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Computations of equilibria

Equilibria for LCS

Linear Complementarity Systems (LCS)
ẋ(t) = Ax(t) + Bλ(t) + a, x ∈ IRn, λ ∈ IRm

y(t) = Cx(t) + Dλ(t) + b

0 6 y(t) ⊥ λ(t) > 0

(1)

Mixed Linear Complementarity Problem (MLCP)
We have to solve a Mixed Linear Complementarity Problem :

0 = Ax̃ + Bλ+ a,

y = Cx̃ + Dλ+ b

0 6 y ⊥ λ > 0

(2)
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Computations of equilibria

Equilibria for LCS

Existence of solutions to MLCP

I Trivial case a = 0, b = 0. x̃ = 0 is an equilibrium.

I If A invertible, then we can substitute x̃ = −A−1(Bλ+ a) to get a LCP

0 6 (D − CA−1B)λ+ A−1a + b ⊥ λ > 0 (3)

If (D − CA−1B) is a P-matrix, it exists a unique solution λ for all a and b. The
equilibrium is obtained with x̃ = −A−1(Bλ+ a)
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Computations of equilibria

Equilibria for LCS

Existence of solutions to MLCP
Reformulation into inclusion

−
([

A B
C D

] [
x̃
λ

]
+

[
a
b

])
∈ ∂ΨRn×Rm

+

([
x̃
λ

])
(4)

as
− (Mz + q) ∈ ∂ΨRn×Rm

+
(z) (5)

Theorem
If M is a semi–definite positive matrix, then the inclusion (5) is solvable if and only if
it is feasible, that is

∃z, z ∈ Rn × Rm
+ and Mz + q ∈ 0n × Rm

+ (6)

Application of a more general Theorem 2.4.7 of [1].

Example
Trivial case a = 0, b > 0.
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Computations of equilibria

Equilibria for differential inclusion

Computation of equilibria
The equilibria of

−(ẋ(t) + f (x)) ∈ T (x(t)) (7)

are given by the following generalized equation

− f (x̃) ∈ T (x̃) (8)

Generalized Equation

0 ∈ f (x̃) + T (x̃) (9)
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Computations of equilibria

Equilibria for differential inclusion. The simple case f (x̃) = 0

0 ∈ T (x̃)⇐⇒ x ∈ T−1(0) (10)

A condition for T−1(0) 6= ∅ is 0 ∈ D(T−1) = R(T ).

x

T (x)

x

T−1(x)
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Computations of equilibria

Equilibria for differential inclusion. The simple case f (x̃) = 0

Theorem
Let φ : Rn → R ∪+∞ be a proper convex function. Then

0 ∈ ∂φ(x̃)⇐⇒ x̃ ∈ argmin
z∈Rn

φ(z) (10)

A solution to 0 ∈ ∂f (x̃) exists if minz∈Rn φ(z) > −∞

x

|x |

x

sgn(x) = ∂|x |

Figure: Absolute value function
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Computations of equilibria

Equilibria for differential inclusion. The simple case f (x̃) = 0

Example (φ(x) = ΨC (x))

argmin
z∈Rn

ΨC (z) = C (10)
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Computations of equilibria

Equilibria for differential inclusion. The affine case f (x̃) = Ax̃ + a

T (x) = ΨC (x) with C a polyhedral set C = {Cx + d > 0}

ΨC (x) = NC (x) = {s = −CTλ, 0 6 λ ⊥ Cx + d > 0} (11)

The generalized equation
− (Ax̃ + a) ∈ ∂ΨC (x̃) (12)

is equivalent to the following MLCP Ax̃ + a = CTλ
y = Cx + d
0 6 y ⊥ λ > 0

(13)

that can be written in turns as an inclusion

−
([

A −CT

C 0

] [
x̃
λ

]
+

[
a
d

])
∈ ∂ΨRn×Rm

+

([
x̃
λ

])
(14)

If A is semidefinite positive then

[
A −CT

C 0

]
is semi-definite positive. If the inclusion

is feasible, then it is solvable.
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Computations of equilibria

Equilibria for differential inclusion. The affine case f (x̃) = Ax̃ + a

T (x) = ΨC (x) with C a convex set and A symmetric definite positive
We can define a convex function Φ(x) = ΨC (x) + 1

