
Introduction to nonsmooth dynamical systems

Introduction to nonsmooth dynamical systems

Lecture 2. Complementarity systems

Vincent Acary
DR Inria. Centre de recherche de Grenoble. Equipe TRIPOP.

vincent.acary@inria.fr

http://tripop.inrialpes.fr/people/acary
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Linear Complementarity Systems (LCS)

Linear Complementarity Systems (LCS) ẋ(t) = Ax(t) + Bλ(t) + a, x(0) = x0

y(t) = Cx(t) + Dλ(t) + b
0 6 y(t) ⊥ λ(t) > 0.

(1)

Concept of solutions

I The solution to the LCS (1) depends strongly on the quadruplet (A,B,C ,D) and
the initial conditions

I We will review the simplest cases
I D is a P-matrix

Ü C1 solutions.
I D = 0, CB > 0 and consistent initial solutions

Ü Absolutely Continuous (AC) solutions
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Mathematical nature of the solutions

In order to say more on the mathematical properties of the LCS, we need to
characterize the solution λ of {

y = Cx + Dλ+ b

0 6 y ⊥ λ > 0
(2)

of its equivalent formulation in terms of inclusion into a subdifferential

− (Cx + Dλ+ b) ∈ ∂ΨRm
+

(λ) (3)

2021-11-23 08:58 Introduction to nonsmooth dynamical systems V. Acary – 5/33



Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Linear Complementarity Problem

Definition (Linear Complementarity Problem (LCP))
A Linear complementarity problem (LCP) is to find a vector λ ∈ Rm that satisfies

0 6 λ ⊥ Mλ+ q > 0 (4)

for a given matrix M ∈ Rm×m and a vector q ∈ Rm.

Comments
I A LCP is often formulated as: {

w = Mλ+ q,
0 6 w ⊥ λ > 0.

(5)
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Linear Complementarity Problem

Link with quadratic programming (QP)
If M = M> � 0, the LCP is the necessary and sufficient optimality condition to the
following quadratic problem

minλ
1

2
λ>Mλ+ λ>q

s.t. λ > 0
(4)

or equivalently

minλ
1

2
λ>Mλ+ λ>q + ψR+ (λ) (5)

Hints : Write the optimality condition of a convex QP
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Linear Complementarity Problem

Theorem (Fundamental result of complementarity theory)
The LCP

0 6 λ ⊥ Mλ+ q > 0

has a unique solution λ∗ for any q ∈ Rm if and only if M is a P-matrix.
In this case the solution λ∗ is a piecewise linear function of q (with a finite number of
pieces).

Remarks
I A P-matrix has all its principal minors positive. A positive definite matrix is a

P-matrix.

I A symmetric P-matrix is a positive definite matrix.

I There exist non-symmetric P-matrices which are not positive definite. And there
exist positive definite matrices which are not symmetric!
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as continuously differentiable functions (C 1 solutions)

ODE with Lipschitz right-hand–side
The substitution of λ(x) yields a Ordinary Differential Equation (ODE) with a
Lipschitz right–hand–side.
Cauchy-Lipschitz Theorem Ü Existence and uniqueness of a solution as continuously
differentiable functions (C1 solutions)

The LCS case
The solution λ(x) of the following linear complementarity system

0 6 λ ⊥ Dλ+ Cx + b > 0 (6)

is unique for all Cx + b if and only if D is a P-Matrix and moreover λ(x) is a Lipschitz
function of x .

see the example of the RLCD circuit
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

The LCS case with D = 0 and b = 0
If we consider the LCS (1) with D = 0 and b = 0, we get ẋ(t) = Ax(t) + Bλ(t) + a, x(0) = x0

y(t) = Cx(t)
0 6 y(t) ⊥ λ(t) > 0.

