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Introduction

Difficulties and Approaches

Two major difficulties :

I Time integration of non smooth evolutions

I Solving a optimization problem together with a dynamical equilibrium constraint

Three major approaches :
I Hybrid Approach

I Hybrid multi-modal dynamical system
I Need to perform a decomposition of the evolution“triggering events”
I Enumerative resolution of the mode transition process

I Event–Driven Approach
I Two time formulations of the dynamical system (time–continuous and time–discrete)
I Need to perform a decomposition of the evolution. “triggering events”
I Algebraic resolution of the mode transition process

I Time–stepping approach
I Global approach with a single formulation
I Need to define a global formulation of the NSDS
I Algebraic resolution of the one–step nonsmooth problem
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Event–detecting (Event-driven) schemes

Principle of Event–detecting (Event–driven) schemes.

Principle

Time-decomposition of the dynamics in

I modes, time-intervals in which the dynamics is smooth,

I discrete events, times where the dynamics is nonsmooth.

The following assumptions guarantee the existence and the consistency of such a
decomposition

I The definition and the localization of the discrete events. The set of events is
negligible with the respect to Lebesgue measure.

I The definition of time-intervals of non-zero lengths. the events are of finite
number and ”well-separated” in time. Problems with finite accumulations of
impacts, or Zeno-state

Comments
On the numerical point of view, we need
I detect events with for instance root-finding procedure.

I Dichotomy and interval arithmetic
I Newton procedure for C 2 function and polynomials

I solve the non smooth dynamics at events with a reinitialization rule of the state,

I integrate the smooth dynamics between two events with any ODE solvers.
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Event–detecting (Event-driven) schemes

Event–detecting (Event–driven) schemes for DCS

Event–detecting (Event–driven) schemes for DCS

Relative degree 0
Let us consider a LCS of relative degree 0 i.e. with D which is non singular.

ẋ = Ax + Bλ, x(0) = x0

y = Cx + Dλ

0 6 y ⊥ λ > 0

(1)

Assumption
B.SOL(Cx0,D) is a singleton is equivalent to stating that the LCS (1) has a unique
C1 solution defined at all t > 0.
Denoting by Λ(x) = B.SOL(Cx ,D), the LCS can be viewed as a standard ODE with a
Lipschitz r.h.s :

ẋ = Ax + Λ(x) = Ax + B.SOL(Cx ,D) (2)
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Event–detecting (Event-driven) schemes

Event–detecting (Event–driven) schemes for DCS

Event–detecting (Event–driven) schemes for DCS

Definition (Active index–sets)
Let us denote by α the set of active constraints at time t

α = {i , yi = Ci•x(t) + Di = 0, λi > 0} (3)

and its complementary set by

β = {j , yj = Cj•x(t) + Dj > 0, λi = 0} (4)

LCP Solution for D a P-Matrix
Given the active index set α, the solution of the LCP(Cx(t),D) is

λ(x(t)) =

{
λα(x(t)) = −D−1

αα(Cα•x(t))

λβ(x(t)) = 0
(5)
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Event–detecting (Event-driven) schemes

Event–detecting (Event–driven) schemes for DCS

Event–detecting (Event–driven) schemes for DCS

Smooth ODE
If the index sets α is constant on [tk , tk+1], we perform the integration of

ẋ = Ax + Λ(x) = Ax − Bα(D−1
αα(Cα•x(t)) (6)

which is a smooth ODE with a C∞ right–hand–side.

Standard numerical integration with root finding
The ODE (6) can be solved with numerical methods for ODE on intervals with
constant index sets alpha :

I One–step numerical methods : Euler, Runge–Kutta methods, Extrapolation
methods

I Multi–step methods : Adams–Moulton, Adams–bashford,, BDF

A root finding procedure (Dichotomy, newton, . . . ) is used to detect changes,
“events” in the index sets
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Event–detecting (Event-driven) schemes

Extensions to other systems (Moreau’s sweeping process and DVI)

Event–detecting schemes for Moreau’s sweeping process and DVI. . .

