function of a convex set – Subdifferential

Standard examples
C = R+ ⊂ R.

∂ΨR+ (x) =


0 if x > 0

R− if x = 0

∅ if x < 0

(12)

x

−∂ΨR+

y ∈ −∂ΨR+ (x)

m

0 6 y ⊥ x > 0
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Indicator function of a convex set – Subdifferential

Standard examples
C = [−1, 1] ⊂ R

x

∂Ψ[−1,1](x)

∂Ψ[−1,1](x) =


R− if x = −1

0 if − 1 < x < 1

R+ if x = 1

(12)
y ∈ ∂Ψ[−1,1](x)

m

x ∈ sgn(y)

Inverse of the multivalued signum function
Conjugation of convex function
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Normal cone to a convex set

Definition (Normal cone to a convex set)
C a nonempty convex set in Rn and x ∈ C

NC (x) = {s ∈ Rn | sT (y − x) 6 0 for all y ∈ C} (13)

Properties

I By convention, NX (x) = ∅ for x 6∈ C .

I x ∈ int(C)⇒ NC (x) = {0}.
I If the boundary is smooth, the normal cone reduces automatically to the standard

normal.
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Normal cone to a convex set

x + NC (x)
Cx y
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Epigraph and normal cone

Lemma (Epigraph and normal cone)
f : Rn → R ∪+∞ a proper convex function

Nepif (x) = {(λy ,−λ) | y ∈ ∂f (x) and λ > 0} (13)

x

|x |

epif

Remark
The normal cone is generated by vectors (y ,−1) with y ∈ ∂f (x).
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Indicator function of a convex set, normal cone and subdifferential

Lemma
C a nonempty convex set.

∂ΨC (x) = NC (x) (14)
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Indicator function of a convex set, normal cone and subdifferential

Standard examples
C = R+ ⊂ R.

NR+ (x) =

{
0 if x > 0

R− if x = 0
(14)

x

−NR+ (x) = −∂ΨR+

−y ∈ NR+ (x)

m

−y ∈ ∂ΨR+ (x)

m

0 6 y ⊥ x > 0
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Indicator function of a convex set, normal cone and subdifferential

Standard examples
C = [−1, 1] ⊂ R

x

N[−1,1](x)

N[−1,1](x) =


R− if x = −1

0 if − 1 < x < 1

R+ if x = 1

(14)
y ∈ N[−1,1](x)

m

y ∈ ∂Ψ[−1,1](x)

m

x ∈ sgn(y)

Inverse of the multivalued signum function
Conjugation of convex function
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Nonsmooth power and energy

component characteristic power function

resistor linear quadratic

VR

iR

iR

vR

iR

−vR

vR = RiR P = 1
2
vr iR = 1

2
Ri2R
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Nonsmooth power and energy

component characteristic power function

diode complementarity indicator of R+

VD

iD

iD

−vD ∈ ∂ΨR+ (iD)

iD

ΨR+ (iD)

+∞

0 6 −vD ⊥ iD > 0 P = ΨR+ (iD)
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Nonsmooth power and energy

component characteristic power function

relay sign function indicator of R+

VD

iD

i

v ∈ ∂|i |

i

|i |

v ∈ sgn(i) P = |i |
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Introduction to nonsmooth dynamical systems

Basics on convex, nonsmooth analysis and complementarity theory

Nonsmooth power and potential energy

Comments

y = ∇x f (x), with f ∈ C1 (15)

y = ∂f (x), with f proper convex. (16)

I Convex analysis allows one to define a constitutive law that derives from a
potential energy (or a power) that might be non differentiable.

I Non differentiable points correspond to set-valued part of the constitutive law.

I The potential energy can take some infinite values that describe forbidden (or
non feasible) values for the system.

I The same applies with dissipative potential or power.
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