(7)

Regularity: What should we expect ?
The time-derivative of the state ẋ(t) and λ(t) are expected to be, in this case,
discontinuous functions of time.
Indeed, if the output y(t) reaches the boundary of the feasible domain at time t∗, i.e.,
y(t∗) = 0, the time–derivative ẏ(t) needs to jump if ẏ(t∗) < 0
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
Let us search for a continuous solution x(t) to x(0) = x0 > 0

ẋ(t) = −x(t)− 1 + λ(t)
0 6 x(t) ⊥ λ(t) > 0

Two modes :

I free dynamics for 0 < t < t∗ with x(t) > 0 and x(t∗) = 0:{
x(0) = x0 > 0
ẋ(t) = −x(t)− 1

(8)

Solution :
x(t) = exp(−t)x0 + exp(−t)− 1 (9)

x(t∗) = 0 =⇒ t∗ = − ln( 1
1+x0

) > 0

I dynamics for t > t∗ {
x(t∗) = 0,
ẋ(t) + 1 = λ(t) > 0

(10)
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
Solving the dynamics for t∗ 6 t < T :{

x(t∗) = 0
ẋ(t) + 1 = λ(t) > 0

(8)

if we are looking for an abs. continuous solution x(t), the abs. continuity and
x(t∗) = 0 implies that ẋ(t) > 0, t ∈ [t∗, t∗ + ε), ε > 0, otherwise x(t∗ + ε) < 0.

1. ẋ(t) > 0, t ∈ [t∗, t∗ + ε), ε > 0.
By continuity, x(t + ε) > 0, λ(t + ε) = 0 then

ẋ(t + ε) = −x(t + ε)− 1 < 0 (9)

No solution.

2. ẋ(t) = 0, λ(t) = 1, x(t) = 0 ∀t > t∗ (T = +∞ )
The only possible continuous solution.
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
Conclusion: A unique continuous x(t) has been computed for all t ∈ [0,+∞). The
time derivative of the solution ẋ(t) jumps at from t∗ from x(t−∗ ) = −1 to x(t+

∗ ) = 0.
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
Let us search for a continuous solution x(t) to x(0) = x0 > 0

ẋ(t) = −x(t) + 1− λ(t)
0 6 x(t) ⊥ λ(t) > 0

I x(t) > 0 for 0 < t < t∗ (free dynamics) :{
x(0) = x0 > 0
ẋ(t) = −x(t) + 1

(8)

Solution :
x(t) = exp(−t)(x0 − 1) + 1 > 0 (9)

solution for all t ∈ [0; +∞]
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
Let us search for a continuous solution x(t) to x(0) = x0 = 0

ẋ(t) = −x(t) + 1− λ(t)
0 6 x(t) ⊥ λ(t) > 0

I x(t) > 0 for 0 < t < t∗ (free dynamics) :{
x(0) = x0 = 0
ẋ(t) = −x(t) + 1

(8)

Solution :
x(t) = exp(−t)(x0 − 1) + 1 > 0, for allt ∈ [0; +∞] (9)

I x(t) = 0 for 0 < t < t∗ (constrained dynamics):
ẋ(t) = 0, λ(t) = 1, x(t) = 0
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)

Conclusion
I A unique continuous x(t) has been computed for x0 > 0 for all t ∈ [0,+∞).

I Infinitely many continuous x(t) have been computed for x0 for all t ∈ [0,+∞).
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
Let us search for a continuous solution x(t) to x(0) = x0 > 0

ẋ(t) = −x(t)− 1− λ(t)
0 6 x(t) ⊥ λ(t) > 0

Conclusion
I A unique maximal continuous x(t) has been computed for x0 > 0 for t ∈ [0, t?).

No solution after t?

I No continuous solutions for x0 = 0.
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Solutions as absolutely continuous functions (AC solutions)

Idea of the general statement
If CB is a positive definite matrix (relative degree one) and Cx0 > 0 (consistent initial
condition), the unique solution of (10) is an absolutely continuous function.

Why the condition on CB ?
Derivation of the output y(t)

y(t) = Cx(t)
ẏ(t) = CAx(t) + CBλ(t) if D = 0

(8)

If CB > 0, we have to solve the following LCP whenever y(t) = 0{
ẏ(t) = CAx(t) + CBλ(t)

0 6 ẏ(t) ⊥ λ(t) > 0
(9)

The LCP (9) is a LCP for the time derivative ẏ(t).