Assumptions
Let us assume that the set K is finitely represented

K = {x ∈ IRn, h(x) 6 0} (7)

The same procedure may be performed with

α = {i , yi = hi (x(t)) = 0, λi > 0} (8)

Issues

1. If the set is not finitely representable, triggering events is not possible

2. If the set if defined by nonlinear constraints h(x) > 0, triggering events can be
very difficult and not very accurate. We need a dense output of the state x(t) at
a given accuracy to know when a vent occurs.
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Event–detecting (Event-driven) schemes

Comments

Advantages and disadvantages. Event–detecting schemes

Advantages
I Seems easy to handle from the computational point of view

I In each modes, smooth integration between two events (ODE/DAE).
I At event, a optimization problem is solved without time evolution.

Disadvantages :

I Scability and complexity of the algorithms

I Need an accurate event detection difficult for nonlinear constraints

I Accumulation of events

I No existence or uniqueness results

I Sensitivity to accuracy thresholds. Tuning the “ε” is a hard task.

Lead to numerical schemes suitable

I Small systems with a small number of events

I High accuracy in each modes
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Event–capturing (Time-stepping) schemes

Principle of Event–capturing (Time-stepping) scheme

Principle of Event–capturing scheme

I The time–step is not adapted to the time of events

I A unique formulation that contains all the modes is considered

I The time-integration is based on a consistent approximation of the differential
equations according to the smoothness of the solutions (C1, AC, BV, measures,
. . . )
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for Linear
Complementarity Systems (LCS)
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with C1 solutions

Assumptions
The solutions of the LCS 

ẋ = Ax + Bλ+ u

y = Cx + Dλ+ a

K∗ ∈ y ⊥ λ ∈ K ,

(9)

is assumed to be of class C1 solutions

The (θ, γ)– scheme
A possible scheme can be used when a solution x(t) of class C1 with λ(t) continuous
is expected 

xk+1 − xk = h
(
Axk+θ + uk+θ + Bλk+γ

)
,

yk+γ = Cxk+γ + Dλk+γ + ak+γ ,

K∗ ∈ yk+γ ⊥ λk+γ ∈ K ,

(10)

where θ ∈ [0, 1] and γ ∈ [0, 1].

Notation
xk+θ = (1− θ)xk + θxk+1, λk+γ = (1− γ)λk + γλk+1
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with C1 solutions

The discretized system (10) amounts to solving at each time–step the following
one–step problem : {

yk+γ = Mλk+γ + q

K∗ ∈ yk+γ ⊥ λk+γ ∈ K ,
(11)

with

M = D + hγC(I − hθA)−1B,

q = ak+γ + γC(I − hθA)−1 [(I + h(1− θ)A)xk + huk+θ] + C(1− γ)xk .
(12)
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with C1 solutions

Rule of thumb

I For ẋ = Ax , the θ–scheme

xk+1 − xk = hAxk+θ

is of order 2 for θ = 1/2.
This requires sufficient smoothness of the solution (at least C1).
θ = γ = 1/2 can only be used if the solution is C1.

I For θ > 1/2 and γ > 1/2, the scheme is unconditionally stable. Properties that
comes with the implicit character of the scheme. The scheme dissipates also
more energy.
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Solutions as continuously differentiable functions (C 1 solutions)
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Figure: The 4-diode bridge rectifier. LC oscillator with a load resistor
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with C1 solutions

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  0.001  0.002  0.003  0.004  0.005

(1)
(2)

(a) Voltage across the inductor VL versus time.
State x1,k

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.001  0.002  0.003  0.004  0.005

(1)
(2)

(b) Current through the inductor iL versus time.
state x2,k

Figure: Simulation of the circuit on Fig. ?? with the scheme (10). (1) θ = 1, γ = 1 (2)
θ = 1/2, γ = 1/2.
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with C1 solutions
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Figure: Simulation of the circuit on Fig. ?? with the scheme (10). (1) θ = 1, γ = 1 (2)
θ = 1/2, γ = 1/2.
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with C1 solutions