2
xTAx + aT x . Then

min
z∈Rn

Φ(x) = min
z∈Rn

ΨC (x) +
1

2
xTAx + aT x = min

z∈C

1

2
xTAx + aT x (15)

This is a convex minimization problem that possess a solution and the optimality
conditions are

0 ∈ ∂Φ(x̃) = Ax̃ + a + ∂ΨC (x̃) (16)

Remark
If a polyhedral set C = {Cx + d > 0}, then the optimality condition are Ax + a = CTλ

y = Cx + d
0 6 y ⊥ λ > 0

(17)
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Stability of Linear Complementarity Systems

Lyapunov stability (Recap.)

Definition (Lyapunov stability)
The equilibrium x̃ is said to be stable in the sense of Lyapunov if

for every ε > 0, ∃δ > 0, such that ‖x(0)− x̃‖ < δ then ‖x(t)− x̃‖ < ε, ∀t > 0. (18)

Definition (Asymptotic Lyapunov stability)
The equilibrium x̃ is said to be asymptotically stable in the sense of Lyapunov if

I it is stable and

I for every ε > 0,∃δ > 0, such that ‖x(0)− x̃‖ < δ then limt→+∞ ‖x(t)− x̃‖ = 0

Definition (Exponential Lyapunov stability)
The equilibrium x̃ is said to be asymptotically stable in the sense of Lyapunov if

I it is asymptotically stable and

I ∃α, β, δ > 0, such that ‖x(0)− x̃‖ < δ then
‖x(t)− x̃‖ 6 α‖x(0)− x̃‖e−βt ,∀t > 0
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Linear Time Invariant (LTI) systems
Let us consider the following system:{

ẋ(t) = Ax(t) + Bλ(t)
y(t) = Cx(t) + Dλ(t)

(19)

with a quadratic function V (x) = 1
2
xTPx with P = PT .

Let us define the composition:

V(t) : R → R
t 7→ V (x(t))

(20)
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Derivation of V(t)

V̇(t) = xT (t)Pẋ(t) (19)

xT (t)Pẋ(t) = xT (t)PAx(t) + xT (t)Bλ(t)
m

xT (t)Pẋ(t)− λT (t)y(t) = xT (t)PAx(t) + xT (t)PBλ(t)− λT (t)y(t)
m

xT (t)Pẋ(t)− λT (t)y(t) = xT (t)PAx(t) + λT (t)BTPx(t)− λT (t)(Cx(t) + Dλ(t))
m

xT (t)Pẋ(t)− λT (t)y(t) = xT (t)PAx(t) + λT (t)(BTP − C)x(t)− λT (t)Dλ(t)
(20)
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Derivation of V(t)

V (x(T )− V (x(0)) −
∫ T

0
λT (t)y(t)dt

=

∫ T

0
xT (t)PAx(t) + λT (t)(BTP − C)x(t)− λT (t)(Dλ(t))dt

= 1
2

∫ T

0

[
x(t)
λ(t)

]T [
ATP + PA PB − CT

BTP − C −(D + DT )

] [
x(t)
λ(t)

]
dt

(19)
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Linear Time Invariant (LTI) systems{
ẋ(t) = Ax(t) + Bλ(t)
y(t) = Cx(t) + Dλ(t)

(20)

Definition
The system Σ(A,B,C ,D) given in (20) is said to be passive (dissipative with respect
to the supply rate λT y) is there exists a function V : Rn → R+ (a storage function)
such that

V (x(t0)) +

∫ t

t0

λT (t)y(t)dt > V (x(t)) (21)

holds for all t0 and t with t > t0 and for all L2-solutions (x , y , λ).
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Theorem
The system Σ(A,B,C ,D) is passive if and only if the following linear matrix inequality
(LMI)

P = PT > 0 and

[
ATP + PA PB − CT

BTP − C −(D + DT )

]
6 0 (22)

has a solution.
In this case, V (x) = 1

2
xTPx is the corresponding energy storage function.
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Theorem
The system Σ(A,B,C ,D) is passive if there exist matrices L ∈ Rn×m and W ∈ Rm×m

and a symmetric positive semi-definite matrix P ∈ Rn×n, such that:

