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Introduction to nonsmooth dynamical systems

Contents

I Complementarity systems

I Differential inclusions

I Variational inequalities,

I Existence and uniqueness results.

Practical work : study of a slider with friction and basic circuits with a diode.
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Linear Complementarity Systems (LCS)

Linear Complementarity Systems (LCS) ẋ(t) = Ax(t) + Bλ(t) + a, x(0) = x0

y(t) = Cx(t) + Dλ(t) + b
0 6 y(t) ⊥ λ(t) > 0.

(1)

Concept of solutions

I The solution to the LCS (1) depends strongly on the quadruplet (A,B,C ,D) and
the initial conditions

I We will review the simplest cases
I C1 solutions, when D is a P-matrix
I Absolutely continuous (AC) solutions when D = 0, CB > 0 and consistent

initial solutions
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Mathematical nature of the solutions

In order to say more on the mathematical properties of the LCS, we need to
characterize the solution λ of {

y = Cx + Dλ+ b

0 6 y ⊥ λ > 0
(2)

of its equivalent formulation in terms of inclusion into a subdifferential

− (Cx + Dλ+ b) ∈ ∂ΨRm
+

(λ) (3)

or in terms of variational inequality

(Cx + Dλ+ b)T (τ − λ) > 0, for all τ ∈ Rm
+ (4)
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Linear Complementarity Problem

Definition (LCP)
A Linear complementarity problem (LCP) is to find a vector λ that satisfies

0 6 λ ⊥ Mλ+ q > 0

Theorem (Fundamental result of complementarity theory)
The LCP 0 6 λ ⊥ Mλ+ q > 0 has a unique solution λ∗ for any q ∈ Rm if and only if
M is a P-matrix.
In this case the solution λ∗ is a piecewise linear function of q (with a finite number of
pieces).

Remarks

I A P-matrix has all its principal minors positive. A positive definite matrix is a
P-matrix.

I A symmetric P-matrix is a positive definite matrix.

I There exist non-symmetric P-matrices which are not positive definite. And there
exist positive definite matrices which are not symmetric!
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Complementarity Systems (CS)

Solutions as continuously differentiable functions (C 1 solutions)

ODE with Lipschitz right-hand–side
The substitution of λ(x) yields a Ordinary Differential Equation (ODE) with a
Lipschitz right–hand–side.
Ü Solutions as continuously differentiable functions (C1 solutions)

The LCS case
The solution λ(x) of the following linear complementarity system

0 6 λ ⊥ Dλ+ Cx + b > 0 (5)

is unique for all Cx + b if and only if D is a P-Matrix and moreover λ(x) is a Lipschitz
function of x .

see the example of the RLCD circuit
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Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

The LCS case with D = 0 and b = 0
If we consider the LCS (1) with D = 0 and b = 0, we get ẋ(t) = Ax(t) + Bλ(t) + a, x(0) = x0

y(t) = Cx(t)
0 6 y(t) ⊥ λ(t) > 0.

(6)

Regularity: What should we expect ?
The time-derivative of the state ẋ(t) and λ(t) are expected to be, in this case,
discontinuous functions of time.
Indeed, if the output y(t) reaches the boundary of the feasible domain at time t∗, i.e.,
y(t∗) = 0, the time–derivative ẏ(t) needs to jump if ẏ(t∗) < 0
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Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
Let us search for a continuous solution x(t) to x(0) = x0 > 0

ẋ(t) = −x(t)− 1 + λ(t)
0 6 x(t) ⊥ λ(t) > 0

Two modes :

I free dynamics for 0 < t < t∗ with x(t) > 0 and x(t∗) = 0:{
x(0) = x0 > 0
ẋ(t) = −x(t)− 1

(7)

Solution :
x(t) = exp(−t)x0 + exp(−t)− 1 (8)

x(t∗) = 0 =⇒ t∗ = − ln( 1
1+x0

) > 0

I dynamics for t > t∗ {
x(t∗) = 0,
ẋ(t) + 1 = λ(t) > 0

(9)
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
Solving the dynamics for t∗ 6 t < T :{

x(t∗) = 0
ẋ(t) + 1 = λ(t) > 0

(7)

if we are looking for an abs. continuous solution x(t), the abs. continuity and
x(t∗) = 0 implies that ẋ(t) > 0, t ∈ [t∗, t∗ + ε), ε > 0, otherwise x(t∗ + ε) < 0.

1. ẋ(t) > 0, t ∈ [t∗, t∗ + ε), ε > 0.
By continuity, x(t + ε) > 0, λ(t + ε) = 0 then

ẋ(t + ε) = −x(t + ε)− 1 < 0 (8)

No solution.