The discrete storage function can be defined as

Vk+1 =
1

2
(C v2

L,k+1 + L i2L,k+1) (13)

and the discrete dissipation function as

Dk+1 = h
k+1∑
j=1

R(iR,j )
2 (14)

and the cumulative function Vk+1 +Dk+1.
We remark that the scheme with θ = γ = 1/2 is able to reproduce the exact energetic
behaviour as in the continuous time case.
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with C1 solutions
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Figure: Simulation of the circuit on Fig. ?? with the scheme (10). (a) Storage function Vk+1 for
θ = 1, γ = 1 (b) Storage function Vk+1 for θ = 1/2, γ = 1/2 (c) Dissipation function Dk+1 for
θ = 1, γ = 1 (b) Dissipation function Dk+1 for θ = 1/2, γ = 1/2 (e) Cumulative function for
θ = 1, γ = 1 (f) Cumulative function for θ = 1/2, γ = 1/2 .
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with AC solutions

Assumptions
The solutions of the LCS 

ẋ = Ax + Bλ+ u

y = Cx + Dλ+ a

K∗ ∈ y ⊥ λ ∈ K ,

(15)

is assumed to be of class AC solutions

The (θ)– scheme
The following time–stepping scheme is used when a absolutely continuous solution
x(t) with λ(t) function of Bounded Variations is expected:

xk+1 − xk = h (Axk+θ + uk+θ + Bλk+1) ,

yk+1 = Cxk+1 + Dλk+1 + ak+1,

K∗ 3 yk+1 ⊥ λk+1 ∈ K ,

(16)

with θ ∈ [0, 1].
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Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with AC solutions
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Figure: The 4-diode bridge rectifier. LC oscillator with a load resistor filtered by a capacitor
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with AC solutions
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Figure: Simulation of the configuration in Fig. 5 with the scheme (16). (1) θ = 1 (2) θ = 1/2
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Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with AC solutions
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Figure: Simulation of the configuration in Fig. 5 with the scheme (16). (1) θ = 1 (2) θ = 1/2
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Event–capturing (Time-stepping) scheme for (LCS) with AC solutions
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Figure: Simulation of the configuration in Fig. 5 with the scheme (16). (1) θ = 1 (2) θ = 1/2
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with AC solutions
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Figure: Simulation of the configuration in Fig. 5 with the scheme (10). (1) θ = 1, γ = 1 (2)
θ = 1/2, γ = 1/2
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Event–capturing (Time-stepping) scheme for (LCS) with AC solutions
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Figure: Simulation of the configuration in Fig. 5 with the scheme (10). (1) θ = 1, γ = 1 (2)
θ = 1/2, γ = 1/2

Ü Occurrence of instabilities in the numerical response with γ 6= 1

Event–capturing (Time-stepping) schemes – 27/55



Lecture. Time integration of Nonsmooth Dynamical Systems (NSDS). Low relative degree

Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)
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Figure: Simulation of the configuration in Fig. 5 with the scheme (10). (1) θ = 1, γ = 1 (2)
θ = 1/2, γ = 1/2

Ü Occurrence of instabilities in the numerical response with γ 6= 1
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with BV solutions

Assumptions
The solutions of the LCS 

ẋ = Ax + Bλ+ u

y = Cx + Dλ+ a

K∗ ∈ y ⊥ λ ∈ K ,

(17)

is assumed to be of class BV solutions

Warning
The time discretization of (??) has to take into account the nature of the solution to
avoid point-wise evaluations of measures, which are not mathematically well–defined.
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with BV solutions

Only the measure of the time–intervals (tk , tk+1] must be considered such that :

dx((tk , tk+1]) =

∫ tk+1

tk

Ax(t) + u(t) dt + Bdi((tk , tk+1]). (18)

By definition of the differential measure, we get

dx((tk , tk+1]) = x(t+
k+1)− x(t+

k ). (19)

The measure of the time–interval by di is kept as an unknown variable denoted by

σk+1 = di((tk , tk+1]). (20)

Finally, the remaining Lebesgue integral in (18) is approximated by an implicit Euler
scheme ∫ tk+1

tk

Ax(t) + u(t) dt ≈ h(Axk+1 + uk+1). (21)

The matrix D needs to be at least rank-deficient to expect some jumps in the state.