ATP + PA = −LLT (23)

BTP − C = −WTLT (24)

−D − DT = −WTW . (25)
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Reformulation

[
ATP + PA PB − CT

BTP − C −(D + DT )

]
= −

[
LLT LW

WTLT WTW

]
= −

[
L
W

]T [
L
W

]
∆
= −Q (23)
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

Dissipation inequality
The dissipation equality

V (x(T ))−V (x(0)) =
1

2

∫ T

0
λT (t)y(t)+

1

2

∫ T

0

[
x(t)
λ(t)

]T
Q

[
x(t)
λ(t)

]
dt, ∀ T > 0 (23)

in terms of the positive semi-definite matrix

Q
∆
=

(
LLT WTLT

LW WTW

)
, (24)

then implies that

V (x(T ))− V (x(0))−
1

2

∫ T

0
λT (t)y(t) 6 0. (25)

Strictly passive LTI systems
The system is said to be strictly passive when Q is positive definite.
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Stability of Linear Complementarity Systems

Linear Time Invariant (LTI) passive systems

LTI passive systems

A special case

I D = 0.
(D + DT ) = WTW = 0 =⇒ W = 0 (26)

BTP − C = −WTLT = 0 =⇒ C = BTP =⇒ CB = BTPB > 0 (27)

The matrix CB is a semi-definite positive matrix
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Stability of Linear Complementarity Systems

Lyapunov stability of LCS

Passive LCS

Assumption
The trajectory x(t) of the LCS is continuous.

Definition (Passive LCS)
The LCS  ẋ(t) = Ax(t) + Bλ(t)

y(t) = Cx(t) + Dλ(t)
0 6 y(t) ⊥ λ(t) > 0

(28)

is said to be (strictly) passive if the system Σ(A,B,C ,D) is (strictly) passive

Supply rate
The complementarity condition implies that λT (t)y(t) = 0 for all t > 0. Then the
dissipation inequality reduces to

V (x(T ))− V (x(0)) 6 0 (29)
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Stability of Linear Complementarity Systems

Lyapunov stability of LCS

Lyapunov stability of LCS

Theorem

I If the LCS is passive, then the LCS is Lyapunov stable.

I If the LCS is strictly passive, then the LCS is globally exponentially stable.

The energy storage function plays the role of a Lyapunov function.
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Stability of Linear Complementarity Systems

Lyapunov stability of LCS

Lyapunov stability of LCS

I If the LCS is passive, then D is a semi-definite positive matrix
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Stability of Linear Complementarity Systems

Lyapunov stability of LCS

Lyapunov stability of LCS

Example (The RLC circuit with a diode. A half wave rectifier)
A LC oscillator supplying a load resistor through a half-wave rectifier.

CVC

iC

LVL

iL

RVR

iRVD

1

Figure: Electrical oscillator with half-wave rectifier
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Stability of Linear Complementarity Systems

Lyapunov stability of LCS

Lyapunov stability of LCS

Example (The RLC circuit with a diode. A half wave rectifier)
The following linear complementarity system is obtained :(

v̇C
i̇L

)
=

(
0 −1

C
1
L

0

)
·
(

vC
iL

)
+

( −1
C
0

)
· iD

together with a state variable x and one of the complementary variables λ :

x =

(
vC
iL

)
, λ = iD , y = −vD

and
y = −vD =

(
−1 0

)
x +

(
R
)
λ,

Standard form for LCS  ẋ = Ax + Bλ
y = Cx + Dλ
0 6 y ⊥ λ > 0
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Stability of Linear Complementarity Systems

Lyapunov stability of LCS

Lyapunov stability of LCS

Example (The RLC circuit with a diode. A half wave rectifier)

I D = R so DT + D = 2R > 0

I We choose P =

[
C 0
0 L

]
V (x) =

1

2
Cv2

C +
1

2
Li2L (30)

we get

PB − CT =

[
0
0

]
, ATP + PA =

[
0 0
0 0

]
(31)

Q =

0 0 0
0 0 0
0 0 2R

 (32)
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Lyapunov stability of monotone differential inclusions

Application of standard results for stability and asymptotic behavior

Sufficient assumptions

I Existence of absolutely continuous solution.