2. ẋ(t) = 0, λ(t) = 1, x(t) = 0 ∀t > t∗ (T = +∞ )
The only possible continuous solution.
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
Conclusion: A continuous x(t) has been computed for all t ∈ [0,+∞). The time
derivative of the solution ẋ(t) jumps at from t∗ from x(t−∗ ) = −1 to x(t+

∗ ) = 0.
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Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Idea of the general statement
If CB is a positive definite matrix (relative degree one) and Cx0 > 0 (consistent initial
condition), the unique solution of (31) is an absolutely continuous function.

Why the condition on CB ?
Derivation of the output y(t)

y(t) = Cx(t)
ẏ(t) = CAx(t) + CBλ(t) if D = 0

(7)

If CB > 0, we have to solve the following LCP whenever y(t) = 0{
ẏ(t) = CAx(t) + CBλ(t)

0 6 ẏ(t) ⊥ λ(t) > 0
(8)

The LCP (8) is a LCP for the time derivative ẏ(t).

The good framework is the differential inclusion framework (see later)
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Complementarity Systems (CS)

Existence and uniqueness results for LCS. Summary

Linear Complementarity Systems (LCS) ẋ(t) = Ax(t) + Bλ(t) + a, x(0) = x0

y(t) = Cx(t) + Dλ(t) + b
0 6 y(t) ⊥ λ(t) > 0.

(9)

LCS with D a P-matrix
ODE with Lipschitz continuous right-hand side.
Cauchy–Lipschitz Theorem =⇒ existence and uniqueness of solutions.

LCS with D = 0
Existence and uniqueness results based on

I Local (or nonzeno) solution based on the leading Markov parameters assumptions
(D,CB,CAB,CA2B, ..)

I or maximal monotone differential inclusion
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Complementarity Systems (CS)

Extensions of complementarity problems

Let C be a nonempty closed convex set. The subdifferential inclusion continues to hold

−y ∈ ∂ΨC (λ) (10)

The complementarity relation is no longer valid for a set convex that is not a cone,
but we can define the following dynamics ẋ(t) = Ax(t) + Bλ(t) + u(t)

y(t) = Cx(t) + Dλ(t) + a(t)
−y(t) ∈ ∂ΨC (λ(t))

(11)
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Complementarity Systems (CS)

Extensions of complementarity problems

Relay systems
C = [−1, 1]

∂Ψ[−1,1](λ) =


R− if λ = −1

0 if − 1 < λ < 1

R+ if λ = 1

(12)

Equivalent formulations

y ∈ ∂Ψ[−1,1](λ)⇐⇒ λ ∈ sgn(y)

Definition (Relay systems) ẋ(t) = Ax(t) + Bλ(t) + u(t)
y(t) = Cx(t) + Dλ(t) + a(t)
λ(t) ∈ sgn(y(t))

(13)

Application in sliding mode control, zener diode modeling or friction in mechanical
systems
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Complementarity Systems (CS)

Piecewise linear systems with monotone graphs

x
i

v ∈ ∂|i |

x
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Extensions of complementarity problems

Cone complementarity condition
Let K be a closed non empty convex cone. We can define

K? 3 y ⊥ λ ∈ K ⇐⇒ −y ∈ ∂ΨK (λ)⇐⇒ −λ ∈ ∂ΨK? (y) (14)

where K? is the dual cone:

K? = {x ∈ Rm | x>y > 0 for all y ∈ K}. (15)

Definition (Cone Linear complementarity systems (CLCS)) ẋ(t) = Ax(t) + Bλ(t) + u(t)
y(t) = Cx(t) + Dλ(t) + a(t)
K? 3 y(t) ⊥ λ(t) ∈ K ,

(16)
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Introduction to nonsmooth dynamical systems

Differential inclusion

Differential inclusion

Complementarity condition as a subdifferential inclusion

0 6 y ⊥ λ > 0⇐⇒ −y ∈ ∂ΨRm
+

(λ)⇐⇒ −λ ∈ ∂ΨRm
+

(y) (17)

LCS as a differential inclusion with D = 0 and b = 0


ẋ(t) = Ax(t) + Bλ(t) + a
y(t) = Cx(t)
0 6 y(t) ⊥ λ(t) > 0
x(0) = x0.

⇐⇒
{
−(ẋ(t)− Ax(t)− a) ∈ B∂ΨRm

+
(Cx(t)),

x(0) = x0

(18)
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Introduction to nonsmooth dynamical systems

Differential inclusion

General differential inclusion

Concept of differential inclusions
Differential inclusions is a generalization of the concept of differential equations of the
form

ẋ(t) ∈ A(x(t), t) (19)

where (x , t) 7→ A(x , t) is a multi-valued map, i.e. A(x , t) is a set rather than a single
point.