Event–capturing (Time-stepping) schemes – 30/55



Lecture. Time integration of Nonsmooth Dynamical Systems (NSDS). Low relative degree

Event–capturing (Time-stepping) schemes
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Event–capturing (Time-stepping) scheme for (LCS) with BV solutions

Let us start with the simplest case of D = 0.
The following time–stepping scheme is used when a solution of bounded variations
x(t) with di a measure is expected and D = 0

xk+1 − xk = h (Axk+θ + uk+θ) + Bσk+1,

yk+1 = Cxk+1 + ak+1,

0 ∈ yk+1 + NK (σk+1),

(22)

with θ ∈ [0, 1].
If D 6= 0, the second line of (22) is augmented in the following way

yk+1 = Cxk+1 + ak+1 +
1

h
Dσk+1. (23)
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Event–capturing (Time-stepping) schemes

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with BV solutions

The discretized system (22) amounts to solving at each time–step the following
one–step nonsmooth problem:{

yk+1 = Mσk+1 + q,
0 ∈ yk+1 + NK (σk+1),

(24)

with
M = C(I − hθA)−1B,

q = ak+1 + C(I − hθA)−1 [(I + h(1− θ)A)xk + huk+θ] .
(25)

It is worth noting that the matrix M remains consistent when the time–step h vanishes
if CB is assumed to be regular. This is not necessarily the case in (12).
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Event–capturing (Time-stepping) scheme for (LCS) with BV solutions
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Figure: Simulation of the configuration 5. (1) scheme (24) (2) scheme (10) θ = 1/2, γ = 1/2

Ü the state jump law is not respected when γ 6= 1/2
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Event–capturing (Time-stepping) scheme for (LCS)

Backward Euler scheme
Starting from the LCS 

ẋ = Ax + Bλ

y = Cx + Dλ

0 6 y ⊥ λ > 0

(26)

Camlibel et al. [1] apply a backward Euler scheme to evaluate the time derivative ẋ
leading to the following scheme:

xk+1 − xk

h
= Axk+1 + Bλk+1

yk+1 = Cxk+1 + Dλk+1

0 6 λk+1 ⊥ yk+1 > 0

(27)

which can be reduced to a LCP by a straightforward substitution:

0 6 λk+1 ⊥ C(I − hA)−1xk + (hC(I − hA)−1B + D)λk+1 > 0 (28)
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Time stepping scheme for Linear Complementarity Systems (LCS)

Convergence results
If D is nonnegative definite or that the triplet (A,B,C) is observable and controllable
and (A,B,C ,D) is positive real, they exhibit that some subsequences of
{yk}, {λk}, {xk} converge weakly to a solution y , λ, x of the LCS. [1]
Such assumptions imply that the relative degree r is less or equal to 1.

Remarks

I In the case of the relative degree 0, the LCS is equivalent to a standard system of
ODE with a Lipschitz-continuous r.h.s field. The result of convergence is then
similar to the standard result of convergence for the Euler backward scheme.

I In the case of a relative degree equal to 1, the initial condition must satisfy the

unilateral constraints y0 = Cx0 > 0. Otherwise, the approximation
xk+1 − xk

h
has

non chance to converge if the state possesses a jump. This situation is precluded
in the result of convergence in [1].
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Time stepping scheme for Linear Complementarity Systems (LCS)

Remark
Following the remark 43, we can note some similarities with the catching–up
algorithm. Two main differences have however to be noted:

I the first one is that the sweeping process can be equivalent to a LCS under the
condition C = BT . In this way, the previous time-stepping scheme extend the
catching–up algorithm to more general systems.