I Continuity with respect to initial conditions.

I Lyapunov function V ∈ C1

I Invariants in the interior of the domain of maximal monotone operators

With these assumptions, the main result for smooth systems can be
proved

I Lyapunov stability theorems.

I Lasalle invariance principle.

Relaxed results
In the literature, a large number of results relax the assumptions that are sometimes
not necessary. For the sake of simplicity, we assume that there are valid for our
applications. In the sequel, we present more specific results for Maximal Monotone
differential inclusions
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Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

Monotone differential inclusions, x(0) = x0

I Standard form

− ẋ(t) ∈ T (x(t)) (33)

I Standard perturbed form

− (ẋ(t) + f (x(t), t) ∈ T (x(t)) (34)

I Sub-differential of Φ convex, proper and lower-semicontinuous

− (ẋ(t) + f (x(t), t) ∈ ∂Φ(x(t)) (35)

Solutions
We assume that there exists an absolutely continuous solution such that one of the
previous inclusion is satisfied almost everywhere
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Lyapunov stability of monotone differential inclusions

Absolutely continuous functions

Absolutely continuous functions

Definition
Let I be an interval in the real line R. A function f : I → R is absolutely continuous
on I if for every positive number ε, there exists a positive number δ such that
whenever a finite sequence of pairwise disjoint sub-intervals (xk , yk ) of I satisfies∑

k

(yk − xk ) < δ (36)

then ∑
k

|f (yk )− f (xk )| < ε (37)
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Lyapunov stability of monotone differential inclusions

Absolutely continuous functions

Absolutely continuous functions

Proposition
The following conditions on a real-valued function f on a compact interval [a, b] are
equivalent:

1. f is absolutely continuous

2. f has derivative almost everywhere, the derivative is Lebesque integrable, and

f (t) = f (a) +

∫ t

a
f ′(t)dt (36)

for all x on [a, b].

3. there exists a Lebesgue integrable function g on [a, b] such that

f (t) = f (a) +

∫ t

a
g(t)dt (37)

for all x on [a, b].

If these equivalent conditions are satisfied then necessarily g = f ′ almost everywhere.
Equivalence between (1) and (3) is known as the fundamental theorem of Lebesgue
integral calculus, due to Lebesgue.
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Lyapunov stability of monotone differential inclusions

Absolutely continuous functions

Absolutely continuous functions

Properties

I The sum and difference of two absolutely continuous functions are also absolutely
continuous.

I If the two functions are defined on a bounded closed interval, then their product
is also absolutely continuous.

I If an absolutely continuous function is defined on a bounded closed interval and is
nowhere zero then its reciprocal is absolutely continuous.

I Every absolutely continuous function is uniformly continuous and, therefore,
continuous. Every Lipschitz-continuous function is absolutely continuous.

I If f : [a, b]→ R is absolutely continuous, then it is of bounded variation on [a, b].

I If f : [a, b]→ R is absolutely continuous, then it can be written as the difference
of two monotonic nondecreasing absolutely continuous functions on [a,b].

I If f : [a, b]→ R is absolutely continuous, then it has the Luzin N property (that
is, for any L ⊆ [a, b] such that λ(L) = 0, it holds that λ(f (L)) = 0, where λ
stands for the Lebesgue measure on R).

I f : I → R is absolutely continuous if and only if it is continuous, is of bounded
variation and has the Luzin N property.

I The composition of two absolutely continuous functions is not necessarily a
absolutely continuous function
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Lyapunov stability of monotone differential inclusions

Absolutely continuous functions

Absolutely continuous functions

Proposition
Let f be Lipschitz continuous on R and g be an absolutely continuous function on
[a, b]. Then the composition f ◦ g is absolutely continuous on [a, b].