The good framework is the differential inclusion framework (see Lecture
3)
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Existence and uniqueness results for LCS. Summary

Linear Complementarity Systems (LCS) ẋ(t) = Ax(t) + Bλ(t) + a, x(0) = x0

y(t) = Cx(t) + Dλ(t) + b
0 6 y(t) ⊥ λ(t) > 0.

(10)

LCS with D a P-matrix
ODE with Lipschitz continuous right-hand side.
Cauchy–Lipschitz Theorem =⇒ existence and uniqueness of solutions.

LCS with D = 0
Existence and uniqueness results based on

I Local (or nonzeno) solution based on the leading Markov parameters assumptions
(D,CB,CAB,CA2B, ..)

I or maximal monotone differential inclusion
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Extensions of complementarity problems

Let C be a nonempty closed convex set. The subdifferential inclusion continues to hold

−y ∈ ∂ΨC (λ) (11)

The complementarity relation is no longer valid for a set convex that is not a cone,
but we can define the following dynamics ẋ(t) = Ax(t) + Bλ(t) + u(t)

y(t) = Cx(t) + Dλ(t) + a(t)
−y(t) ∈ ∂ΨC (λ(t))

(12)
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Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Extensions of complementarity problems

Relay systems
C = [−1, 1]

∂Ψ[−1,1](λ) =


R− if λ = −1

0 if − 1 < λ < 1

R+ if λ = 1

(13)

Equivalent formulations

y ∈ ∂Ψ[−1,1](λ)⇐⇒ λ ∈ sgn(y)

Definition (Relay systems) ẋ(t) = Ax(t) + Bλ(t) + u(t)
y(t) = Cx(t) + Dλ(t) + a(t)
λ(t) ∈ sgn(y(t))

(14)

Application in sliding mode control, zener diode modeling or friction in mechanical
systems
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Complementarity Systems (CS)

Piecewise linear systems with monotone graphs

x
i

v ∈ ∂|i |

x

2021-11-23 08:58 Introduction to nonsmooth dynamical systems V. Acary – 17/33



Introduction to nonsmooth dynamical systems

Complementarity Systems (CS)

Extensions of complementarity problems

Cone complementarity condition
Let K be a closed non empty convex cone. We can define

K? 3 y ⊥ λ ∈ K ⇐⇒ −y ∈ ∂ΨK (λ)⇐⇒ −λ ∈ ∂ΨK? (y) (15)

where K? is the dual cone:

K? = {x ∈ Rm | x>y > 0 for all y ∈ K}. (16)

Definition (Cone Linear complementarity systems (CLCS)) ẋ(t) = Ax(t) + Bλ(t) + u(t)
y(t) = Cx(t) + Dλ(t) + a(t)
K? 3 y(t) ⊥ λ(t) ∈ K ,

(17)
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Introduction to nonsmooth dynamical systems

Computations of equilibria for LCS

Equilibria for LCS

Linear Complementarity Systems (LCS)
ẋ(t) = Ax(t) + Bλ(t) + a, x ∈ IRn, λ ∈ IRm

y(t) = Cx(t) + Dλ(t) + b

0 6 y(t) ⊥ λ(t) > 0

(18)

Mixed Linear Complementarity Problem (MLCP)
We have to solve a Mixed Linear Complementarity Problem :

0 = Ax̃ + Bλ+ a,

y = Cx̃ + Dλ+ b

0 6 y ⊥ λ > 0

(19)
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Introduction to nonsmooth dynamical systems

Computations of equilibria for LCS

Equilibria for LCS

Existence of solutions to MLCP
I Trivial case a = 0, b = 0. x̃ = 0 is an equilibrium.

