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An first example. A half wave rectifier

Example (The RLC circuit with a diode. A half wave rectifier)
A LC oscillator supplying a load resistor through a half-wave rectifier.
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Figure: Electrical oscillator with half-wave rectifier
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An first example. A half wave rectifier

Example (The RLC circuit with a diode. A half wave rectifier)

I Kirchhoff laws :
vL = vC
vR + vD = vC
iC + iL + iR = 0
iR = iD

I Branch constitutive equations for linear devices are :

iC = Cv̇C
vL = Li̇L
vR = RiR

I ”branch constitutive equation” of the ideal diode ?
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(a) A diode

−vD
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(b) Shockley’s law iD = is (exp(− vD
nvT

)− 1)

Figure: A nonlinear model of diode
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An first example. A half wave rectifier

Example (The RLC circuit with a diode. A half wave rectifier)

VD

iD
−vD
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Figure: A ideal diode

Complementarity condition :

iD > 0,−vD > 0, iDvD = 0⇐⇒ 0 6 iD ⊥ −vD > 0
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Example (The RLC circuit with a diode. A half wave rectifier)

I Kirchhoff laws :
vL = vC
vR + vD = vC
iC + iL + iR = 0
iR = iD

I Branch constitutive equations for linear devices are :

iC = Cv̇C
vL = Li̇L
vR = RiR

I ”branch constitutive equation” of the ideal diode

0 6 iD ⊥ −vD > 0
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An first example. A half wave rectifier

Example (The RLC circuit with a diode. A half wave rectifier)
The following linear complementarity system is obtained :(

v̇L
i̇L

)
=

(
0 −1

C
1
L

0

)
·
(

vL
iL

)
+

( −1
C
0

)
· iD

together with a state variable x and one of the complementary variables λ :

x =

(
vL
iL

)
, λ = iD , y = −vD

and
y = −vD =

(
−1 0

)
x +

(
R
)
λ,

Standard form for LCS  ẋ = Ax + Bλ
y = Cx + Dλ
0 6 y ⊥ λ > 0
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An first example. A half wave rectifier

Example (The RLC circuit with a diode. A half wave rectifier){
y = Cx + Dλ
0 6 y ⊥ λ > 0

⇒
{
−vD = −vL + R iD
0 6 −vD ⊥ iD > 0

(1)

• iD = 0,−vD = −vL > 0, vL 6 0

• iD > 0,−vD = 0, iD = VL
R
,VL > 0

}
⇒ iD = max(0,

vL

R
) (2)

iD

−vD
−vD = −vL + RiD

(0,−vL)

iD

−vD
−vD = −vL + RiD

(vL/R, 0)
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An first example. A half wave rectifier

Example (The RLC circuit with a diode. A half wave rectifier)
Note that the lead matrix 0f the LCP D =

(
R
)
> 0 :{

y = Cx + Dλ
0 6 y ⊥ λ > 0

⇐⇒ λ = projR+
(−D−1Cx) = max(0,−D−1Cx)

In the application, iD = max(0, vL
R

) and we get(
v̇L
i̇L

)
=

(
0 −1

C
1
L

0

)
·
(

vL
iL

)
+

( −1
C
0

)
·max(0,

vL

R
)

Since max is a Lipschitz operator, we get a standard ODE with Lipschitz r.h.s.
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Definitions of Complementarity Systems

Dynamical Complementarity systems

Notation
Let I ⊂ R be an interval.
Let K ⊂ Rm be a nonempty closed convex cone and K? its dual cone given by

K? = {x ∈ Rm | x>y > 0 for all y ∈ K}. (1)
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Dynamical Complementarity systems

Definition (Linear complementarity systems (LCS))
When K = Rm

+, we simply coin the system a linear complementarity system ẋ(t) = Ax(t) + Bλ(t) + u(t)
y(t) = Cx(t) + Dλ(t) + a(t)
0 6 y(t) ⊥ λ(t) > 0,

(2)

Definition (Linear complementarity systems (LCS) over cones)
A linear complementarity system (LCS) over cones is given as ẋ(t) = Ax(t) + Bλ(t) + u(t)

y(t) = Cx(t) + Dλ(t) + a(t)
K? 3 y(t) ⊥ λ(t) ∈ K ,

(3)

where t ∈ I ⊂ R, x(t) ∈ Rn and y(t) ∈ Rm and A ∈ Rn×n,B ∈ Rn×m,C ∈ Rm×n and
D ∈ Rm×m.
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Definitions of Complementarity Systems

Dynamical Complementarity systems

Let us consider two smooth (C1) mappings

f : I × Rn × Rm → Rn and h : I × Rn × Rm → Rm.

Definition (Dynamical complementarity systems (DCS) over cones)
A dynamical complementarity system over cones is given as ẋ(t) = f (t, x(t), λ(t))

y(t) = h(t, x(t), λ(t))
K? 3 y(t) ⊥ λ(t) ∈ K ,

(4)

where t ∈ I ⊂ R, x(t) ∈ Rn and y(t) ∈ Rm.
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Definitions of Complementarity Systems

Dynamical Complementarity systems

The notation y ⊥ λ means y>λ = 0. Using basic convex analysis results, standard
equivalences

K? 3 y ⊥ λ ∈ K ⇐⇒ −y ∈ INK (λ) ⇐⇒ −y ∈ ∂ΨK (λ), (5)

with the standard definition of the normal cone

INK (x) = {s ∈ Rm | sT (y − x) 6 0 for all y ∈ K} (6)

and the definition of the indicator function of K

ΨK =

{
0, x ∈ K

+∞ otherwise.
(7)
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Definitions of Complementarity Systems

Dynamical Complementarity systems

Definition (Dynamical complementarity systems (DCS))
A dynamical complementarity system (DCS) is given as ẋ(t) = f (t, x(t), λ(t))

y(t) = h(t, x(t), λ(t))
0 6 y(t) ⊥ λ(t) > 0,

(8)

where t ∈ I ⊂ R, x(t) ∈ Rn and y(t) ∈ Rm is usually called the output vector.

Dynamical Complementarity Systems (DCS) – 10/75



Lecture. Formulation of Nonsmooth Dynamical Systems (NSDS). Low relative degree

Dynamical Complementarity Systems (DCS)

Definitions of Complementarity Systems

Dynamical Complementarity systems

Let us consider a smooth (C1) mapping g : Rn → Rm×n

Definition (Non Linear complementarity systems (NLCS))
A Non Linear Complementarity System usually (NLCS) is defined by the following
system: 

ẋ = f (x , t) + g(x)Tλ

y = h(x , λ)

0 6 y ⊥ λ > 0

(9)

Definition (Gradient Type Complementarity Problem (GTCS))
A Gradient Type Complementarity Problem (GTCS) is defined by the following system:

ẋ(t) + f (x(t)) = ∇T
x h(x)λ

y = h(x(t))

0 6 y ⊥ λ > 0

(10)
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Dynamical Complementarity Systems (DCS)

Definitions of Complementarity Systems

Dynamical variational inequalities

More general systems may be defined by ẋ(t) = f (t, x(t), λ(t)),
y(t) = h(t, x(t), λ(t)),
−y(t) ∈ INX (λ(t)),

(11)

where X is a nonempty closed set of Rn. Some instances where X is not cone are also
very interesting in practise. Indeed, note that

− y(t) ∈ IN[−1,1](λ(t)) ⇐⇒ −λ(t) ∈ Sgn(y(t)), (12)

For a vector y ∈ Rm, Sgn(y) holds component-wise. Let us consider for instance that
X = [−1, 1]m in (11). We end up with a dynamical relay system ẋ(t) = f (t, x(t), λ(t)),

y(t) = h(t, x(t), λ(t)),
−λ(t) ∈ sgn(y(t)).

