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Differential inclusion

General differential inclusion

Concept of differential inclusions
Differential inclusions are a generalization of the concept of differential equations of
the form

ẋ(t) ∈ A(x(t), t) (1)

where (x , t) 7→ A(x , t) is a multi-valued map, i.e. A(x , t) is a set, possibly empty,
rather than a single point.

A very general concept
Differential inclusions is a very general concept.

I It contains Ordinary Differential Equations (ODE)

I There are many types of differential inclusions [1].

We will focus on Maximal Monotone Differential Inclusions and Filippov’s
differential inclusions
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Differential inclusion

LCS as differential inclusion

Complementarity condition as a subdifferential inclusion

0 6 y ⊥ λ > 0⇐⇒ −y ∈ ∂ΨRm
+

(λ)⇐⇒ −λ ∈ ∂ΨRm
+

(y) (2)

LCS as a differential inclusion with D = 0 and b = 0


ẋ(t) = Ax(t) + Bλ(t) + a
y(t) = Cx(t)
0 6 y(t) ⊥ λ(t) > 0
x(0) = x0.

⇐⇒
{
−(ẋ(t)− Ax(t)− a) ∈ B∂ΨRm

+
(Cx(t)),

x(0) = x0

(3)
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Maximal monotone operators

Maximal monotone operators

Let 2R
n

be the set of the subsets of Rn

Definition (Monotone multi-valued operator)
A operator T : Rn → 2R

n
is monotone if

∀y1 ∈ T (x1), ∀y2 ∈ T (x2), (y2 − y1)T (x2 − x1) > 0 (4)

Definition (Graph)
Let T multi–valued operator T : Rn → 2R

n
. The graph of T is defined by

Gr(T ) = {(x , y) | y ∈ T (x)} (5)

Definition (Maximal Monotone multi-valued operator)
A operator T is maximal monotone if it is maximal for all the monotone operators for
the inclusion of graphs.

In other words, T is monotone and for all other monotone operator S then
Gr(T ) ⊂ Gr(S) =⇒ T = S
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Maximal monotone operators

Maximal monotone operators

Definition (Domain)
The domain of an operator T is defined by D(T ) = {x | T (x) 6= ∅}

Definition (Range of T )
Let T : Rn → 2R

n
be an operator. The range of T is defined by

R(T ) = ∪x∈Rn{y | y ∈ T (x)} (6)

Definition (Inverse of T )
Let T : Rn → 2R

n
be a maximal monotone operator. Its inverse T−1 is defined by

y ∈ T (x)⇐⇒ x ∈ T−1(y) (7)

and we have D(T−1) = R(T ) and R(T−1) = D(T )

Its inverse is defined by the symmetry of its graph with respect to y = x
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Maximal monotone operators

Maximal monotone operators

x

∂Ψ[−1,1](x)

y

(∂Ψ[−1,1](y))−1
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Maximal monotone operators

Maximal monotone operators

x

T (x)

x

T−1(x)
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Maximal monotone operators

Maximal monotone operators

x x x x

x

sgn(x) = ∂|x |
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Maximal monotone differential inclusion

Maximal monotone differential inclusion

Let T : Rn → 2Rn

be a maximal monotone operator.

Definition (Maximal monotone differential inclusion)
A maximal monotone differential inclusion is defined by

− ẋ(t) ∈ T (x(t)). (6)

Definition (Perturbed maximal monotone differential inclusion)
A perturbed maximal monotone differential inclusion is defined by

− (ẋ(t) + f (x , t)) ∈ T (x(t)), (7)

where f is a Lipschitz continuous map w.r.t x .
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Maximal monotone differential inclusion

Maximal monotone differential inclusion

The main instance of maximal monotone operators:
The subdifferential of (some) convex functions.

Theorem
For a lower semi–continuous convex proper function Φ, the subdifferential ∂Φ(x) is a
maximal monotone operator

Remarks
I Obvious in the regular case: φ(x) : R→ R a convex potential C2

φ′′(x) > 0 and φ′(x) is monotone (increasing single–valued function)

I For a maximal monotone operator in R, i.e. T : R→ 2R it exists a lower
semi–continuous convex proper function Φ such that T = ∂Φ

Maximal monotone differential inclusion – 13/55



Introduction to nonsmooth dynamical systems Lecture 3. Equilibria and stability

Maximal monotone differential inclusion

Maximal monotone differential inclusion

Definition (lower semi-continuity)
A function Φ : Rn → R ∪+∞ is lower semi-continuous if one of the following
equivalent assertions is satisfied:

I
lim inf

x→x0
Φ(x) > Φ(x0)

I Its epigraph is closed

Remarks
I lim infx→x0 Φ(x) = limε→0(inf{Φ(x), x ∈ B(x0, ε) \ {x0}})
I Continuity implies semi-continuity.

x

y = Φ(x)
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Maximal monotone differential inclusion

Maximal monotone differential inclusion

For a convex proper function Φ, the semi–continuity property has only to be checked
on the boundary of the domain of definition

∂D(Φ) = D(Φ) \ ˚D(Φ).