I If A invertible, then we can substitute x̃ = −A−1(Bλ+ a) to get a LCP

0 6 (D − CA−1B)λ+ A−1a + b ⊥ λ > 0 (20)

If (D − CA−1B) is a P-matrix, it exists a unique solution λ for all a and b. The
equilibrium is obtained with x̃ = −A−1(Bλ+ a)
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Computations of equilibria for LCS

Equilibria for LCS

Existence of solutions to MLCP
Reformulation into inclusion

−
([

A B
C D

] [
x̃
λ

]
+

[
a
b

])
∈ ∂ΨRn×Rm

+

([
x̃
λ

])
(21)

as
− (Mz + q) ∈ ∂ΨRn×Rm

+
(z) (22)

Theorem
If M is a semi–definite positive matrix, then the inclusion (22) is solvable if and only if
it is feasible, that is

∃z, z ∈ Rn × Rm
+ and Mz + q ∈ 0n × Rm

+ (23)

Application of a more general Theorem 2.4.7 of [? ].

Example
Trivial case a = 0, b > 0.
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Introduction to nonsmooth dynamical systems

Stability of Linear Complementarity Systems

Lyapunov stability (Recap.)

Definition (Lyapunov stability)
The equilibrium x̃ is said to be stable in the sense of Lyapunov if

for every ε > 0, ∃δ > 0, such that ‖x(0)− x̃‖ < δ then ‖x(t)− x̃‖ < ε, ∀t > 0. (24)

Definition (Asymptotic Lyapunov stability)
The equilibrium x̃ is said to be asymptotically stable in the sense of Lyapunov if

I it is stable and

I for every ε > 0,∃δ > 0, such that ‖x(0)− x̃‖ < δ then limt→+∞ ‖x(t)− x̃‖ = 0

Definition (Exponential Lyapunov stability)
The equilibrium x̃ is said to be asymptotically stable in the sense of Lyapunov if

I it is asymptotically stable and

I ∃α, β, δ > 0, such that ‖x(0)− x̃‖ < δ then
‖x(t)− x̃‖ 6 α‖x(0)− x̃‖e−βt ,∀t > 0
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Linear Time Invariant (LTI) systems
Let us consider the following system:{

ẋ(t) = Ax(t) + Bλ(t)
y(t) = Cx(t) + Dλ(t)

(25)

with a quadratic function V (x) = 1
2
xTPx with P = PT .

Let us define the composition:

V(t) : R → R
t 7→ V (x(t))

(26)
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Derivation of V(t)

V̇(t) = xT (t)Pẋ(t) (25)

xT (t)Pẋ(t) = xT (t)PAx(t) + xT (t)Bλ(t)
m

xT (t)Pẋ(t)− λT (t)y(t) = xT (t)PAx(t) + xT (t)PBλ(t)− λT (t)y(t)
m

xT (t)Pẋ(t)− λT (t)y(t) = xT (t)PAx(t) + λT (t)BTPx(t)− λT (t)(Cx(t) + Dλ(t))
m

xT (t)Pẋ(t)− λT (t)y(t) = xT (t)PAx(t) + λT (t)(BTP − C)x(t)− λT (t)Dλ(t)
(26)
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Derivation of V(t)

V (x(T )− V (x(0)) −
∫ T

0
λT (t)y(t)dt

=

∫ T

0
xT (t)PAx(t) + λT (t)(BTP − C)x(t)− λT (t)(Dλ(t))dt

= 1
2

∫ T

0

[
x(t)
λ(t)

]T [
ATP + PA PB − CT

BTP − C −(D + DT )

] [
x(t)
λ(t)

]
dt

(25)
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Linear Time Invariant (LTI) systems{
ẋ(t) = Ax(t) + Bλ(t)
y(t) = Cx(t) + Dλ(t)

(26)

Definition
The system Σ(A,B,C ,D) given in (26) is said to be passive (dissipative with respect
to the supply rate λT y) is there exists a function V : Rn → R+ (a storage function)
such that

V (x(t0)) +

∫ t

t0

λT (t)y(t)dt > V (x(t)) (27)

holds for all t0 and t with t > t0 and for all L2-solutions (x , y , λ).
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Theorem
The system Σ(A,B,C ,D) is passive if and only if the following linear matrix inequality
(LMI)