(13)
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Nature of the solutions

Nature of the solutions

The nature of the solutions is very important for designing consistent time–integration
schemes.
Following the properties of the DCS, we can have

I Solutions as continuously differentiable solutions (C1 solutions)

I Solutions as absolutely continuous functions (AC solutions)

I Solutions as functions of Bounded Variations (BV solutions)

I Solutions as distribution of any order.
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Nature of the solutions

In order to say more on the mathematical properties of ẋ(t) = f (t, x(t), λ(t))
y(t) = h(t, x(t), λ(t))
−y(t) ∈ INX (λ(t)),

(14)

we note that the inclusion into a normal cone is equivalent to the following VI

y(t)(τ − λ(t)) > 0, for all τ ∈ X , (15)

that is
h(t, x(t), λ(t))(τ − λ(t)) > 0, for all τ ∈ X . (16)

Let us denote by λ(t) ∈ SOL(X , h(t, x(t), · )) an element of Rm solution of (16).
Depending on the mathematical nature of the mapping (x , t) 7→ SOL(X , h(t, x , · )),
various types of solutions to (14) are obtained.
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Solutions as continuously differentiable functions (C1 solutions)
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Nature of the solutions

Solutions as continuously differentiable functions (C 1 solutions)

Assumption
The mapping (x , t) 7→ SOL(X , h(t, x , · )) is a single–valued Lipschitz function denoted
by λ(x , t).

ODE with Lipschitz right-hand–side
The substitution of λ(x , t) in (14) yields a Ordinary Differential Equation (ODE) with
a Lipschitz right–hand–side.
Ü Solutions as continuously differentiable functions (C1 solutions)

Dynamical Complementarity Systems (DCS) – 17/75



Lecture. Formulation of Nonsmooth Dynamical Systems (NSDS). Low relative degree

Dynamical Complementarity Systems (DCS)

Nature of the solutions

Linear Complementarity Systems (LCS)

Linear Complementarity Systems (LCS) ẋ(t) = Ax(t) + Bλ(t) + a, x(0) = x0

y(t) = Cx(t) + Dλ(t) + b
0 6 y(t) ⊥ λ(t) > 0.

(17)

Concept of solutions

I The solution to the LCS (17) depends strongly on the quadruplet (A,B,C ,D)
and the initial conditions
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Mathematical nature of the solutions

In order to say more on the mathematical properties of the LCS, we need to
characterize the solution λ of {

y = Cx + Dλ+ b

0 6 y ⊥ λ > 0
(18)

of its equivalent formulation in terms of inclusion into a subdifferential

− (Cx + Dλ+ b) ∈ ∂ΨRm
+

(λ) (19)

or in terms of variational inequality

(Cx + Dλ+ b)T (τ − λ) > 0, for all τ ∈ Rm
+ (20)
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Nature of the solutions

Linear Complementarity Problem

Definition (LCP)
A Linear complementarity problem (LCP) is to find a vector λ that satisfies

0 6 λ ⊥ Mλ+ q > 0

Theorem (Fundamental result of complementarity theory)
The LCP 0 6 λ ⊥ Mλ+ q > 0 has a unique solution λ∗ for any q ∈ Rm if and only if
M is a P-matrix.
In this case the solution λ∗ is a piecewise linear function of q (with a finite number of
pieces).

Remarks

I A P-matrix has all its principal minors positive. A positive definite matrix is a
P-matrix.

I A symmetric P-matrix is a positive definite matrix.

I There exist non-symmetric P-matrices which are not positive definite. And there
exist positive definite matrices which are not symmetric!
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Nature of the solutions

Solutions as continuously differentiable functions (C 1 solutions)

ODE with Lipschitz right-hand–side
The substitution of λ(x) yields a Ordinary Differential Equation (ODE) with a
Lipschitz right–hand–side.
Ü Solutions as continuously differentiable functions (C1 solutions)

The LCS case
The solution λ(x) of the following linear complementarity system

0 6 λ ⊥ Dλ+ Cx + b > 0 (21)

is unique for all Cx + b if and only if D is a P-Matrix and moreover λ(x) is a Lipschitz
function of x .

see the example of the RLCD circuit
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Nature of the solutions

Example (The RLC circuit with a diode. A half wave rectifier)
A LC oscillator supplying a load resistor through a half-wave rectifier.
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1

Figure: Electrical oscillator with half-wave rectifier
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Nature of the solutions

Example (The RLC circuit with a diode. A half wave rectifier)
The following linear complementarity system is obtained :(

v̇L
i̇L

)
=

(
0 −1

C
1
L

0

)
·
(

vL
iL

)
+

( −1
C
0

)
· iD

together with a state variable x and one of the complementary variables λ :

x =

(
vL
iL

)
and

y =
(
−1 0

)
x +

(
R
)
λ, λ = iD .

Standard form for LCS  ẋ = Ax + Bλ
y = Cx + Dλ
0 6 y ⊥ λ > 0
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Nature of the solutions

Example (Another RLC circuit with a diode. Circuit a) in [1])

RVR

iR

LVL

iL

CVC

iC
VD

1

Figure: Electrical oscillator with half-wave rectifier
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Nature of the solutions

Example (Another RLC circuit with a diode. Circuit a) in [1])
The following linear complementarity system is obtained :(

CV̇C

−i̇L

)
=

( −1
RC

1
−1
LC

0

)(
CvC
−iL

)
+

( −1
R−1
L

)
(−vD)

together with a state variable x and one of the complementary variables λ :

x =

(
CvC
−iL

)
and

y = iD =
(
− 1

RC
−1

)
x +

(
1
R

)
λ, λ = −vD .
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Nature of the solutions

Solutions as continuously differentiable functions (C 1 solutions)

CVC

iC

iDF1
R

VR

iR

iDF2

LVL

iL

iDR1

iDR2

2 3

1

Figure: The 4-diode bridge rectifier. LC oscillator with a load resistor
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Nature of the solutions

Solutions as continuously differentiable functions (C 1 solutions)

The dynamical equations are stated choosing :

x =

[
VL

IL

]
, and y =


IDR1

IDF2

V2 − V1

V1 − V3

 , λ =


V2

−V3

IDF1

IDR2

 , (22)

and with

A =

[
0 −1/C

1/L 0

]
, B =

[
0 0 −1/C 1/C
0 0 0 0

]
, u = 0,

C =


0 0
0 0
−1 0
1 0

 , D =


1/R 1/R −1 0
1/R 1/R 0 −1

1 0 0 0
0 1 0 0

 , a = 0, K = K∗ = R4
+.