Lyapunov stability of monotone differential inclusions – 25/37
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Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

Differentiability of the Lyapunov function
Let us assume that we have a C1 Lyapunov function, then

V(t) : R → R
t 7→ V (x(t))

(36)

is absolutely continuous if x(t) is also absolutely continuous.
This implies that V̇(t) exists almost everywhere
Futhermore, if V̇(t) 6 0 almost everywhere then

V(t)− V(0) =

∫ t

0
V̇(t)dt 6 0 =⇒ V(t) is decreasing (37)
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Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

Monotone differential inclusions −(ẋ(t) + f (x(t))) ∈ T (x(t))
Let us formulate the autonomous differential inclusion as{

ẋ(t) + f (x(t)) = λ(t)
−λ(t) ∈ T (x(t))

(38)

If V is C1, we want to satisfy

V̇(t) = ∇xV (x(t)) · [−f (x(t)) + λ(t)] 6 0 with − λ(t) ∈ T (x(t)) (39)
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Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

Monotone differential inclusions,−ẋ(t) ∈ T (x(t))
The case when f (x(t)) = 0 and we choose V (x) = 1

2
‖x − x̃‖2, ∇xV (x) = (x − x̃)

than we get
V̇(t) = (x(t)− x̃)Tλ(t), with − λ(t) ∈ T (x(t)) (40)

Let us consider and equilibrium point x̃ ∈ D̊(T ), 0 ∈ T (x̃) then the monotony implies

(−λ(t)− 0)T (x(t)− x̃) > 0 (41)

that is
V̇(t) = (x(t)− x̃)Tλ(t) 6 0 (42)

For a monotone differential inclusion −ẋ(t) ∈ T (x(t)), a equilibrium with x̃ ∈ D̊(T ) is
Lyapunov stable. If T is strictly monotone, x̃ is asymptotically stable.
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Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

Monotone differential inclusions
If x̃ ∈ ∂D(T ), the classical Lyapunov stability theorem does no longer apply
immediately, since it is not possible to find a open set Ω that is a neighborhood of x̃ .
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Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

Assumption 1
Let us consider the differential inclusion

− (ẋ(t) + f (x(t)) ∈ ∂Φ(x(t)), dt-a.e (43)

with

I Φ : Rn → R a proper lower semi-continuous convex function

I f : Rn → Rn a Lipschitz continuous function

I an equilibrium point in 0 ∈ D(∂Φ), that is

−f (0) ∈ ∂Φ(0).

If Assumption 1 holds then we have a unique absolutely continuous solution whatever
x0 ∈ D(∂Φ).
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Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

The following theorems are extracted from [2].

Theorem
Let us assume the Assumption 1 holds. Suppose that there exist R > 0, a > 0 and
V ∈ C1(Rn,R) such that

(∀x ∈ D(T ), ‖x‖ = R),V (x) > a (43)

and
∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) > 0. (44)

Then, for any x0 ∈ D(∂Φ) with ‖x0‖ 6 R and V (x0) < a, the solution x(t; t0, x0)
satisfies

∀t > t0, ‖x(t; t0, x0)‖ < R (45)
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Idea of the proof:

V̇(t) = ∇xV (x(t)) · ẋ(t) a.e (46)

with
ẋ(t) + f (x(t)) = λ(t) with − λ(t) ∈ ∂Φ(x(t)) a.e (47)

Applying the definition of the sub-differential,

−λ(t) ∈ ∂Φ(x(t))
m

(λ(t))T (v − x(t)) + Φ(v)− Φ(x(t)) > 0, ∀v ∈ Rn
(48)

we get
(ẋ(t) + f (x(t)))T (v − x(t)) + Φ(v)− Φ(x(t)) > 0, ∀v ∈ Rn (49)
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Idea of the proof:
Let us choose v = x −∇xV (x(t))

− (ẋ(t) + f (x(t)))T∇xV (x(t)) + Φ(x(t)−∇xV (x(t)))− Φ(x(t)) > 0 a.e (46)

thus

V̇(t) 6 −
[
f (x(t)))T∇xV (x(t)) + Φ(x(t))− Φ(x(t)−∇xV (t))

]
a.e (47)

from the assumption we get
V̇(t) 6 0 a.e (48)
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Let us denote by Bσ the ball of radius σ > 0, Bσ = {x | ‖x‖ 6 σ}

Theorem (Stability)
Let us assume the Assumption 1 holds. Suppose that there exists σ > 0 and
V ∈ C1(Rn,R) such that V (0) = 0