P = PT > 0 and

[
ATP + PA PB − CT

BTP − C −(D + DT )

]
6 0 (28)

has a solution.
In this case, V (x) = 1

2
xTPx is the corresponding energy storage function.
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Theorem
The system Σ(A,B,C ,D) is passive if there exist matrices L ∈ Rn×m and W ∈ Rm×m

and a symmetric positive semi-definite matrix P ∈ Rn×n, such that:

ATP + PA = −LLT (29)

BTP − C = −WTLT (30)

−D − DT = −WTW . (31)
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Reformulation

[
ATP + PA PB − CT

BTP − C −(D + DT )

]
= −

[
LLT LW

WTLT WTW

]
= −

[
L
W

]T [
L
W

]
∆
= −Q (29)
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Introduction to nonsmooth dynamical systems

Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Dissipation inequality
The dissipation equality

V (x(T ))−V (x(0)) =
1

2

∫ T

0
λT (t)y(t)+

1

2

∫ T

0

[
x(t)
λ(t)

]T
Q

[
x(t)
λ(t)

]
dt, ∀ T > 0 (29)

in terms of the positive semi-definite matrix

Q
∆
=

(
LLT WTLT

LW WTW

)
, (30)

then implies that

V (x(T ))− V (x(0))−
1

2

∫ T

0
λT (t)y(t) 6 0. (31)

Strictly passive LTI systems
The system is said to be strictly passive when Q is positive definite.
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Remarks
I (D + DT ) > 0 implies that D is a semi-definite positive matrix.

I if D = 0, then (D + DT ) = WTW = 0 =⇒ W = 0 and we get

BTP − C = −WTLT = 0 =⇒ C = BTP =⇒ CB = BTPB > 0 (32)

The matrix CB is a semi-definite positive matrix
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Stability of Linear Complementarity Systems

Lyapunov stability of LCS

Passive LCS

Assumption
The trajectory x(t) of the LCS is continuous.

Definition (Passive LCS)
The LCS  ẋ(t) = Ax(t) + Bλ(t)

y(t) = Cx(t) + Dλ(t)
0 6 y(t) ⊥ λ(t) > 0

(33)

is said to be (strictly) passive if the system Σ(A,B,C ,D) is (strictly) passive

Supply rate
The complementarity condition implies that λT (t)y(t) = 0 for all t > 0. Then the
dissipation inequality reduces to

V (x(T ))− V (x(0)) 6 0 (34)
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Lyapunov stability of LCS

Theorem
I If the LCS is passive, then the LCS is Lyapunov stable.

I If the LCS is strictly passive, then the LCS is globally exponentially stable.

The energy storage function plays the role of a Lyapunov function.
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Lyapunov stability of LCS

I If the LCS is passive, then D is a semi-definite positive matrix
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Lyapunov stability of LCS

Example (The RLC circuit with a diode. A half wave rectifier)
A LC oscillator supplying a load resistor through a half-wave rectifier.

CVC

iC

LVL

iL

RVR

iR
VD

1

Figure: Electrical oscillator with half-wave rectifier
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Example (The RLC circuit with a diode. A half wave rectifier)
The following linear complementarity system is obtained :(

v̇C
i̇L

)
=

(
0 −1

C
1
L

0

)
·
(

vC
iL

)
+

( −1
C
0

)
· iD

together with a state variable x and one of the complementary variables λ :

x =

(
vC
iL

)
, λ = iD , y = −vD

and
y = −vD =

(
−1 0

)
x +

(
R
)
λ,

Standard form for LCS  ẋ = Ax + Bλ
y = Cx + Dλ
0 6 y ⊥ λ > 0
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Lyapunov stability of LCS

Example (The RLC circuit with a diode. A half wave rectifier)

I D = R so DT + D = 2R > 0

I We choose P =

[
C 0
0 L

]
V (x) =

1

2
Cv2

C +
1

2
Li2L (35)

we get

PB − CT =

[
0
0

]
, ATP + PA =

[
0 0
0 0

]
(36)

Q =

0 0 0
0 0 0
0 0 2R

 (37)
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