(23)
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Nature of the solutions

Solutions as continuously differentiable functions (C 1 solutions)

D =


1/R 1/R −1 0
1/R 1/R 0 −1

1 0 0 0
0 1 0 0

 (22)

I D has full rank, but is only semi–definite positive then D is a P0-matrix.

I The solution x(t) is of class C1 since x 7→ BSOL(R4
+,Dλ+ Cx + a) is a single

valued Lipschitz function of x . (proof as an exercise)
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Nature of the solutions

Solutions as continuously differentiable functions (AC solutions)

Solutions as continuously differentiable functions (AC solutions)
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Nature of the solutions

Absolutely continuous functions

Definition
Let I be an interval in the real line R. A function f : I → R is absolutely continuous
on I if for every positive number ε, there exists a positive number δ such that
whenever a finite sequence of pairwise disjoint sub-intervals (xk , yk ) of I satisfies∑

k

(yk − xk ) < δ (23)

then ∑
k

|f (yk )− f (xk )| < ε (24)
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Dynamical Complementarity Systems (DCS)

Nature of the solutions

Absolutely continuous functions

Proposition
The following conditions on a real-valued function f on a compact interval [a, b] are
equivalent:

1. f is absolutely continuous

2. f has derivative almost everywhere, the derivative is Lebesque integrable, and

f (t) = f (a) +

∫ t

a
f ′(t)dt (23)

for all x on [a, b].

3. there exists a Lebesgue integrable function g on [a, b] such that

f (t) = f (a) +

∫ t

a
g(t)dt (24)

for all x on [a, b].

If these equivalent conditions are satisfied then necessarily g = f ′ almost everywhere.
Equivalence between (1) and (3) is known as the fundamental theorem of Lebesgue
integral calculus, due to Lebesgue.
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Nature of the solutions

Absolutely continuous functions

Properties

I The sum and difference of two absolutely continuous functions are also absolutely
continuous.

I If the two functions are defined on a bounded closed interval, then their product
is also absolutely continuous.

I If an absolutely continuous function is defined on a bounded closed interval and is
nowhere zero then its reciprocal is absolutely continuous.

I Every absolutely continuous function is uniformly continuous and, therefore,
continuous. Every Lipschitz-continuous function is absolutely continuous.

I If f : [a, b]→ R is absolutely continuous, then it is of bounded variation on [a, b].

I If f : [a, b]→ R is absolutely continuous, then it can be written as the difference
of two monotonic nondecreasing absolutely continuous functions on [a,b].

I If f : [a, b]→ R is absolutely continuous, then it has the Luzin N property (that
is, for any L ⊆ [a, b] such that λ(L) = 0, it holds that λ(f (L)) = 0, where λ
stands for the Lebesgue measure on R).

I f : I → R is absolutely continuous if and only if it is continuous, is of bounded
variation and has the Luzin N property.

I The composition of two absolutely continuous functions is not necessarily a
absolutely continuous function
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Absolutely continuous functions

Proposition
Let f be Lipschitz continuous on R and g be an absolutely continuous function on
[a, b]. Then the composition f ◦ g is absolutely continuous on [a, b].
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Nature of the solutions

Solutions as absolutely continuous functions (AC solutions)

General context
The mapping h is not an one–to–one mapping of λ.
For instance, if the Jacobian matrix ∇T

λh(t, x(t), λ(t)) is singular or worse if the λ
does not explicitly appear in the definition of h
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Nature of the solutions

Solutions as absolutely continuous functions (AC solutions)

The LCS case with D = 0 and b = 0
If we consider the LCS (17) with D = 0 and b = 0, we get ẋ(t) = Ax(t) + Bλ(t) + a, x(0) = x0

y(t) = Cx(t)
0 6 y(t) ⊥ λ(t) > 0.

(23)

Regularity: What should we expect ?
The time-derivative of the state ẋ(t) and λ(t) are expected to be, in this case,
discontinuous functions of time.
Indeed, if the output y(t) reaches the boundary of the feasible domain at time t∗, i.e.,
y(t∗) = 0, the time–derivative ẏ(t) needs to jump if ẏ(t∗) < 0
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Nature of the solutions

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
Let us search for a continuous solution x(t) to x(0) = x0 > 0

ẋ(t) = −x(t)− 1 + λ(t)
0 6 x(t) ⊥ λ(t) > 0

Two modes :

I free dynamics for 0 < t < t∗ with x(t) > 0 and x(t∗) = 0:{
x(0) = x0 > 0
ẋ(t) = −x(t)− 1

(24)

Solution :
x(t) = exp(−t)x0 + exp(−t)− 1 (25)

x(t∗) = 0 =⇒ t∗ = − ln( 1
1+x0

) > 0

I dynamics for t > t∗ {
x(t∗) = 0,
ẋ(t) + 1 = λ(t) > 0

(26)
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Nature of the solutions

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
Solving the dynamics for t∗ 6 t < T :{

x(t∗) = 0
ẋ(t) + 1 = λ(t) > 0

(24)

if we are looking for an abs. continuous solution x(t), the abs. continuity and
x(t∗) = 0 implies that ẋ(t) > 0, t ∈ [t∗, t∗ + ε), ε > 0, otherwise x(t∗ + ε) < 0.

1. ẋ(t) > 0, t ∈ [t∗, t∗ + ε), ε > 0.
By continuity, x(t + ε) > 0, λ(t + ε) = 0 then

ẋ(t + ε) = −x(t + ε)− 1 < 0 (25)

No solution.

2. ẋ(t) = 0, λ(t) = 1, x(t) = 0 ∀t > t∗ (T = +∞ )
The only possible continuous solution.
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Nature of the solutions

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
Conclusion: A continuous x(t) has been computed for all t ∈ [0,+∞). The time
derivative of the solution ẋ(t) jumps at from t∗ from x(t−∗ ) = −1 to x(t+

∗ ) = 0.
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Nature of the solutions

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
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Nature of the solutions

Solutions as absolutely continuous functions (AC solutions)

Example (Scalar LCS with D = 0)
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Nature of the solutions

Solutions as absolutely continuous functions (AC solutions)

Idea of the general statement
If CB is a positive definite matrix (relative degree one) and Cx0 > 0 (consistent initial
condition), the unique solution of (59) is an absolutely continuous function.

Why the condition on CB ?
Derivation of the output y(t)

y(t) = Cx(t)
ẏ(t) = CAx(t) + CBλ(t) if D = 0

(24)

If CB > 0, we have to solve the following LCP whenever y(t) = 0{
ẏ(t) = CAx(t) + CBλ(t)

0 6 ẏ(t) ⊥ λ(t) > 0
(25)

The LCP (25) is a LCP for the time derivative ẏ(t).

The good framework is the differential inclusion framework (see later)
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Nature of the solutions

Solutions as absolutely continuous functions (AC solutions)

I Link with Moreau’s sweeping process with an assumption R2 = P > 0 and
PB = CT .