Examples

x

y = Φ(x)

+∞ +∞

x

y = Φ(x)

+∞ +∞

x

y = Φ(x)

+∞ +∞
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Maximal monotone differential inclusion

Maximal monotone differential inclusion

Counter-examples

x

y = Φ(x)

+∞ +∞

x

y = Φ(x)

+∞ +∞

x

y = Φ(x)

+∞ +∞
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Maximal monotone differential inclusion

Maximal monotone differential inclusion

Examples

I Φ(x) = 0 = ΨR,T (x) = 0
− ẋ + f (x , t) = 0 (8)

I Φ(x) = Ψc (x),T (x) = ∂ΨC (x), C a closed non empty convex set

− ẋ + f (x , t) ∈ ∂ΨC (x) (9)

I relay or sign function Φ(x) = |x |,T (x) = ∂|x |

− ẋ ∈ ∂|x | ⇐⇒ −ẋ ∈ sgn(x) (10)

I 2-norm Φ(x) = ‖x‖, T (x) = ∂‖x‖ =

{ x
‖x‖ if x 6= 0

{s | ‖s‖ 6 1} if x = 0
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Maximal monotone differential inclusion

Maximal monotone differential inclusion

Examples

I relay with dead zone

Φ(x) =


−x + 1, if x 6 −1

0, if − 1 6 x 6 1

x − 1, if x > 1

(8)

I sum of convex functions. Φ(x) = 1/2 ∗ ax2 + |x |,T (x) = ax + sgn(x)

− ẋ ∈ ax + ∂|x | ⇐⇒ −ẋ − ax ∈ sgn(x) (9)

1. a > 0. Φ(x) is convex and T (x) is maximal monotone.
2. a < 0. Φ(x) is not convex and T (x) is not monotone.
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Maximal monotone differential inclusion

Maximal monotone differential inclusion
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Maximal monotone differential inclusion

Maximal monotone differential inclusion

x

y ∈ sgn(x) + ax , a > 0

x

y ∈ sgn(x) + ax , a < 0
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Maximal monotone differential inclusion

Maximal monotone differential inclusion

Link with gradient systems with convex potentials

I φ(x) : R→ R a convex potential C2

φ′′(x) > 0 and φ′(x) is monotone (increasing function)

− ẋ = φ′(x) (8)

I Φ(x) : R→ R a convex potential not necessarily differentiable, but proper and
lower semi–continuous ∂Φ(x) is a maximal monotone operator.

− ẋ = ∂Φ(x) (9)
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Maximal monotone differential inclusion

Existence and uniqueness results

Theorem (Brézis 1973)
Let T : Rn → 2R

n
be a maximal monotone operator such that ˚D(T ) 6= ∅. Let a

function f : Rn × R→ Rn such that

1. the function f (x , · ) is Lipschitz continuous on D(T ) that is

∃L > 0, ∀t ∈ [0, tmax], ∀x1, x2 ∈ D(T ), ‖f (t, x1)− f (t, x2)‖ 6 L‖x1 − x2‖ (10)

2. ∀x ∈ D(T ), the mapping t 7→ f (x , t) belongs to L∞(0, tmax;Rn)

Then, for all x0 ∈ D(T ), it exists a unique solution x(t) which is absolutely continuous
such that{

−(ẋ(t) + f (x(t), t)) ∈ T (x(t)), almost everywhere on [0, tmax]

x(0) = x0
(11)
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Maximal monotone differential inclusion

Existence and uniqueness results

Existence. Ideas of proof

Option 1 By using the Moreau-Yosida regularization of T

Tλ(x) =
1

λ
(I − Jλ)(x), λ > 0, (12)

with Jλ(x) the resolvent of T (x) given by

Jλ(x) = (I + λT )−1(x). (13)

For a maximal monotone operator T or R, Jλ is defined over R and is contracting.
The mapping Tλ is a maximal monotone operator and Lipschitz continuous with
a Lipschitz constant of 1

λ
. We consider that ODE with Lipschitz r.h.s.