I The second major discrepancy is a s follows. The catching–up algorithm does not
approximate directly the time-derivative ẋ as

ẋ(t) ≈
x(t + h)− x(t)

h
(29)

but directly the measure of the time interval by

dx(]t, t + h]) = x+(t + h)− x+(t) (30)

This difference leads to a consistent time-stepping scheme if the state possesses
an initial jump. A direct consequence is that the primary variable µk+1 in the
catching up algorithm is homogeneous to a measure of the time-interval.
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The Moreau’s catching–up algorithm for the first
order sweeping process
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Principle of Time–stepping schemes

1. A unique formulation of the dynamics is considered. For instance, for a first order
sweeping process, a dynamics in terms of measures.{

−du = dr

dr ∈ NK(t)(u+(t))
(31)

2. The time-integration is based on a consistent approximation of the equations in
terms of measures. For instance,∫

]tk ,tk+1]
du =

∫
]tk ,tk+1]

du = (v+(tk+1)− v+(tk )) ≈ (uk+1 − uk ) (32)

3. Consistent approximation of measure inclusion.

−dr ∈ NK(t)(u+(t)) (33)
Ü


pk+1 ≈

∫
]tk ,tk+1]

dr

pk+1 ∈ NK(t)(uk+1)

(34)
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The Moreau’s catching–up algorithm for the first order sweeping process

Catching–up algorithm
Let us consider the first order sweeping process with a B.V. solution:{

−du ∈ NK(t)(u+(t)) (t > 0),

u(0) = u0.
(35)

The so-called “Catching–up algorithm” is defined in [5]:

− (uk+1 − uk ) ∈ ∂ψK(tk+1)(uk+1) (36)

where uk stands for the approximation of the right limit of u at tk .
By elementary convex analysis, this is equivalent to:

uk+1 = prox(K(tk+1), uk ). (37)
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The Moreau’s catching–up algorithm for the first order sweeping process

Difference with an backward Euler scheme

I the catching–up algorithm is based on the evaluation of the measure du on the
interval ]tk , tk+1], i.e. du(]tk , tk+1]) = u+(tk+1)− u+(tk ).

I the backward Euler scheme is based on the approximation of u̇(t) which is not
defined in a classical sense for our case.

When the time step vanishes, the approximation of the measure du tends to a finite
value corresponding to the jump of u. Particularly, this fact ensures that we handle
only finite values.

Higher order approximation
Higher order schemes are meant to approximate the n-th derivative of the discretized
function. Non sense for a non smooth solution.

Mathematical results
For Lipschitz and RCBV sweeping processes, convergence and consistency results are
based on the catching–up algorithm.
[4, 3]
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The Moreau’s catching–up algorithm for the first order sweeping process

Time-independent convex set K
Let us recall now the UDI

− (ẋ(t) + f (x(t)) + g(t)) ∈ INK (x(t)), x(0) = x0 (38)

In the same way, the inclusion can be discretized by

− (xk+1 − xk ) + h(f (xk+1) + g(tk+1)) = µk+1 ∈ INK (xk+1), (39)

I In this discretization, an evaluation of the measure dx by the approximates value
µk+1.

I If the initial condition does not satisfy the inclusion at the initial time, the jump
in the state can be treated in a consistent way.
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The Moreau’s catching–up algorithm for the first order sweeping process

Time-independent convex set K = IRn
+

The previous problem can be written as a special non linear complementarity problem:{
(xk+1 − xk )− h(f (xk+1) + g(tk+1)) = µk+1

0 6 xk+1 ⊥ µk+1 > 0
(40)

If f (x) = Ax we obtain the following LCP(q,M):{
(I − hA)xk+1 − (xk + hg(tk+1)) = µk+1

0 6 xk+1 ⊥ µk+1 > 0
(41)

with M = (I − hA) and q = −(xk + hg(tk+1)).