I Include the case when D is not full rank. A non trivial linear combination of λ is
continuous, but other are not.

I The system is also a piecewise linear (exercise) but the feasible domain is
restricted by the constraints on x

I The assumption CB > 0 can be relaxed (P matrix, co-positive matrix)
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Nature of the solutions

Solutions as absolutely continuous functions (AC solutions)

CVC
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Figure: The 4-diode bridge rectifier. LC oscillator with a load resistor filtered by a capacitor
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Nature of the solutions

Solutions as absolutely continuous functions (AC solutions)

The second configuration of the 4-diode bridge is written in the LCS form choosing :

x =

 VL

IL
VR

 , y =


V2

IDF2

V2 − V1

VL − V3

 , and λ =


IDR1

−V3

IDF1

IDR2

 , (26)

and with

A =

 0 −1/C 0
1/L 0 0

0 0 −1/(RCF )

 , B =

 0 0 −1/C 1/C
0 0 0 0

1/CF 0 1/CF 0

 , u = 0,

C =


0 0 1
0 0 0
−1 0 1
1 0 0

 , D =


0 −1 0 0
1 0 1 −1
0 −1 0 0
0 1 0 0

 , a = 0.

(27)
For this second configuration, the matrix D does not have full rank (rank(D) = 2).
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Nature of the solutions

Existence and uniqueness results for LCS. Summary

Linear Complementarity Systems (LCS) ẋ(t) = Ax(t) + Bλ(t) + a, x(0) = x0

y(t) = Cx(t) + Dλ(t) + b
0 6 y(t) ⊥ λ(t) > 0.

(28)

LCS with D a P-matrix
ODE with Lipschitz continuous right-hand side.
Cauchy–Lipschitz Theorem =⇒ existence and uniqueness of solutions.

LCS with D = 0
Existence and uniqueness results based on

I Local (or nonzeno) solution based on the leading Markov parameters assumptions
(D,CB,CAB,CA2B, ..)

I or maximal monotone differential inclusion
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Nature of the solutions

Solutions as functions of Bounded Variations (BV solutions)

When discontinuities (jumps) are encountered in the solution x(t), we often consider
the solutions as functions of Bounded Variations (BV) [18].

Source of jumps

I inconsistency of the initial conditions.

I external input

Let us consider the previous example (59) with Cx0 + q < 0. At the initial time, the
solution have to jump to a consistent value with respect to the inequality.
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Nature of the solutions

Solutions as functions of Bounded Variations (BV solutions)
The dynamics in the problem (59) is written in terms of a measure differential
equation as

dx = f (t, x(t))dt + Bdi , (29)

where dx is the differential measure associated with the RCBV function ẋ(t) and di is
also a measure. The absolutely continuous function λ(t) is the Radon-Nikodym
derivative of di with respect to the Lebesgue measure, i.e. :

di

dt
= λ(t). (30)

If the singular part of the differential measure is neglected, a decomposition of the
measure can be written as :

di = λ(t)dt +
∑
i

σiδti (31)

where δti is the Dirac measure at times of discontinuities ti and σi the magnitude.
Thanks to (31), the differential measure equation (29) is decomposed in a smooth
dynamics :

ẋ(t) = f (t, x(t)) + Bλ(t), dt − almost everywhere, (32)

and in a jump dynamics at ti :

x(t+
i )− x(t−i ) = Bσi . (33)
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Solutions as functions of Bounded Variations (BV solutions)

Let us give an instance of a consistent state jump law.

Definition (State Jump Law)
Let us consider the LCS dynamics, and suppose that (A,B,C ,D) is passive with
storage function V (x) = 1

2
xTPx , P = PT > 0. For any x(t−), the state after the

discontinuities, i.e. x(t+), is given by the solution of the generalized equation :

P(x(t+)− x(t−)) ∈ −INK(x(t+)). (34)

The state jump law in (34) guarantees that V (x(t+))− V (x(t−)) 6 0 provided that
0 ∈ K.
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Dynamical Complementarity Systems (DCS)
An first example. A half wave rectifier
Definitions of Complementarity Systems
Nature of the solutions
The notion of relative degree. Well-posedness
The LCS of relative degree r 6 1. The passive LCS

Maximal Monotone Differential Inclusions

The Moreau’s sweeping process of first order

Differential Variational Inequalities (DVI)
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The notion of relative degree. Well-posedness

Definition (Relative degree in the SISO case)
Let us consider a linear system in state representation given by the quadruplet
(A,B,C ,D) ∈ IRn×n × IRn×m × IRm×n × IRm×m:{

ẋ = Ax + Bλ

y = Cx + Dλ
(35)

I In the Single Input/ Single Output (SISO) case (m = 1), the relative degree is
defined by the first non zero Markov parameters :

D,CB,CAB,CA2B, . . . ,CAr−1B, . . . (36)

I In the multiple input/multiple output (MIMO) case (m > 1), an uniform relative
degree is defined as follows. If D is non singular, the relative degree is equal to 0.
Otherwise, it is assumed to be the first positive integer r such that

CAiB = 0, i = 0 . . . q − 2 (37)

while
CAr−1B is non singular. (38)
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The notion of relative degree. Well-posedness

Interpretation
The Markov parameters arise naturally when we derive with respect to time the output
y ,

y = Cx + Dλ

ẏ = CAx + CBλ, if D = 0

ÿ = CA2x + CABλ, if D = 0,CB = 0

. . .

y (r) = CArx + CAr−1Bλ, if D = 0,CB = 0,CAr−2B = 0, r = 1 . . . r − 2

. . .

and the first non zero Markov parameter allows us to define the output y directly in
terms of the input λ.

Dynamical Complementarity Systems (DCS) – 40/75



Lecture. Formulation of Nonsmooth Dynamical Systems (NSDS). Low relative degree

Dynamical Complementarity Systems (DCS)

The notion of relative degree. Well-posedness

The notion of relative degree. Well-posedness

Example
Third relative degree LCS Let us consider the following LCS:

...
x (t) = λ, x(0) = x0 > 0

y(t) = x(t)

0 6 y ⊥ λ > 0

(35)

The function x : [0,T ]→ IR is usually assumed to be an absolutely continuous
function of time.

I If y = x > 0 becomes active, i.e., x = 0,
I If ẋ > 0, the system will instantaneously leaves the constraints.
I If ẋ < 0, ẍ > 0, the velocity needs to jump to respect the constraint in t+. (B.V.

function ?)
I If ẋ < 0, ẍ < 0, the velocity and the acceleration need to jump to respect the

constraint in t+. (Dirac + B.V. function )

Ü ẍ < 0 and therefore λ may be derivative of Dirac distribution.

Problem: From the mathematical point of view, a constraint of the type λ > 0 has no
mathematical meaning !!