− (ẋλ(t) + f (xλ(t), t)) = Tλ(xλ(t)) (14)

and then the limit λ→ 0 of the sequence of solutions xλ.

Option 2 By approximation using a discretization scheme, and then compactness results.
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Maximal monotone differential inclusion

Existence and uniqueness results

Uniqueness. Simple case −ẋ(t) ∈ T (x(t)). x ∈ R
Let us consider two solution x1 and x2

Since T (x) is monotone, we have

(ẋ1(s)− ẋ2(s))T (x1(s)− x2(s)) 6 0 almost everywhere on [0,T ] (12)

By integrating over [0, t], we get

1

2
(x2(t)− x1(t))2 −

1

2
(x2(0)− x1(0))2 6 0 (13)

If x1(0) = x2(0), we have

1

2
(x2(t)− x1(t))2 6 0 =⇒ x2 = x1 (14)

Maximal monotone differential inclusion – 16/55



Introduction to nonsmooth dynamical systems Lecture 3. Equilibria and stability

Maximal monotone differential inclusion

Existence and uniqueness results

Uniqueness. Perturbed case −(ẋ(t) + f (x , t)) ∈ T (x(t))
Let us consider two solution x1 and x2

Since T (x) is monotone, we have

(ẋ1(s) + f (x1(s), s)− ẋ2(s)− f (x2(s), s))T (x1(s)− x2(s)) 6 0 (12)

almost everywhere on [0,T ].
By integrating over [0, t], we get

1

2
(x2(t)− x1(t))2 6

∫ t

0
(f (x2(s), s)− f (x1(s), s))T (x1(s)− x2(s))ds (13)

Since f is Lipschitz, we have

(x2(t)− x1(t))2 6 2L

∫ t

0
‖x1(s)− x2(s)‖2ds (14)
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Maximal monotone differential inclusion

Existence and uniqueness results

Gronwall Lemma
Let a a positive constant and m a integrable function, nonnegative almost everywhere
on (0, tmax) and a function φ a continuous function on [0, tmax]. If

∀t ∈ [0, tmax], φ(t) 6 a +

∫ t

0
m(s)φ(s) ds (12)

then

∀t ∈ [0, tmax], φ(t) 6 a exp(

∫ t

0
m(s) ds) (13)

Applying the Gronwall Lemma, for a = 0 and m(s) = 2L and φ(s) = ‖x1(s)− x2(s)‖2,
we get

‖x2(t)− x1(t))‖2 6 0 =⇒ x2 = x1 (14)
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LCS as Maximal Monotone Differential Inclusion

Come back to LCS with D = 0 but B 6= Id 6= C

Theorem (LCS as maximal monotone differential inclusion)
Let us consider the following LCS ẋ(t) = Ax(t) + Bλ(t) + a(t), x(0) = x0

y(t) = Cx(t)
0 6 y(t) ⊥ λ(t) > 0.

(15)

If there exists P a symmetric definite positive matrix such that

PB = CT (16)

then we can perform a change of variable z = Rx with R2 = P,R > 0,R = RT

−(ż(t)− RAR−1z(t)− Ra(t)) ∈ RB ∂ΨRm
+

(CR−1z(t)) (17)

such that (17) is a maximal monotone differential inclusion.
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LCS as Maximal Monotone Differential Inclusion

Come back to LCS with D = 0 but B 6= Id 6= C

We have the following equivalence
ẋ(t) = Ax(t) + Bλ(t) + a(t)
y(t) = Cx(t)
0 6 y(t) ⊥ λ(t) > 0,
x(0) = x0

⇐⇒
{
−(ẋ(t)− Ax(t)− a(t)) ∈ B∂ΨRm

+
(Cx(t)),

x(0) = x0

(15)
We can perform a change of variable z = Rx with R2 = P,R > 0,R = RT

−(ż(t)− RAR−1z(t)− Ra(t)) ∈ RB ∂ΨRm
+

(CR−1z(t)) (16)

LCS as Maximal Monotone Differential Inclusion – 18/55



Introduction to nonsmooth dynamical systems Lecture 3. Equilibria and stability

LCS as Maximal Monotone Differential Inclusion

Come back to LCS with D = 0 but B 6= Id 6= C

For a matrix E , the function φ(x) = ΨRm
+

(Ex) is a proper convex function and its

subdifferential is given by
∂φ(x) = ET∂ΨRm

+
(Ex) (15)

(Im(E) contains a point of ri(D(∂ΨRm
+

))) (Chain rule)

In our application, we set E = CR−1 and we have

ET = R−TCT = R−1R2B = RB (16)

The obtained inclusion

−(ż(t)− RAR−1z(t)− Ra) ∈ ∂Φ(z(t)) = ET∂ΨRm
+

(Ez(t)), (17)

is a maximal monotone differential inclusion
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Filippov differential inclusions

Filippov differential inclusions

Ordinary differential equations with discontinuous right hand side
Let us consider the Cauchy problem{

ẋ(t) = f (x)

x(t0) = x0
(18)

where f : Rn → Rn is a bounded function.