A very general concept
Differential inclusions is a very general concept that contains Ordinary Differential
Equations (ODE), Differential Algebraic Equations (DAE). There are many types if
differential inclusions.

We will focus on Maximal Monotone Differential Inclusion
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Differential inclusion

Maximal monotone operators

Let 2R
n

be the set of the subsets of Rn

Definition (Monotone multi-valued operator)
A multi–valued operator T : Rn → 2R

n
is monotone if

∀y1 ∈ T (x1), ∀y2 ∈ T (x2), (y2 − y1)T (x2 − x1) > 0 (20)

Definition (Graph)
Let T multi–valued operator T : Rn → 2R

n
. The graph of T is defined by

Gr(T ) = {(x , y) | y ∈ T (x)} (21)

Definition (Maximal Monotone multi-valued operator)
A operator T is maximal monotone if it is maximal for all the monotone operators for
the inclusion of graphs.

In other words, T is monotone and for all other monotone operator S then
Gr(T ) ⊂ Gr(S) =⇒ T = S
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Introduction to nonsmooth dynamical systems

Differential inclusion

Maximal monotone operators

Definition (Domain)
The domain of an operator T is defined by D(T ) = {x | T (x) 6= ∅}

Definition (Range of T )
Let T : Rn → 2R

n
be an operator. The range of T is defined by

R(T ) = ∪x∈Rn{y | y ∈ T (x)} (22)

Definition (Inverse of T )
Let T : Rn → 2R

n
be a maximal monotone operator. Its inverse T−1 is defined by

y ∈ T (x)⇐⇒ x ∈ T−1(y) (23)

and we have D(T−1) = R(T ) and R(T−1) = D(T )

Its inverse is defined by the symmetry of its graph with respect to y = x
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Differential inclusion

Maximal monotone operators

x

∂Ψ[−1,1](x)

y

(∂Ψ[−1,1](y))−1
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Differential inclusion

Maximal monotone operators

x

T (x)

x

T−1(x)
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Differential inclusion

Maximal monotone operators

x x x x

x

sgn(x) = ∂|x |

2018-11-11 16:57 Introduction to nonsmooth dynamical systems V. Acary – 22/28
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Differential inclusion

Maximal monotone differential inclusion

Definition (Maximal monotone differential inclusion)
Let T multi–valued operator T : Rn → 2R

n
. A maximal monotone differential

inclusion is defined by
− ẋ(t) ∈ T (x(t)) (22)

Definition (Perturbed maximal monotone differential inclusion)
Let T multi–valued operator T : Rn → 2R

n
. A maximal monotone differential

inclusion is defined by
− (ẋ(t) + f (x , t)) ∈ T (x(t)) (23)

where f is a Lipschitz continuous map w.r.t x .
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Differential inclusion

Maximal monotone differential inclusion

Definition (lower semi-continuity)
A function Φ : Rn → R ∪+∞ is lower semi-continuous if one of the following
equivalent assertions is satisfied:

I
lim inf

x→x0
Φ(x) > Φ(x0)

I Its epigraph is closed

Remarks

I lim infx→x0 Φ(x) = limε→0(inf{Φ(x), x ∈ B(x0, ε) \ {x0}})
I Continuity implies semi-continuity.

x

y = Φ(x)

2018-11-11 16:57 Introduction to nonsmooth dynamical systems V. Acary – 24/28



Introduction to nonsmooth dynamical systems

Differential inclusion

Maximal monotone differential inclusion

For a convex proper function Φ, the semi–continuity property has only to be checked
on the boundary of the domain of definition

∂D(Φ) = D(Φ) \ ˚D(Φ)

.

Examples

x

y = Φ(x)

+∞ +∞

x

y = Φ(x)

+∞ +∞

x

y = Φ(x)

+∞ +∞
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Differential inclusion

Maximal monotone differential inclusion

Counter-examples

x

y = Φ(x)

+∞ +∞

x

y = Φ(x)

+∞ +∞

x

y = Φ(x)

+∞ +∞
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Introduction to nonsmooth dynamical systems

Differential inclusion

Maximal monotone differential inclusion

Theorem
For a lower semi–continuous convex proper function Φ, the subdifferential ∂Φ(x) is a
maximal monotone operator

Remarks

I Obvious in the regular case: φ(x) : R→ R a convex potential C2

φ′′(x) > 0 and φ′(x) is monotone (increasing single–valued function)