Restrictions
Ü In this lecture, we will focus on LCS of relative degree r 6 1.
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Dynamical Complementarity Systems (DCS)
An first example. A half wave rectifier
Definitions of Complementarity Systems
Nature of the solutions
The notion of relative degree. Well-posedness
The LCS of relative degree r 6 1. The passive LCS

Maximal Monotone Differential Inclusions

The Moreau’s sweeping process of first order

Differential Variational Inequalities (DVI)
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The LCS of relative degree r 6 1. The passive LCS

The passive LCS.

Definition (Passivity properties and energy storage function.
Continuous–time case)
The quadruple (A,B,C ,D) is said to be passive if there exist matrices L ∈ Rn×m and
W ∈ Rm×m and a symmetric positive semi-definite matrix P ∈ Rn×n, such that:

ATP + PA = −LLT (36)

BTP − C = −WTLT (37)

−D − DT = −WTW . (38)

In this case, let V (x) = 1
2
xTPx denote the corresponding energy storage function.
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The passive LCS.

The dissipation equality

V (x(T ))− V (x(0)) = −
1

2

∫ T

0
(xT (t), λT (t))Q

(
x(t)
λ(t)

)
dt, ∀ T > 0 (36)

in terms of the positive semi-definite matrix

Q
∆
=

(
LLT WTLT

LW WTW

)
, (37)

then implies that
V (x(T ))− V (x(0)) 6 0. (38)

The system is said to be strictly passive when Q is positive definite, and lossless when
Q = 0. The system is said to be state lossless when L = 0 and input lossless when
W = 0. The system is dissipative, state dissipative, and input dissipative when Q 6= 0,
L 6= 0, or W 6= 0, respectively. In particular, we have

V (x(T ))− V (x(0)) 6 S(λ(t),w(t)), (39)

where the supply rate S(λ,w)
∆
= λTw , since the LCS implies that S(λ(t),w(t)) = 0

for all t > 0.
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The passive LCS.

Relative degree 0
Let us consider a LCS of relative degree 0 i.e. with D which is non singular.

ẋ = Ax + Bλ, x(0) = x0

y = Cx + Dλ

0 6 y ⊥ λ > 0

(40)

Mathematical properties

I Existence and Uniqueness.
I ”B.SOL(Cx,D) is a singleton”:

B.SOL(Cx0,D) is a singleton is equivalent to stating that the LCS (40) has a unique

C 1 solution defined at all t > 0.
Denoting by Λ(x) = B.SOL(Cx,D), the LCS can be viewed as a standard ODE with a
Lipschitz r.h.s :

ẋ = Ax + Λ(x) = Ax + B.SOL(Cx,D) (41)

I Special important case: D is a P-matrix, (LCP(q,M) has a unique solution for all
q ∈ IRn if M is a P-matrix.) The Lipschitz property of the LCP solution with the
respect to x is shown in [8].

I Stability theory [7] and for the numerical integration, the problem is a little more
tricky because Λ(x) is only B-differentiable.

Dynamical Complementarity Systems (DCS) – 44/75



Lecture. Formulation of Nonsmooth Dynamical Systems (NSDS). Low relative degree

Dynamical Complementarity Systems (DCS)

The LCS of relative degree r 6 1. The passive LCS

The passive LCS.

Example
To complete this section, a example of non existence and non uniqueness of solutions
is provided for a LCS of relative degree 0. This example is taken from [11]. Let us
consider the following LCS 

ẋ = −x + λ

y = x − λ
0 6 y ⊥ λ > 0

(42)

This system is strictly equivalent to

ẋ =

{
−x , if x > 0

0, if x > 0
(43)

which leads to non existence of solutions for x(0) < 0 and to non uniqueness for for
x(0) > 0.
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The passive LCS.

Relative degree 1
Let us consider a LCS of relative degree 1 i.e. with CB which is non singular.

ẋ = Ax + Bλ, x(0) = x0

y = Cx

0 6 y ⊥ λ > 0

(44)

Mathematical properties

I The Rational Complementarity problem [10, 5, 6]. The P-matrix property plays
henceforth a fundamental role and provides the existence of global solution of the
LCS in the sense of Caratheodory.

I Special case B = CT uses some EVI results for the well-posedness and the
stability of such a systems [9].
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The passive LCS.

Comments
The passive linear systems are a class for which a “stored energy” in the system is only
decreasing (see for more details, [5, 11]). The passive linear systems are of relative
degree > 1.
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Dynamical Complementarity Systems (DCS)
An first example. A half wave rectifier
Definitions of Complementarity Systems
Nature of the solutions
The notion of relative degree. Well-posedness
The LCS of relative degree r 6 1. The passive LCS

Maximal Monotone Differential Inclusions

The Moreau’s sweeping process of first order

Differential Variational Inequalities (DVI)
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Differential inclusion

Complementarity condition as a subdifferential inclusion

0 6 y ⊥ λ > 0⇐⇒ −y ∈ ∂ΨRm
+

(λ)⇐⇒ −λ ∈ ∂ΨRm
+

(y) (45)

LCS as a differential inclusion with D = 0 and b = 0


ẋ(t) = Ax(t) + Bλ(t) + a
y(t) = Cx(t)
0 6 y(t) ⊥ λ(t) > 0
x(0) = x0.

⇐⇒
{
−(ẋ(t)− Ax(t)− a) ∈ B∂ΨRm

+
(Cx(t)),

x(0) = x0

(46)
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General differential inclusion

Concept of differential inclusions
Differential inclusions is a generalization of the concept of differential equations of the
form

ẋ(t) ∈ A(x(t), t) (47)

where (x , t) 7→ A(x , t) is a multi-valued map, i.e. A(x , t) is a set rather than a single
point.

A very general concept
Differential inclusions is a very general concept that contains Ordinary Differential
Equations (ODE), Differential Algebraic Equations (DAE). There are many types if
differential inclusions.

We will focus on Maximal Monotone Differential Inclusion
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Maximal monotone operators

Let 2R
n

be the set of the subsets of Rn

Definition (Monotone multi-valued operator)
A multi–valued operator T : Rn → 2R

n
is monotone if

∀y1 ∈ T (x1), ∀y2 ∈ T (x2), (y2 − y1)T (x2 − x1) > 0 (48)

Definition (Graph)
Let T multi–valued operator T : Rn → 2R

n
. The graph of T is defined by

Gr(T ) = {(x , y) | y ∈ T (x)} (49)

Definition (Maximal Monotone multi-valued operator)
A operator T is maximal monotone if it is maximal for all the monotone operators for
the inclusion of graphs.