I The Cauchy problem may have no (Carathéodory) solution, if f is discontinuous
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Filippov differential inclusions

Filippov differential inclusions

Example {
ẋ(t) = a− sgn(x(t)), with 0 < a < 1

x(t0) = x0
(19)

with the signum function defined as

sgn(x) =

 1, x > 0
0, x = 0
−1, x < 0

(20)

I x0 = 0 no solution

I x0 > 0 no global solution
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Filippov differential inclusions

Filippov differential inclusion

Let f : Rn → Rn be a bounded function.

Definition (Filippov’s concept of solutions[2, 5])
The Filippov differential inclusion is defined by{

ẋ(t) ∈ F (x)

x(t0) = x0
(21)

with
F (x) =∩ε>0 co{f (x + εBn)} (22)

where

I Bn is the unit ball of Rn

I co(X ) defines the convex hull of X

I X is the closure of X
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Filippov differential inclusions

Filippov differential inclusion

Geometrical interpretations

I If f is continuous in x , then F (x) = {f (x)}
I The solution does not depend on the values of f (x) at the discontinuity points

An equivalent formulation is given by

F (x) =∩ε>0∩µ(S)=0 co{f (B(x , ε) \ S)} (23)

where µ is the Lebesgue measure.
More generally, the definition works also for f essentially bounded (bounded on a
bounded neighborhood of every point, excluding sets of measure zero).
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Filippov differential inclusions

Filippov differential inclusion

Geometrical interpretations

I smearing out the vector fields near the discontinuities

x1

x2

f (x) =

(
1
−1

)

f (x) =

(
1
1

)0
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Filippov differential inclusions

Filippov differential inclusions

Computation of the Filippov right-hand-side in practice.
In practice, we often have the following assumptions :

I the set of discontinuities points of f , denoted as M is given by a set of
hypersurfaces of co-dimension 1:

M = {x ∈ Rn | ϕk (x) = 0, k = J1,NK} (23)

where ϕk : Rn → R are differentiable maps that define a finite number of domains
Gj ⊂ Rn, j ∈ J1,MK.

I for x ∈M and a neighborhood Ω of x, we have

Gj ∩ Ω 6= ∅, for some i ∈ I(x) (24)

I for i ∈ I(x), the function f admits a limit for all the domains such that

lim
y → x
y ∈ Gi

f (y , t) = fi (x , t) (25)

I then we get
F (x) = co{fi (x , t), i ∈ I(x)} (26)
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Filippov differential inclusions

Filippov differential inclusions

Example {
ẋ(t) = a− sgn(x(t)), with 0 < a < 1

x(t0) = x0
(27)

I x > 0, we get F (x) = {a− 1}
I x < 0, we get F (x) = {a + 1}
I x = 0, we get F (x) = co{a− 1, a + 1} = [a− 1, a + 1]

For x(t?) = 0, we have a solution ẋ(t) = 0, t ∈ [t?,+∞) since

0 ∈ F (x) = [a− 1, a + 1] (28)
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Filippov differential inclusions

Filippov differential inclusions

x

sgn(x)

0

1

−1

Ü

x

Sgn(x)

1

−1
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Filippov differential inclusions

Upper semi-continuous differential inclusion

Definition (Upper semi-continuous set-valued map [5, 4])
A set-valued map T : Rn → 2R

n
is upper semi-continuous at x0 ∈ Rn if for any open

set M containing F (x0) there exists a neighborhood Ω of x0 such that F (Ω) ⊂ M

Theorem (Upper semi-continuous differential inclusion)
Let us consider the following differential inclusion

ẋ(t) ∈ T (x(t)) (27)

where T : Rn → 2R
n

is upper semi-continuous set valued map with closed convex
values. Then the differential inclusion (27) has always a solution for any x(t0) = x0.
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Filippov differential inclusions

Upper-semi continuous differential inclusion

Idea of the proof

I Approximation of T by a sequence of Tk of Lipschitz set-valued operators.