Remark
It is noteworthy that the value µk+1 approximates the measure dλ on the time interval
rather than directly the value of λ.
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The Moreau’s catching–up algorithm for the first order sweeping process

Remark
Particularly, if the set K is polyhedral by :

K = {x ,Cx > 0} (42)

If a constraint qualification holds, the DI (38) in the linear case f (x) = −Ax is
equivalent the the following LCS:

ẋ = Ax + CTλ

y = Cx

0 6 y ⊥ λ > 0

(43)

In this case, the catching–up algorithms yields:
xk+1 − xk = hAxk+1 + CTµk+1

yk+1 = Cxk+1

0 6 yk+1 ⊥ µk+1 > 0

(44)

We will see later in Section 2 that this discretization is very similar to the
discretization proposed by [1] for LCS.
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Time stepping scheme for Differential Variational
Inequalities (DVI)
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Time stepping scheme for Differential Variational Inequalities (DVI)

In [6], several time-stepping schemes are designed for DVI which are separable in u,

ẋ(t) = f (t, x(t)) + B(x(t), t)u(t) (45)

u(t) = SOL(K ,G(t, x(t)) + F ( · )) (46)

We recall that the second equation means that u(t) ∈ K is the solution of the
following VI

(v − u)T .(G(t, x(t)) + F (u(t))) > 0, ∀v ∈ K (47)

Two cases are treated with a time-stepping scheme: the Initial Value Problem(IVP)
and the Boundary Value Problem(BVP).
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Time stepping scheme for DVI. IVP case.

IVP case.

ẋ(t) = f (t, x(t)) + B(x(t), t)u(t) (48)

u(t) = SOL(K ,G(t, x(t)) + F ( · )) (49)

x(0) = x0 (50)

The proposed time-stepping method is given as follows

xk+1 − xk = h [f (tk , θxk+1 + (1− θ)xk ) + B(xk , tk )uk+1] (51)

uk+1 = SOL(K ,G(tk+1, xk+1) + F ( · )) (52)
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Time stepping scheme for DVI. IVP case.

Explicit scheme θ = 0
An explicit discretization of ẋ is realized leading to the one-step non smooth problem

xk+1 = xk + h [f (tk , xk ) + B(xk , tk )uk+1] (53)

where uk+1 solves the VI (K ,Fk+1) with

Fk+1(u) = G(tk+1, h [f (tk , xk ) + B(xk , tk )u]) + F (u) (54)

Remark

I In the last VI, the value uk+1 can be evaluated in explicit way with respect to
xk+1.

I It is noteworthy that even in the explicit case, the VI is always solved in a implicit
ways, i.e. for xk+1 and uk+1.

Semi-implicit scheme
If θ ∈]0, 1], the pair uk+1, xk+1 solves the VI (IRn × K ,Fk+1) with

Fk+1(x , u) =

[
x − xk − h [f (tk , θx + (1− θ)xk ) + B(xk , tk )u]

G(tk+1, x) + F (u)

]
(55)
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Time stepping scheme for DVI. IVP case.

Convergence results
In [6], the convergence of the semi-implicit case is proved. For that, a continuous
piecewise linear function, xh is built by interpolation of the approximate values xk ,

xh(t) = xk +
t − tk

h
(xk+1 − xk ),∀t ∈ [tk , tk + 1] (56)

and a piecewise constant function uh is build such that

uh(t) = uk+1, ∀t ∈]tk , tk + 1] (57)

It is noteworthy that the approximation xh is constructed as a continuous function
rather than uh may be discontinuous.
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Time stepping scheme for DVI. IVP case.