In other words, T is monotone and for all other monotone operator S then
Gr(T ) ⊂ Gr(S) =⇒ T = S
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Maximal monotone operators

Definition (Domain)
The domain of an operator T is defined by D(T ) = {x | T (x) 6= ∅}

Definition (Range of T )
Let T : Rn → 2R

n
be an operator. The range of T is defined by

R(T ) = ∪x∈Rn{y | y ∈ T (x)} (50)

Definition (Inverse of T )
Let T : Rn → 2R

n
be a maximal monotone operator. Its inverse T−1 is defined by

y ∈ T (x)⇐⇒ x ∈ T−1(y) (51)

and we have D(T−1) = R(T ) and R(T−1) = D(T )

Its inverse is defined by the symmetry of its graph with respect to y = x
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Maximal monotone operators

x

∂Ψ[−1,1](x)

y

(∂Ψ[−1,1](y))−1
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Maximal monotone operators

x

T (x)

x

T−1(x)
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Maximal monotone operators

x x x x

x

sgn(x) = ∂|x |
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Maximal monotone differential inclusion

Definition (Maximal monotone differential inclusion)
Let T multi–valued operator T : Rn → 2R

n
. A maximal monotone differential

inclusion is defined by
− ẋ(t) ∈ T (x(t)) (50)

Definition (Perturbed maximal monotone differential inclusion)
Let T multi–valued operator T : Rn → 2R

n
. A maximal monotone differential

inclusion is defined by
− (ẋ(t) + f (x , t)) ∈ T (x(t)) (51)

where f is a Lipschitz continuous map w.r.t x .
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Maximal monotone differential inclusion

Definition (lower semi-continuity)
A function Φ : Rn → R ∪+∞ is lower semi-continuous if one of the following
equivalent assertions is satisfied:

I
lim inf

x→x0
Φ(x) > Φ(x0)

I Its epigraph is closed

Remarks

I lim infx→x0 Φ(x) = limε→0(inf{Φ(x), x ∈ B(x0, ε) \ {x0}})
I Continuity implies semi-continuity.

x

y = Φ(x)
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Maximal monotone differential inclusion

For a convex proper function Φ, the semi–continuity property has only to be checked
on the boundary of the domain of definition

∂D(Φ) = D(Φ) \ ˚D(Φ)

.

Examples

x

y = Φ(x)

+∞ +∞

x

y = Φ(x)

+∞ +∞

x

y = Φ(x)

+∞ +∞
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Maximal Monotone Differential Inclusions

Maximal monotone differential inclusion

Counter-examples

x

y = Φ(x)

+∞ +∞

x

y = Φ(x)

+∞ +∞

x

y = Φ(x)

+∞ +∞
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Maximal monotone differential inclusion

Theorem
For a lower semi–continuous convex proper function Φ, the subdifferential ∂Φ(x) is a
maximal monotone operator

Remarks

I Obvious in the regular case: φ(x) : R→ R a convex potential C2

φ′′(x) > 0 and φ′(x) is monotone (increasing single–valued function)

I For a maximal monotone operator in R, i.e. T : R→ 2R it exists a lower
semi–continuous convex proper function Φ such that T = ∂Φ
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Maximal monotone differential inclusion

Examples

I Φ(x) = 0 = ΨR,T (x) = 0
− ẋ + f (x , t) = 0 (52)

I Φ(x) = Ψc (x),T (x) = ∂ΨC (x)

− ẋ + f (x , t) ∈ ∂ΨC (x) (53)

I relay or sign function Φ(x) = |x |,T (x) = ∂|x |

− ẋ ∈ ∂|x | ⇐⇒ −ẋ ∈ sgn(x) (54)

I 2-norm Φ(x) = ‖x‖, T (x) = ∂‖x‖ =

{ x
‖x‖ if x 6= 0

{s | ‖s‖ 6 1} if x = 0
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Maximal monotone differential inclusion

Examples

I relay with dead zone

Φ(x) =


−x + 1, if x 6 −1

0, if − 1 6 x 6 1

x − 1, if x > 1

(52)
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Maximal Monotone Differential Inclusions

Maximal monotone differential inclusion

Examples

I Sum of (proper) convex functions Φ1 + Φ2 is convex. Moreover, if the relative
interior ri(D(∂Φ1)) and ri(D(∂Φ2) have a common point then

∂(Φ1(x) + Φ2(x)) = ∂Φ1(x) + ∂Φ2(x) (52)

Relative interior : ri(X ) = {x ∈ X | ∃ε > 0,Bε ∩Aff(X ) ⊂ X} where Aff(X) is
the affine hull of X , the smallest affine set containing X :

Aff(X ) = {
k∑

i=0

αixi | k > 0, xi ∈ X , αi ∈ R,
k∑

i=0

αi = 1} (53)

Ex: C = {x ∈ R2 | x1 ∈ [−1, 1], x2 = 0} Aff(C) = R× {0}
I Φ(x) = 1/2 ∗ ax2 + |x |,T (x) = ax + sgn(x)

− ẋ ∈ ax + ∂|x | ⇐⇒ −ẋ − ax ∈ sgn(x) (54)

1. a > 0. Φ(x) is convex and T (x) is maximal monotone.
2. a < 0. Φ(x) is not convex and T (x) is not monotone.
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Maximal Monotone Differential Inclusions

Maximal monotone differential inclusion

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

0

1

2

3

4

5

6

Φ(x) = 1/2x2 + |x|

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

−2.0

−1.5

−1.0

−0.5

0.0

Φ(x) = −1/2x2 + |x|
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Maximal Monotone Differential Inclusions

Maximal monotone differential inclusion

x

y ∈ sgn(x) + ax , a > 0

x

y ∈ sgn(x) + ax , a < 0
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Maximal Monotone Differential Inclusions

Maximal monotone differential inclusion

Link with gradient systems with convex potentials

I φ(x) : R→ R a convex potential C2

φ′′(x) > 0 and φ′(x) is monotone (increasing function)

− ẋ = φ′(x) (52)

I Φ(x) : R→ R a convex potential not necessarily differentiable, but proper and
lower semi–continuous ∂Φ(x) is a maximal monotone operator.

− ẋ = ∂Φ(x) (53)
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Maximal Monotone Differential Inclusions

Existence and uniqueness results

Theorem (Brézis 1973)
Let T : Rn → 2R

n
be a maximal monotone operator such that ˚D(T ) 6= ∅. Let a

function f : Rn × R→ Rn such that

1. the function f (x , · ) is Lipschitz continuous on D(T ) that is

∃L > 0, ∀t ∈ [0, tmax], ∀x1, x2 ∈ D(T ), ‖f (t, x1)− f (t, x2)‖ 6 L‖x1 − x2‖ (54)

2. ∀x ∈ D(T ), the mapping t 7→ f (x , t) belongs to L∞(0, tmax;Rn)

Then, for all x0 ∈ D(T ), it exists a unique solution x(t) which is absolutely continuous
such that{

−(ẋ(t) + f (x(t), t)) ∈ T (x(t)), almost everywhere on [0, tmax]

x(0) = x0
(55)
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Maximal Monotone Differential Inclusions

Existence and uniqueness results

Existence

I By using the Moreau-Yosida regularization of T

Tλ(x) =
1

λ
(I − Jλ(x)), λ > 0, (56)

with Jλ(x) the resolvent of T (x) given by

Jλ(x) = (I + λT (x))−1. (57)

For a maximal monotone operator T or R, Jλ is defined over R and is contracting.
The mapping Tλ is a maximal monotone operator and Lipschitz continuous with
a Lipschitz constant of 1

λ
. We consider that ODE with Lipschitz r.h.s.