I For a maximal monotone operator in R, i.e. T : R→ 2R it exists a lower
semi–continuous convex proper function Φ such that T = ∂Φ
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Differential inclusion

Maximal monotone differential inclusion

Examples

I Φ(x) = 0 = ΨR,T (x) = 0
− ẋ + f (x , t) = 0 (24)

I Φ(x) = Ψc (x),T (x) = ∂ΨC (x)

− ẋ + f (x , t) ∈ ∂ΨC (x) (25)

I relay or sign function Φ(x) = |x |,T (x) = ∂|x |

− ẋ ∈ ∂|x | ⇐⇒ −ẋ ∈ sgn(x) (26)

I 2-norm Φ(x) = ‖x‖, T (x) = ∂‖x‖ =

{ x
‖x‖ if x 6= 0

{s | ‖s‖ 6 1} if x = 0

2018-11-11 16:57 Introduction to nonsmooth dynamical systems V. Acary – 25/28



Introduction to nonsmooth dynamical systems

Differential inclusion

Maximal monotone differential inclusion

Examples

I relay with dead zone

Φ(x) =


−x + 1, if x 6 −1

0, if − 1 6 x 6 1

x − 1, if x > 1

(24)
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Differential inclusion

Maximal monotone differential inclusion

Examples

I Sum of (proper) convex functions Φ1 + Φ2 is convex. Moreover, if the relative
interior ri(D(∂Φ1)) and ri(D(∂Φ2) have a common point then

∂(Φ1(x) + Φ2(x)) = ∂Φ1(x) + ∂Φ2(x) (24)

Relative interior : ri(X ) = {x ∈ X | ∃ε > 0,Bε ∩Aff(X ) ⊂ X} where Aff(X) is
the affine hull of X , the smallest affine set containing X :

Aff(X ) = {
k∑

i=0

αixi | k > 0, xi ∈ X , αi ∈ R,
k∑

i=0

αi = 1} (25)

Ex: C = {x ∈ R2 | x1 ∈ [−1, 1], x2 = 0} Aff(C) = R× {0}
I Φ(x) = 1/2 ∗ ax2 + |x |,T (x) = ax + sgn(x)

− ẋ ∈ ax + ∂|x | ⇐⇒ −ẋ − ax ∈ sgn(x) (26)

1. a > 0. Φ(x) is convex and T (x) is maximal monotone.
2. a < 0. Φ(x) is not convex and T (x) is not monotone.
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Differential inclusion

Maximal monotone differential inclusion
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Differential inclusion

Maximal monotone differential inclusion

x

y ∈ sgn(x) + ax , a > 0

x

y ∈ sgn(x) + ax , a < 0
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Differential inclusion

Maximal monotone differential inclusion

Link with gradient systems with convex potentials

I φ(x) : R→ R a convex potential C2

φ′′(x) > 0 and φ′(x) is monotone (increasing function)

− ẋ = φ′(x) (24)

I Φ(x) : R→ R a convex potential not necessarily differentiable, but proper and
lower semi–continuous ∂Φ(x) is a maximal monotone operator.

− ẋ = ∂Φ(x) (25)
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Differential inclusion

Existence and uniqueness results

Theorem (Brézis 1973)
Let T : Rn → 2R

n
be a maximal monotone operator such that ˚D(T ) 6= ∅. Let a

function f : Rn × R→ Rn such that

1. the function f (x , · ) is Lipschitz continuous on D(T ) that is

∃L > 0, ∀t ∈ [0, tmax], ∀x1, x2 ∈ D(T ), ‖f (t, x1)− f (t, x2)‖ 6 L‖x1 − x2‖ (26)

2. ∀x ∈ D(T ), the mapping t 7→ f (x , t) belongs to L∞(0, tmax;Rn)

Then, for all x0 ∈ D(T ), it exists a unique solution x(t) which is absolutely continuous
such that{

−(ẋ(t) + f (x(t), t)) ∈ T (x(t)), almost everywhere on [0, tmax]

x(0) = x0
(27)
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Differential inclusion

Existence and uniqueness results

Existence

I By using the Moreau-Yosida regularization of T

Tλ(x) =
1

λ
(I − Jλ(x)), λ > 0, (28)

with Jλ(x) the resolvent of T (x) given by

Jλ(x) = (I + λT (x))−1. (29)

For a maximal monotone operator T or R, Jλ is defined over R and is contracting.
The mapping Tλ is a maximal monotone operator and Lipschitz continuous with
a Lipschitz constant of 1

λ
. We consider that ODE with Lipschitz r.h.s.