I Passing to the limit by compactness.
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Filippov differential inclusions

Filippov differential inclusion

Theorem (Filippov [2])
The Filippov differential inclusion (22) has always a solution for any x(t0) = x0.
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Filippov differential inclusions

Filippov differential inclusion

Lemma (Closed Graph I)
Let F be an upper semi-continuous multi-valued map with closed values. Then, the
graph of F is closed.

Lemma (Closed Graph II)
Assume that the graph of F is closed and the set

M = {F (x) | |x − x0| < δ} (28)

with δ > 0, is compact. Then, F is upper semi-continuous at x0

Ideas of the proof for the Filippov DI

I The values of F is closed and convex by definition.

I The graph of F (x) is closed and F is bounded, by the Lemma Closed Graph II, F
is a upper-continuous map.
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Filippov differential inclusions

Filippov differential inclusion

Comments
Uniqueness of solutions is not guaranteed by Filippov convexifcation.

x1

x2

f (x) =

(
1
0

) f (x) =

(
1
2

)

f (x) =

(
1
−2

)0
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Filippov differential inclusions

Filippov differential inclusion

Example (Utkin’s example){
ẋ1(t) = − sgn(x1) + 2 sgn(x2)

ẋ2(t) = −2 sgn(x1)− sgn(x2),
(29)

ẋ(t) =

[
1
−3

]
, if x ∈ X1 = {x1 > 0, x2 > 0},

ẋ(t) =

[
3
1

]
, if x ∈ X2 = {x1 < 0, x2 > 0},

ẋ(t) =

[
−1

3

]
, if x ∈ X3 = {x1 < 0, x2 < 0},

ẋ(t) =

[
−3

1

]
, if x ∈ X4 = {x1 > 0, x2 < 0}.

(30)
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Filippov differential inclusions

Filippov differential inclusion

Example (Utkin’s example)
Finite accumulation of switches in 0.

x1

x2
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Filippov differential inclusion

{
ẋ1(t) = − Sgn(x1) + (1 + c) Sgn(x2)

ẋ2(t) = −(1 + c) Sgn(x1)− Sgn(x2),
with c = 25 (31)
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Filippov differential inclusion
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Equilibria for differential inclusions

Computation of equilibria
The equilibria of

−(ẋ(t) + f (x)) ∈ T (x(t)) (32)

are given by the following generalized equation

− f (x̃) ∈ T (x̃) (33)

Generalized Equation

0 ∈ f (x̃) + T (x̃) (34)
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Equilibria for differential inclusion. The simple case f (x̃) = 0

0 ∈ T (x̃)⇐⇒ x ∈ T−1(0) (35)

A condition for T−1(0) 6= ∅ is 0 ∈ D(T−1) = R(T ).

x

T (x)

x

T−1(x)
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Equilibria for differential inclusion. The simple case f (x̃) = 0

Theorem
Let φ : Rn → R ∪+∞ be a proper convex function. Then

0 ∈ ∂φ(x̃)⇐⇒ x̃ ∈ argmin
z∈Rn

φ(z) (35)

A solution to 0 ∈ ∂f (x̃) exists if minz∈Rn φ(z) > −∞

x

|x |

x

sgn(x) = ∂|x |

Figure: Absolute value function
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Equilibria for differential inclusion. The simple case f (x̃) = 0

Example (φ(x) = ΨC (x))

argmin
z∈Rn

ΨC (z) = C (35)
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Equilibria for differential inclusion. The affine case f (x̃) = Ax̃ + a

T (x) = ∂ΨC (x) with C a polyhedral set C = {Cx + d > 0}

∂ΨC (x) = NC (x) = {s | s = −CTλ, 0 6 λ ⊥ Cx + d > 0} (36)

The generalized equation
− (Ax̃ + a) ∈ ∂ΨC (x̃) (37)

is equivalent to the following MLCP Ax̃ + a = CTλ
y = Cx + d
0 6 y ⊥ λ > 0

(38)

that can be written in turns as an inclusion

−
([

A −CT

C 0

] [
x̃
λ

]
+

[
a
d

])
∈ ∂ΨRn×Rm

+

([
x̃
λ

])
(39)

If A is semi-definite positive then

[
A −CT

C 0

]
is semi-definite positive. If the inclusion

is feasible, then it is solvable.
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Equilibria for differential inclusion. The affine case f (x̃) = Ax̃ + a

T (x) = ∂ΨC (x) with C a convex set and A symmetric definite positive
We can define a convex function Φ(x) = ΨC (x) + 1

