Vincent Acary

December 2, 2018

- 1/55

Difficulties and Approaches

Two major difficulties :

- Time integration of non smooth evolutions
- Solving a optimization problem together with a dynamical equilibrium constraint

Three major approaches :

- Hybrid Approach
 - Hybrid multi-modal dynamical system
 - Need to perform a decomposition of the evolution "triggering events"
 - Enumerative resolution of the mode transition process

Event–Driven Approach

- Two time formulations of the dynamical system (time-continuous and time-discrete)
- Need to perform a decomposition of the evolution. "triggering events"
- Algebraic resolution of the mode transition process

Time-stepping approach

- Global approach with a single formulation
- Need to define a global formulation of the NSDS
- Algebraic resolution of the one-step nonsmooth problem

イロト 不得 トイヨト イヨト

Introduction

Event-detecting (Event-driven) schemes

Principle of Event-detecting (Event-driven) schemes. Event-detecting (Event-driven) schemes for DCS Extensions to other systems (Moreau's sweeping process and DVI) Comments

Event-capturing (Time-stepping) schemes

Principle of Event–capturing (Time-stepping) scheme Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

The Moreau's catching-up algorithm for the first order sweeping process Time stepping scheme for Differential Variational Inequalities (DVI)

Time stepping scheme for Higher order Moreau's sweeping process

ヘロト 人間ト 人造ト 人造ト

Event-detecting (Event-driven) schemes

Principle of Event-detecting (Event-driven) schemes.

Principle

Time-decomposition of the dynamics in

- modes, time-intervals in which the dynamics is smooth,
- discrete events, times where the dynamics is nonsmooth.

The following assumptions guarantee the existence and the consistency of such a decomposition

- The definition and the localization of the discrete events. The set of events is negligible with the respect to Lebesgue measure.
- The definition of time-intervals of non-zero lengths. the events are of finite number and "well-separated" in time. Problems with finite accumulations of impacts, or Zeno-state

Comments

On the numerical point of view, we need

- detect events with for instance root-finding procedure.
 - Dichotomy and interval arithmetic
 - Newton procedure for C^2 function and polynomials
- solve the non smooth dynamics at events with a reinitialization rule of the state,
- ▶ integrate the smooth dynamics between two events with any ODE solvers.

イロト イポト イラト イラト

Event-detecting (Event-driven) schemes

Event-detecting (Event-driven) schemes for DCS

Event-detecting (Event-driven) schemes for DCS

Relative degree 0

Let us consider a LCS of relative degree 0 i.e. with D which is non singular.

$$\begin{cases} \dot{x} = Ax + B\lambda, & x(0) = x_0 \\ y = Cx + D\lambda \\ 0 \leqslant y \perp \lambda \geqslant 0 \end{cases}$$
(1)

Assumption

 $B.SOL(Cx_0, D)$ is a singleton is equivalent to stating that the LCS (1) has a unique C^1 solution defined at all $t \ge 0$.

Denoting by $\Lambda(x) = B.SOL(Cx, D)$, the LCS can be viewed as a standard ODE with a Lipschitz r.h.s :

$$\dot{x} = Ax + \Lambda(x) = Ax + B.SOL(Cx, D)$$
(2)

イロト イポト イラト イラト

Event-detecting (Event-driven) schemes - 5/55

Event-detecting (Event-driven) schemes

Event-detecting (Event-driven) schemes for DCS

Event-detecting (Event-driven) schemes for DCS

Definition (Active index-sets)

Let us denote by α the set of active constraints at time t

$$\alpha = \{i, y_i = C_{i \bullet} x(t) + D_i = 0, \lambda_i \ge 0\}$$
(3)

and its complementary set by

$$\beta = \{j, y_j = C_{j \bullet} x(t) + D_j \ge 0, \lambda_i = 0\}$$
(4)

LCP Solution for D a P-Matrix

Given the active index set α , the solution of the LCP(Cx(t), D) is

$$\lambda(x(t)) = \begin{cases} \lambda_{\alpha}(x(t)) = -D_{\alpha\alpha}^{-1}(C_{\alpha \bullet}x(t)) \\ \lambda_{\beta}(x(t)) = 0 \end{cases}$$
(5)

Event-detecting (Event-driven) schemes - 6/55

イロト イポト イラト イラト

Event-detecting (Event-driven) schemes

Event-detecting (Event-driven) schemes for DCS

Event-detecting (Event-driven) schemes for DCS

Smooth ODE

If the index sets α is constant on $[t_k, t_{k+1}]$, we perform the integration of

$$\dot{x} = Ax + \Lambda(x) = Ax - B_{\alpha}(D_{\alpha\alpha}^{-1}(C_{\alpha\bullet}x(t)))$$
(6)

which is a smooth ODE with a \mathcal{C}^∞ right–hand–side.