− (ẋλ(t) + f (xλ(t), t)) = Tλ(xλ(t)) (58)

and then the limit λ→ 0 of the sequence of solutions xλ.

I By approximation using a discretization scheme
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Maximal Monotone Differential Inclusions

Existence and uniqueness results

Uniqueness
Simple case −ẋ(t) ∈ T (x(t)). x ∈ R
Let us consider two solution x1 and x2

Since T (x) is monotone, we have

(ẋ1(s)− ẋ2(s))T (x1(s)− x2(s)) 6 0 almost everywhere on [0,T ] (56)

By integrating over [0, t], we get

1

2
(x2(t)− x1(t))2 −

1

2
(x2(0)− x1(0))2 6 0 (57)

If x1(0) = x2(0), we have

1

2
(x2(t)− x1(t))2 6 0 =⇒ x2 = x1 (58)
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Maximal Monotone Differential Inclusions

Existence and uniqueness results

Uniqueness
−(ẋ(t) + f (x , t)) ∈ T (x(t))
Let us consider two solution x1 and x2

Since T (x) is monotone, we have

(ẋ1(s) + f (x1(s), s)− ẋ2(s)− f (x2(s), s))T (x1(s)− x2(s)) 6 0 (56)

almost everywhere on [0,T ].
By integrating over [0, t], we get

1

2
(x2(t)− x1(t))2 6

∫ t

0
(f (x2(s), s)− f (x1(s), s))T (x1(s)− x2(s))ds (57)

Since f is lipschitz, we have

(x2(t)− x1(t))2 6 2L

∫ t

0
‖x1(s)− x2(s)‖2ds (58)
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Maximal Monotone Differential Inclusions

Existence and uniqueness results

Gronwall Lemma
Let a a positive constant and m a integrable function, nonnegative almost everywhere
on (0, tmax) and a function φ a continuous function on [0, tmax]. If

∀t ∈ [0, tmax], φ(t) 6 a +

∫ t

0
m(s)φ(s) ds (56)

then

∀t ∈ [0, tmax], φ(t) 6 a exp(

∫ t

0
m(s) ds) (57)

Applying the Gronwall Lemma, for a = 0 and m(s) = 2L and φ(s) = ‖x1(s)− x2(s)‖2,
we get

‖x2(t)− x1(t))‖2 6 0 =⇒ x2 = x1 (58)
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Maximal Monotone Differential Inclusions

Come back to LCS with D = 0 but B 6= Id 6= C

Theorem (LCS as maximal monotone differential inclusion)
Let us consider the following LCS ẋ(t) = Ax(t) + Bλ(t) + a(t), x(0) = x0

y(t) = Cx(t)
0 6 y(t) ⊥ λ(t) > 0.

(59)

If there exists P a symmetric definite positive matrix such that

PB = CT (60)

then we can perform a change of variable z = Rx with R2 = P,R > 0,R = RT

−(ż(t)− RAR−1z(t)− Ra(t)) ∈ RB ∂ΨRm
+

(CR−1z(t)) (61)

such that (61) is a maximal monotone differential inclusion.
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Maximal Monotone Differential Inclusions

Come back to LCS with D = 0 but B 6= Id 6= C

We have the following equivalence
ẋ(t) = Ax(t) + Bλ(t) + a(t)
y(t) = Cx(t)
0 6 y(t) ⊥ λ(t) > 0,
x(0) = x0

⇐⇒
{
−(ẋ(t)− Ax(t)− a(t)) ∈ B∂ΨRm

+
(Cx(t)),

x(0) = x0

(59)
We can perform a change of variable z = Rx with R2 = P,R > 0,R = RT

−(ż(t)− RAR−1z(t)− Ra(t)) ∈ RB ∂ΨRm
+

(CR−1z(t)) (60)
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Maximal Monotone Differential Inclusions

Come back to LCS with D = 0 but B 6= Id 6= C

For a matrix E , the function φ(x) = ΨRm
+

(Ex) is a proper convex function and its

subdifferential is given by
∂φ(x) = ET∂ΨRm

+
(Ex) (59)

(Im(E) contains a point of ri(D(∂ΨRm
+

))) (Chain rule)

In our application, we set E = CR−1 and we have

ET = R−TCT = R−1R2B = RB (60)

The obtained inclusion

−(ż(t)− RAR−1z(t)− Ra) ∈ ∂Φ(z(t)) = ET∂ΨRm
+

(Ez(t)), (61)

is a maximal monotone differential inclusion
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Maximal Monotone Differential Inclusions

Dynamical Complementarity Systems (DCS)
An first example. A half wave rectifier
Definitions of Complementarity Systems
Nature of the solutions
The notion of relative degree. Well-posedness
The LCS of relative degree r 6 1. The passive LCS

Maximal Monotone Differential Inclusions

The Moreau’s sweeping process of first order

Differential Variational Inequalities (DVI)
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The Moreau’s sweeping process of first order

The Moreau’s sweeping process of first order

Definition (The Moreau’s sweeping process (of first order))
The Moreau’s sweeping process (of first order) is defined by the following Differential
inclusion (DI) {

−ẋ(t) ∈ NK(t)(x(t)) t ∈ [0,T ],

x(0) = x0 ∈ K(0).
(62)

where

I K(t) is a moving closed and nonempty convex set.

I NK (x) is the normal cone to K at x

NK (x) := {s ∈ Rn : 〈s, y − x〉 6 0, for all y ∈ K} ,

Comment
This terminology is explained by the fact that x(t) can be viewed as a point which is
swept by a moving convex set.

References
[15, 16, 17, 14, 13]
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The Moreau’s sweeping process of first order

The Moreau’s sweeping process of first order

Basic mathematical properties [14].

I A solution x(.) for such type of DI is assumed to be differentiable almost
everywhere satisfying the inclusion x(t) ∈ K(t), t ∈ [0,T ].

I If the set-valued application t 7→ K(t) is supposed to be Lipschitz continuous, i.e.

∃l 6 0, dH(K(t),K(s)) 6 l |t − s| (63)

where dH is the Hausdorff distance between two closed sets, then
I existence of a solution which is l-Lipschitz continuous
I uniqueness in the class of absolutely continuous functions.

[14].

Definition (State dependent sweeping process [12])
The state dependent sweeping process is defined{

−ẋ(t) ∈ NK(t,x(t))(x(t)) t ∈ [0,T ],

x(0) = x0 ∈ K(0).
(64)
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The Moreau’s sweeping process of first order

Variants of the Moreau’s sweeping process

Definition (RCBV sweeping process [12])
The RCBV sweeping process of the type is defined{

−du ∈ NK(t)(u(t)) (t > 0),

u(0) = u0.
(65)

where the convex set is RCBV i.e

dH(K(t),K(s)) 6 r(t)− r(s) (66)

for some right-continuous non-decreasing function r : [0,T ]→ IR is made.

Mathematical properties

I the solution u(.) is searched as a function of bounded variations (B.V.)

I the measure du associated with the B.V. function u is a differential measure or a
Stieltjes measure.