− (ẋλ(t) + f (xλ(t), t)) = Tλ(xλ(t)) (30)

and then the limit λ→ 0 of the sequence of solutions xλ.

I By approximation using a discretization scheme
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Differential inclusion

Existence and uniqueness results

Uniqueness
Simple case −ẋ(t) ∈ T (x(t)). x ∈ R
Let us consider two solution x1 and x2

Since T (x) is monotone, we have

(ẋ1(s)− ẋ2(s))T (x1(s)− x2(s)) 6 0 almost everywhere on [0,T ] (28)

By integrating over [0, t], we get

1

2
(x2(t)− x1(t))2 −

1

2
(x2(0)− x1(0))2 6 0 (29)

If x1(0) = x2(0), we have

1

2
(x2(t)− x1(t))2 6 0 =⇒ x2 = x1 (30)
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Differential inclusion

Existence and uniqueness results

Uniqueness
−(ẋ(t) + f (x , t)) ∈ T (x(t))
Let us consider two solution x1 and x2

Since T (x) is monotone, we have

(ẋ1(s) + f (x1(s), s)− ẋ2(s)− f (x2(s), s))T (x1(s)− x2(s)) 6 0 (28)

almost everywhere on [0,T ].
By integrating over [0, t], we get

1

2
(x2(t)− x1(t))2 6

∫ t

0
(f (x2(s), s)− f (x1(s), s))T (x1(s)− x2(s))ds (29)

Since f is lipschitz, we have

(x2(t)− x1(t))2 6 2L

∫ t

0
‖x1(s)− x2(s)‖2ds (30)
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Introduction to nonsmooth dynamical systems

Differential inclusion

Existence and uniqueness results

Gronwall Lemma
Let a a positive constant and m a integrable function, nonnegative almost everywhere
on (0, tmax) and a function φ a continuous function on [0, tmax]. If

∀t ∈ [0, tmax], φ(t) 6 a +

∫ t

0
m(s)φ(s) ds (28)

then

∀t ∈ [0, tmax], φ(t) 6 a exp(

∫ t

0
m(s) ds) (29)

Applying the Gronwall Lemma, for a = 0 and m(s) = 2L and φ(s) = ‖x1(s)− x2(s)‖2,
we get

‖x2(t)− x1(t))‖2 6 0 =⇒ x2 = x1 (30)
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Introduction to nonsmooth dynamical systems

Differential inclusion

Come back to LCS with D = 0 but B 6= Id 6= C

Theorem (LCS as maximal monotone differential inclusion)
Let us consider the following LCS ẋ(t) = Ax(t) + Bλ(t) + a(t), x(0) = x0

y(t) = Cx(t)
0 6 y(t) ⊥ λ(t) > 0.

(31)

If there exists P a symmetric definite positive matrix such that

PB = CT (32)

then we can perform a change of variable z = Rx with R2 = P,R > 0,R = RT

−(ż(t)− RAR−1z(t)− Ra(t)) ∈ RB ∂ΨRm
+

(CR−1z(t)) (33)

such that (33) is a maximal monotone differential inclusion.
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Introduction to nonsmooth dynamical systems

Differential inclusion

Come back to LCS with D = 0 but B 6= Id 6= C

We have the following equivalence
ẋ(t) = Ax(t) + Bλ(t) + a(t)
y(t) = Cx(t)
0 6 y(t) ⊥ λ(t) > 0,
x(0) = x0

⇐⇒
{
−(ẋ(t)− Ax(t)− a(t)) ∈ B∂ΨRm

+
(Cx(t)),

x(0) = x0

(31)
We can perform a change of variable z = Rx with R2 = P,R > 0,R = RT

−(ż(t)− RAR−1z(t)− Ra(t)) ∈ RB ∂ΨRm
+

(CR−1z(t)) (32)

2018-11-11 16:57 Introduction to nonsmooth dynamical systems V. Acary – 28/28



Introduction to nonsmooth dynamical systems

Differential inclusion

Come back to LCS with D = 0 but B 6= Id 6= C

For a matrix E , the function φ(x) = ΨRm
+

(Ex) is a proper convex function and its

subdifferential is given by
∂φ(x) = ET∂ΨRm

+
(Ex) (31)

(Im(E) contains a point of ri(D(∂ΨRm
+

))) (Chain rule)

In our application, we set E = CR−1 and we have

ET = R−TCT = R−1R2B = RB (32)

The obtained inclusion

−(ż(t)− RAR−1z(t)− Ra) ∈ ∂Φ(z(t)) = ET∂ΨRm
+

(Ez(t)), (33)

is a maximal monotone differential inclusion
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