Convergence results
The existence of a subsequence of uh, xh denoted by uhν , xhν such that

I xhν converges uniformly to x̂ on [0,T ]

I uhν converges weakly to û in L2(0,T )

under the following assumptions:

1. f and G are Lipschitz continuous on Ω = [0,T ]× IRn,

2. B is a continuous bounded matrix-valued function on Ω,

3. K is closed and convex (not necessarily bounded)

4. F is continuous

5. SOL(K , q + F ) 6= ∅ and convex such that ∀q ∈ G(Ω), the following growth
condition holds

∃ρ > 0, sup{‖u‖, u ∈ SOL(K , q + F )} 6 ρ(1 + ‖q‖) (56)

This assumption is used to prove that a pair uk+1, xk+1 exists for the VI (55).
This assumption of the type “growth condition” is quite usual to prove existence
of solution of VI through fixed-point theorem (see [2]).
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Time stepping scheme for DVI. IVP case.

Convergence results
Furthermore, under either one of the following two conditions:

I F (u) = Du (i.e. linear VI) for some positive semidefinite matrix, D

I F (u) = Ψ(Eu), where Ψ is Lipschitz continuous and ∃c > 0 such that

‖Euk+1 − Ek‖ 6 ch (56)

all limits (x̂ , û) are weak solutions of the initial-value DVI.
Ü This proof convergence provide us with an existence result for such DVI with a
separable in u.
The linear growth condition which is strong assumption in most of practical case can
be dropped. In this case, some monotonicity assumption has to be made on F and
strong monotonicity assumption on the map u 7→ G(t, x) ◦ (r + B(t, x)u) for all
t ∈ [0,T ], x ∈ IRn, r ∈ IRn. We refer to [6] for more details. If G(x , t) = Cx , the last
assumption means that CB is positive definite.
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Time stepping scheme for DVI. BVP case

BVP case
Let us consider now the Boundary value problem with linear boundary function

ẋ(t) = f (t, x(t)) + B(x(t), t)u(t) (57)

u(t) = SOL(K ,G(t, x(t)) + F ( · )) (58)

b = Mx(0) + Nx(T ) (59)

The time-stepping proposed by [6] is as follows :

xk+1 − xk = h [f (tk , θxk+1 + (1− θ)xk ) + B(xk , tk )uk+1] , k ∈ {0, . . . ,N − 1}(60)

uk+1 = SOL(K ,G(tk+1, xk+1) + F ( · )), k ∈ {0, . . . ,N − 1} (61)

(62)

plus the boundary condition

b = Mx0 + NxN (63)

Comments
The system is henceforth a coupled and large VI for which the numerical solution is
not trivial.
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Time stepping scheme for DVI. BVP case

Convergence results
The existence of the discrete time-trajectory is ensured under the following assumption
:

1. F monotone and VI solutions have linear growth

2. the map u 7→ G(t, x) ◦ (r + B(t, x)u) is strongly monotone

3. M + N is non singular and satisfies

exp(Tψx ) < 1 +
1

‖(M + N)−1N‖

where x ¿ 0 is a constant derived from problem data.

The convergence of the discrete time trajectory is proved if F is linear.
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Time stepping scheme for Differential Variational Inequalities (DVI)

General remarks

I The time–stepping scheme can be viewed as extension of the DCS, the UDI and
the Moreau’s catching up algorithm.

I But, the scheme is more a mathematical discretization rather a numerical
method. In practice, the numerical solution of a VI is difficult to obtain when the
set K is unstructured.

I The case K is polyhedral is equivalent to a DCS.
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Time stepping scheme for Higher order Moreau’s
sweeping process
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Time stepping scheme for Higher order Moreau’s sweeping process

...
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Comments

Advantages and disadvantages. Time-stepping

Advantages

I Compact formulation which allow existence and uniqueness results

I Dissipativity and monotonicity properties

Disadvantages :

I More difficult mathematical framework

I Low order accuracy

Lead to Time–stepping integration schemes (without event-handling) suitable :

I Large systems with a large number of events

I Accumulation of events in finite time

I Convergence results and Existence proofs
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Comments

Thank you for your attention.
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