I Inclusion of measure into cone
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The Moreau’s sweeping process of first order

Unbounded DI and Maximal monotone operator

Definition (Unbounded Differential Inclusion (UDI))
The following UDI can be defined (together with the initial condition x(0) = x0 ∈ C)

− (ẋ(t) + f (x(t)) + g(t)) ∈ INK (x(t)) (67)

where K is the feasible set and g : R+ → Rn and f : Rn → Rn.

Basic properties

I A solution of such a UDI is understood as an absolutely continuous t 7→ x(t)
lying in the convex set C .

Comment
The Terminology is explained by the fact that INK (x(t)) is neither compact nor
bounded. Standard DI analysis no longer apply.
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The Moreau’s sweeping process of first order

Unbounded DI and Maximal monotone operator

Link with Maximal monotone operator

I In [2], a existence and uniqueness theorem for

ẋ(t) + A(x(t)) + g(t) 3 0 (68)

where A is a maximal monotone operator, and g a absolutely continuous function
of time.

I If f which is monotone and Lipschitz continuous, then

A(x(t)) = f (x(t)) + INK (x(t)) (69)

is then a maximal monotone operator.

I Equivalence [4]

− (ẋ(t) + f (x(t)) + g(t)) ∈ INTK (x(t))(ẋ(t)) , (70)

providing that the UDI (67) has the so-called slow solution, that is ẋ(t) is of
minimal norm in INK(x(t))(x(t)) + f (x , t) + g(t).
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The Moreau’s sweeping process of first order

Special case when K is finitely represented.

Assumptions

K = {x ∈ IRn, h(x) 6 0} (71)

For x ∈ K , we denote by

I (x) = {i ∈ {i . . .m}, hi (x) = 0} (72)

the set of active constraints at x . The tangent cone can be defined by

T h(x) = {s ∈ IRn, 〈∇hi (x), s〉 6 0, i ∈ I (x)} (73)

and the normal cone by

Nh(x) := [T h(x)]◦ =
{ ∑
i∈I (x)

λi∇hi (x), λi > 0, i ∈ I (x)
}

(74)

I NK (x) ⊃ Nh(x) and TK (x) ⊂ T h(x) always hold.

I NK = Nh and equivalently TK = T h holds if a constraints qualification condition
is satisfied
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The Moreau’s sweeping process of first order

Special case when K is finitely represented.

Link with Differential Complementarity Systems (DCS)
Equivalence with the following DCS of Gradient Type (GTCS){

−ẋ(t) = f (x(t)) + g(t) +∇h(x(t))λ(t)

0 6 −h(x(t)) ⊥ λ(t) > 0
(71)

Link with Evolution Variational Inequalities (EVI)
Equivalence with the following EVI

〈ẋ(t) + f (x(t)) + g(t), y − x〉 > 0 (72)

I existence and uniqueness theorem for maximal monotone operators

I existence result is given for this last EVI under the assumption that f is
continuous and hypo-monotone [4].
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The Moreau’s sweeping process of first order

Applications

I Quasi-static analysis (first order) of viscoelastic mechanical systems
I with perfect (associated) plasticity
I with associated friction

I Quasi static analysis (first order) of quasi-brittle mechanical systems
I cohesion, damage and fracture mechanics
I geomaterials

I Dynamic analysis of mechanical systems with Coulomb’s friction with permanent
contact

I Many other applications, in economy and in control.
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The Moreau’s sweeping process of first order

Dynamical Complementarity Systems (DCS)
An first example. A half wave rectifier
Definitions of Complementarity Systems
Nature of the solutions
The notion of relative degree. Well-posedness
The LCS of relative degree r 6 1. The passive LCS

Maximal Monotone Differential Inclusions

The Moreau’s sweeping process of first order

Differential Variational Inequalities (DVI)
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Differential Variational Inequalities (DVI)
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Differential Variational Inequalities (DVI)

Definition (Differential Variational inequalities (DVI) [19])
A Differential Variational inequality can be defined as follows:

ẋ(t) = f (t, x(t), u(t)) (73)

u(t) = SOL(K ,F (t, x(t), · )) (74)

0 = Γ(x(0), x(T )) (75)

where :

I x : [0,T ]→ IRn is the differential trajectory (state variable),

I u : [0,T ]→ IRm is the algebraic trajectory

I f : [0,T ]× IRn × IRn → IRn is the ODE right-hand side

I F : [0,T ]× IRn × IRm → IRm is the VI function

I K is nonempty closed convex subset of IRm

I Γ : IRn × IRn → IRn is the boundary conditions function.
I Initial Value Problem (IVP), Γ(x, y) = x − x0
I linear Boundary Value Problem (BVP), Γ(x, y) = Mx + Ny − b

The notation u(t) = SOL(K ,Φ) means that u(t) ∈ K is the solution of the following
VI

(v − u)T Φ(u) > 0, ∀v ∈ K (76)
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Differential Variational Inequalities (DVI)

The DVI is a slightly more general framework in the sense that it includes at the same
time:

I Differential Algebraic equations(DAE)

ẋ(t) = f (t, x(t), u(t)) (77)

u(t) = F (t, x(t), u(t)) (78)

I Differential Complementarity systems (DCS)

ẋ(t) = f (t, x(t), u(t)) (79)

C 3 u(t) ⊥ F (t, x(t), u(t)) ∈ C∗ (80)

where C and C∗ are a pair of dual closed convex cones (C∗ = −C◦). The Linear
Complementarity systems are also special case of DVI (see the section 1).
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Differential Variational Inequalities (DVI)

Differential Variational Inequalities (DVI)
The DVI is a slightly more general framework in the sense that it includes at the same
time:

I Evolution variational inequalities (EVI)

− (ẋ + f (x)) ∈ INK (x) (77)

I When K is a cone, the preceding EVI is equivalent to a DCS of the type :

ẋ(t) + f (x(t)) = u(t) (78)

K 3 x(t) ⊥ u(t) ∈ K∗ (79)

I When K is finitely represented i.e. K = {x ∈ IRn, g(x) 6 0} then under some
appropriate constraints qualifications, we obtain another DCS which is often called a
Gradient type Complementarity Problem (GTCS) (see 1) :

ẋ(t) + f (x(t)) = −∇T
x g(x)u(t) (80)

0 6 −g(x(t)) ⊥ u(t) > 0 (81)

I Finally, if K is a closed convex and nonempty set then the EVI is equivalent to the
following DVI :

ẋ(t) + f (x(t)) = w(t) (82)

0 = x(t)− y(t) (83)

y(t) ∈ K , (v − y(t))Tw(t) > 0, ∀v ∈ K (84)
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Differential Variational Inequalities (DVI)

Dynamical Complementarity Systems (DCS)
An first example. A half wave rectifier
Definitions of Complementarity Systems
Nature of the solutions
The notion of relative degree. Well-posedness
The LCS of relative degree r 6 1. The passive LCS

Maximal Monotone Differential Inclusions

The Moreau’s sweeping process of first order

Differential Variational Inequalities (DVI)
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Differential Variational Inequalities (DVI)

Thank you for your attention.
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