2
xTAx + aT x . Then

min
z∈Rn

Φ(x) = min
z∈Rn

ΨC (x) +
1

2
xTAx + aT x = min

z∈C

1

2
xTAx + aT x (40)

This is a convex minimization problem that possess a solution and the optimality
conditions are

0 ∈ ∂Φ(x̃) = Ax̃ + a + ∂ΨC (x̃) (41)

Remark
If a polyhedral set C = {Cx + d > 0}, then the optimality condition are Ax + a = CTλ

y = Cx + d
0 6 y ⊥ λ > 0

(42)

Equilibria for differential inclusions – 39/55



Introduction to nonsmooth dynamical systems Lecture 3. Equilibria and stability

Lyapunov stability of monotone differential inclusions

Outline

Differential inclusion

Maximal monotone operators

Maximal monotone differential inclusion

LCS as Maximal Monotone Differential Inclusion

Filippov differential inclusions

Equilibria for differential inclusions

Lyapunov stability of monotone differential inclusions
Absolutely continuous functions
Lyapunov stability of monotone differential inclusions

Lyapunov stability of monotone differential inclusions – 40/55



Introduction to nonsmooth dynamical systems Lecture 3. Equilibria and stability

Lyapunov stability of monotone differential inclusions

Application of standard results for stability and asymptotic behavior

Sufficient assumptions

I Existence of absolutely continuous solution.

I Continuity with respect to initial conditions.

I Lyapunov function V ∈ C1

I Invariants in the interior of the domain of maximal monotone operators

With these assumptions, the main result for smooth systems can be
proved

I Lyapunov stability theorems.

I Lasalle invariance principle.

Relaxed results
In the literature, a large number of results relax the assumptions that are sometimes
not necessary. For the sake of simplicity, we assume that there are valid for our
applications. In the sequel, we present more specific results for Maximal Monotone
differential inclusions
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Lyapunov stability of monotone differential inclusions

Monotone differential inclusions, x(0) = x0

I Standard form

− ẋ(t) ∈ T (x(t)) (43)

I Standard perturbed form

− (ẋ(t) + f (x(t), t) ∈ T (x(t)) (44)

I Sub-differential of Φ convex, proper and lower-semi-continuous

− (ẋ(t) + f (x(t), t) ∈ ∂Φ(x(t)) (45)

Solutions
We assume that there exists an absolutely continuous solution such that one of the
previous inclusion is satisfied almost everywhere
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Absolutely continuous functions

Absolutely continuous functions

Definition
Let I be an interval in the real line R. A function f : I → R is absolutely continuous
on I if for every positive number ε, there exists a positive number δ such that
whenever a finite sequence of pairwise disjoint sub-intervals (xk , yk ) of I satisfies∑

k

(yk − xk ) < δ (46)

then ∑
k

|f (yk )− f (xk )| < ε (47)
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Absolutely continuous functions

Proposition
The following conditions on a real-valued function f on a compact interval [a, b] are
equivalent:

1. f is absolutely continuous

2. f has derivative almost everywhere, the derivative is Lebesgue integrable, and

f (t) = f (a) +

∫ t

a
f ′(t)dt (46)

for all x on [a, b].

3. there exists a Lebesgue integrable function g on [a, b] such that

f (t) = f (a) +

∫ t

a
g(t)dt (47)

for all x on [a, b].

If these equivalent conditions are satisfied then necessarily g = f ′ almost everywhere.
Equivalence between (1) and (3) is known as the fundamental theorem of Lebesgue
integral calculus, due to Lebesgue.
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Absolutely continuous functions

Absolutely continuous functions

Properties

I The sum and difference of two absolutely continuous functions are also absolutely
continuous.

I If the two functions are defined on a bounded closed interval, then their product
is also absolutely continuous.

I If an absolutely continuous function is defined on a bounded closed interval and is
nowhere zero then its reciprocal is absolutely continuous.

I Every absolutely continuous function is uniformly continuous and, therefore,
continuous. Every Lipschitz-continuous function is absolutely continuous.

I If f : [a, b]→ R is absolutely continuous, then it is of bounded variation on [a, b].

I If f : [a, b]→ R is absolutely continuous, then it can be written as the difference
of two monotonic non-decreasing absolutely continuous functions on [a,b].

I If f : [a, b]→ R is absolutely continuous, then it has the Luzin N property (that
is, for any L ⊆ [a, b] such that λ(L) = 0, it holds that λ(f (L)) = 0, where λ
stands for the Lebesgue measure on R).