∀x ∈ D(∂Φ) ∩ Bσ ,V (x) > a(‖x‖) (49)

with a : [0, σ]→ R, a(t) > 0,∀t ∈ (0, σ), and

∀x ∈ D(∂Φ) ∩ Bσ ,∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) > 0. (50)

Then 0 is a stable equilibrium.
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Example
Let us consider this example:

f (x) =

[
x2

− sin(x1)

]
, x ∈ R2 (51)

and
Φ(x) = ΨR2

+
(x) (52)

We choose

V (x) = 1− cos(x1) +
x2

2

2
(53)

and we obtain

∇xV (x) =

[
sin(x1)

x2

]
(54)

and
∇xV (x) · f (x) = 0 (55)
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Example
There exists σ > 0 such that

‖x‖ > σ =⇒ 1− cos(x1) >
x2

1

4
(51)

Thus

‖x‖ > σ =⇒ V (x) >
x2

1 + x2
2

4
(52)

We have also

x ∈ R2
+ =⇒ x −∇xV (x) =

[
x1 − sin(x1)

0

]
∈ R2

+ (53)

Thus
x ∈ R2

+, ‖x‖σ =⇒ ∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) = 0. (54)

With the previous theorem, we can conclude to the stability of the equilibrium x̃ = 0.
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Example
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Theorem (Asymptotic Stability)
Let us assume the Assumption 1 holds.
Suppose that there exist σ > 0, λ > 0 and V ∈ C1(Rn,R) such that V (0) = 0

∀x ∈ D(∂Φ) ∩ Bσ ,V (x) > a(‖x‖) (51)

with a : [0, σ]→ R, a(t) > ctτ , ∀t ∈ (0, σ) for some c > 0, τ > 0, and

∀x ∈ D(∂Φ) ∩ Bσ ,∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) > λV (x). (52)

Then 0 is an asymptotic stable equilibrium.
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Definition (Set of stationary points)

S(F ,Φ) = {x ∈ D(∂Φ) | −f (x) ∈ ∂Φ(x)} (53)

or equivalently

S(F ,Φ) = {x ∈ D(∂Φ) | f T (x)(v − z) + Φ(v)− Φ(x),∀v ∈ Rn} (54)

Definition
Let V ∈ C1. We define

E(F ,Φ,V ) = {x ∈ D(∂Φ) | ∇xV (x) · f (x) + Φ(x)− Φ(x −∇xV (x)) = 0} (55)
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Theorem
Let us assume the Assumption 1 holds.
Let A be a subset of lRn. Suppose that there exists V ∈ C1(Rn;R) such that

∀x ∈ D(∂Φ) ∩ A,∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) > 0. (56)

Then
S(F ,Φ) ∩ A ⊂ E(F ,Φ,V ) (57)
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Theorem
Let us assume the Assumption 1 holds.
Suppose that there exist σ > 0 and V ∈ C1(Rn;R) such that

∀x ∈ D(∂Φ) ∩ Bσ ,∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) > 0. (58)

and
E(F ,Φ,V ) ∩ Bσ = {0} (59)

Then the stationary solution is isolated in S(F ,Φ)
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Assumption

Theorem
Let us assume the Assumption 1 holds.
Suppose that there exists V ∈ C1(Rn;R) such that

∀x ∈ D(∂Φ),∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) > 0. (60)

and
E(F ,Φ,V ) = {0} (61)

Then S(F ,Φ) = {0} that is the stationary solution is the unique equilibrium point.

Lyapunov stability of monotone differential inclusions – 37/37



Introduction to nonsmooth dynamical systems Lecture 3. Equilibria and stability

Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions

[1] F. Facchinei and J. S. Pang. Finite-dimensional Variational Inequalities and
Complementarity Problems, volume I & II of Springer Series in Operations
Research. Springer Verlag NY. Inc., 2003.

[2] D. Goeleven. Complementarity and Variational Inequalities in Electronics.
Academic Press, 2017.

Lyapunov stability of monotone differential inclusions – 37/37


	Computations of equilibria
	Stability of Linear Complementarity Systems
	Linear Time Invariant (LTI) passive systems
	Lyapunov stability of LCS

	Lyapunov stability of monotone differential inclusions
	Absolutely continuous functions 
	Lyapunov stability of monotone differential inclusions

	References