I f : I → R is absolutely continuous if and only if it is continuous, is of bounded
variation and has the Luzin N property.

I The composition of two absolutely continuous functions is not necessarily a
absolutely continuous function
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Absolutely continuous functions

Absolutely continuous functions

Proposition
Let f be Lipschitz continuous on R and g be an absolutely continuous function on
[a, b]. Then the composition f ◦ g is absolutely continuous on [a, b].
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Lyapunov stability of monotone differential inclusions

Differentiability of the Lyapunov function
Let us assume that we have a C1 Lyapunov function, then

V(t) : R → R
t 7→ V (x(t))

(46)

is absolutely continuous if x(t) is also absolutely continuous.
This implies that V̇(t) exists almost everywhere
Furthermore, if V̇(t) 6 0 almost everywhere then

V(t)− V(0) =

∫ t

0
V̇(t)dt 6 0 =⇒ V(t) is decreasing (47)
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Lyapunov stability of monotone differential inclusions

Monotone differential inclusions −(ẋ(t) + f (x(t))) ∈ T (x(t))
Let us formulate the autonomous differential inclusion as{

ẋ(t) + f (x(t)) = λ(t)
−λ(t) ∈ T (x(t))

(48)

If V is C1, we want to satisfy

V̇(t) = ∇xV (x(t)) · [−f (x(t)) + λ(t)] 6 0 with − λ(t) ∈ T (x(t)) (49)
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Lyapunov stability of monotone differential inclusions

Monotone differential inclusions,−ẋ(t) ∈ T (x(t))
The case when f (x(t)) = 0 and we choose V (x) = 1

2
‖x − x̃‖2, ∇xV (x) = (x − x̃)

than we get
V̇(t) = (x(t)− x̃)Tλ(t), with − λ(t) ∈ T (x(t)) (50)

Let us consider and equilibrium point x̃ ∈ D̊(T ), 0 ∈ T (x̃) then the monotony implies

(−λ(t)− 0)T (x(t)− x̃) > 0 (51)

that is
V̇(t) = (x(t)− x̃)Tλ(t) 6 0 (52)

For a monotone differential inclusion −ẋ(t) ∈ T (x(t)), a equilibrium with x̃ ∈ D̊(T ) is
Lyapunov stable. If T is strictly monotone, x̃ is asymptotically stable.
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Lyapunov stability of monotone differential inclusions

Monotone differential inclusions
If x̃ ∈ ∂D(T ), the classical Lyapunov stability theorem does no longer apply
immediately, since it is not possible to find a open set Ω that is a neighborhood of x̃ .
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Lyapunov stability of monotone differential inclusions

Assumption 1
Let us consider the differential inclusion

− (ẋ(t) + f (x(t)) ∈ ∂Φ(x(t)), dt-a.e (53)

with

I Φ : Rn → R a proper lower semi-continuous convex function

I f : Rn → Rn a Lipschitz continuous function

I an equilibrium point in 0 ∈ D(∂Φ), that is

−f (0) ∈ ∂Φ(0).

If Assumption 1 holds then we have a unique absolutely continuous solution whatever
x0 ∈ D(∂Φ).
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Lyapunov stability of monotone differential inclusions

The following theorems are extracted from [3].

Theorem
Let us assume the Assumption 1 holds. Suppose that there exist R > 0, a > 0 and
V ∈ C1(Rn,R) such that

(∀x ∈ D(T ), ‖x‖ = R),V (x) > a (53)

and
∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) > 0. (54)

Then, for any x0 ∈ D(∂Φ) with ‖x0‖ 6 R and V (x0) < a, the solution x(t; t0, x0)
satisfies

∀t > t0, ‖x(t; t0, x0)‖ < R (55)
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Lyapunov stability of monotone differential inclusions

Idea of the proof:

V̇(t) = ∇xV (x(t)) · ẋ(t) a.e (56)

with
ẋ(t) + f (x(t)) = λ(t) with − λ(t) ∈ ∂Φ(x(t)) a.e (57)

Applying the definition of the sub-differential,

−λ(t) ∈ ∂Φ(x(t))
m

(λ(t))T (v − x(t)) + Φ(v)− Φ(x(t)) > 0, ∀v ∈ Rn
(58)

we get
(ẋ(t) + f (x(t)))T (v − x(t)) + Φ(v)− Φ(x(t)) > 0, ∀v ∈ Rn (59)
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Lyapunov stability of monotone differential inclusions

Idea of the proof:
Let us choose v = x −∇xV (x(t))

− (ẋ(t) + f (x(t)))T∇xV (x(t)) + Φ(x(t)−∇xV (x(t)))− Φ(x(t)) > 0 a.e (56)

thus

V̇(t) 6 −
[
f (x(t)))T∇xV (x(t)) + Φ(x(t))− Φ(x(t)−∇xV (t))

]
a.e (57)

from the assumption we get
V̇(t) 6 0 a.e (58)
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Lyapunov stability of monotone differential inclusions

Let us denote by Bσ the ball of radius σ > 0, Bσ = {x | ‖x‖ 6 σ}

Theorem (Stability)
Let us assume the Assumption 1 holds. Suppose that there exists σ > 0 and
V ∈ C1(Rn,R) such that V (0) = 0

∀x ∈ D(∂Φ) ∩ Bσ ,V (x) > a(‖x‖) (59)

with a : [0, σ]→ R, a(t) > 0,∀t ∈ (0, σ), and

∀x ∈ D(∂Φ) ∩ Bσ ,∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) > 0. (60)

Then 0 is a stable equilibrium.
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Lyapunov stability of monotone differential inclusions

Example
Let us consider this example:

f (x) =

[
x2

− sin(x1)

]
, x ∈ R2 (61)

and
Φ(x) = ΨR2

+
(x) (62)

We choose

V (x) = 1− cos(x1) +
x2

2

2
(63)

and we obtain

∇xV (x) =

[
sin(x1)

x2

]
(64)

and
∇xV (x) · f (x) = 0 (65)
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Lyapunov stability of monotone differential inclusions

Example
There exists σ > 0 such that

‖x‖ > σ =⇒ 1− cos(x1) >
x2

1

4
(61)

Thus

‖x‖ > σ =⇒ V (x) >
x2

1 + x2
2

4
(62)

We have also

x ∈ R2
+ =⇒ x −∇xV (x) =

[
x1 − sin(x1)

0

]
∈ R2

+ (63)

Thus
x ∈ R2

+, ‖x‖σ =⇒ ∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) = 0. (64)

With the previous theorem, we can conclude to the stability of the equilibrium x̃ = 0.
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Lyapunov stability of monotone differential inclusions

Example
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Lyapunov stability of monotone differential inclusions

Theorem (Asymptotic Stability)
Let us assume the Assumption 1 holds.
Suppose that there exist σ > 0, λ > 0 and V ∈ C1(Rn,R) such that V (0) = 0

∀x ∈ D(∂Φ) ∩ Bσ ,V (x) > a(‖x‖) (61)

with a : [0, σ]→ R, a(t) > ctτ , ∀t ∈ (0, σ) for some c > 0, τ > 0, and

∀x ∈ D(∂Φ) ∩ Bσ ,∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) > λV (x). (62)

Then 0 is an asymptotic stable equilibrium.
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Lyapunov stability of monotone differential inclusions

Definition (Set of stationary points)

S(F ,Φ) = {x ∈ D(∂Φ) | −f (x) ∈ ∂Φ(x)} (63)

or equivalently

S(F ,Φ) = {x ∈ D(∂Φ) | f T (x)(v − z) + Φ(v)− Φ(x),∀v ∈ Rn} (64)

Definition
Let V ∈ C1. We define

E(F ,Φ,V ) = {x ∈ D(∂Φ) | ∇xV (x) · f (x) + Φ(x)− Φ(x −∇xV (x)) = 0} (65)
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Lyapunov stability of monotone differential inclusions

Theorem
Let us assume the Assumption 1 holds.
Let A be a subset of lRn. Suppose that there exists V ∈ C1(Rn;R) such that

∀x ∈ D(∂Φ) ∩ A,∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) > 0. (66)

Then
S(F ,Φ) ∩ A ⊂ E(F ,Φ,V ) (67)
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Theorem
Let us assume the Assumption 1 holds.
Suppose that there exist σ > 0 and V ∈ C1(Rn;R) such that

∀x ∈ D(∂Φ) ∩ Bσ ,∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) > 0. (68)

and
E(F ,Φ,V ) ∩ Bσ = {0} (69)

Then the stationary solution is isolated in S(F ,Φ)
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Assumption

Theorem
Let us assume the Assumption 1 holds.
Suppose that there exists V ∈ C1(Rn;R) such that

∀x ∈ D(∂Φ),∇xV (x) · f (x) + Φ(x)− Φ(x −∇V (x)) > 0. (70)

and
E(F ,Φ,V ) = {0} (71)

Then S(F ,Φ) = {0} that is the stationary solution is the unique equilibrium point.
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