Standard numerical integration with root finding

The ODE (6) can be solved with numerical methods for ODE on intervals with constant index sets *alpha* :

- One-step numerical methods : Euler, Runge-Kutta methods, Extrapolation methods
- Multi-step methods : Adams-Moulton, Adams-bashford,, BDF

A root finding procedure (Dichotomy, newton, \dots) is used to detect changes, "events" in the index sets

イロト イポト イヨト イヨト 二日

Event-detecting (Event-driven) schemes

Extensions to other systems (Moreau's sweeping process and DVI)

Event-detecting schemes for Moreau's sweeping process and DVI...

Assumptions

Let us assume that the set K is finitely represented

$$K = \{ x \in \mathbb{R}^n, h(x) \leq 0 \}$$
(7)

The same procedure may be performed with

$$\alpha = \{i, y_i = h_i(x(t)) = 0, \lambda_i \ge 0\}$$
(8)

Issues

- 1. If the set is not finitely representable, triggering events is not possible
- If the set if defined by nonlinear constraints h(x) ≥ 0, triggering events can be very difficult and not very accurate. We need a dense output of the state x(t) at a given accuracy to know when a vent occurs.

Advantages and disadvantages. Event-detecting schemes

Advantages

- Seems easy to handle from the computational point of view
 - In each modes, smooth integration between two events (ODE/DAE).
 - At event, a optimization problem is solved without time evolution.

Disadvantages :

- Scability and complexity of the algorithms
- Need an accurate event detection difficult for nonlinear constraints
- Accumulation of events
- No existence or uniqueness results
- Sensitivity to accuracy thresholds. Tuning the " ε " is a hard task.

Lead to numerical schemes suitable

- Small systems with a small number of events
- High accuracy in each modes

Lecture. Time integration of Nonsmooth Dynamical Systems (NSDS). Low relative degree Lecture-detecting (Event-driven) schemes Comments

Introduction

Event-detecting (Event-driven) schemes

Principle of Event-detecting (Event-driven) schemes. Event-detecting (Event-driven) schemes for DCS Extensions to other systems (Moreau's sweeping process and DVI) Comments

Event-capturing (Time-stepping) schemes

Principle of Event–capturing (Time-stepping) scheme Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

The Moreau's catching-up algorithm for the first order sweeping process Time stepping scheme for Differential Variational Inequalities (DVI)

Time stepping scheme for Higher order Moreau's sweeping process

Event-capturing (Time-stepping) schemes

Principle of Event-capturing (Time-stepping) scheme

Principle of Event-capturing scheme

- The time-step is not adapted to the time of events
- A unique formulation that contains all the modes is considered
- The time-integration is based on a consistent approximation of the differential equations according to the smoothness of the solutions (C¹, AC, BV, measures, ...)

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with C^1 solutions

Assumptions

The solutions of the LCS

$$\begin{cases} \dot{x} = Ax + B\lambda + u \\ y = Cx + D\lambda + a \\ K^* \in y \perp \lambda \in K, \end{cases}$$
(9)

is assumed to be of class \mathcal{C}^1 solutions

The (θ, γ) - scheme

A possible scheme can be used when a solution x(t) of class C^1 with $\lambda(t)$ continuous is expected

$$\begin{cases} x_{k+1} - x_k = h \left(A x_{k+\theta} + u_{k+\theta} + B \lambda_{k+\gamma} \right), \\ y_{k+\gamma} = C x_{k+\gamma} + D \lambda_{k+\gamma} + a_{k+\gamma}, \\ K^* \in y_{k+\gamma} \perp \lambda_{k+\gamma} \in K, \end{cases}$$
(10)

where $\theta \in [0, 1]$ and $\gamma \in [0, 1]$.

Notation

$$x_{k+ heta} = (1- heta)x_k + heta x_{k+1}, \ \lambda_{k+\gamma} = (1-\gamma)\lambda_k + \gamma\lambda_{k+1}$$

Event-capturing (Time-stepping) schemes - 13/55

化口压 化固定 化医正式医正式

Lecture. Time integration of Nonsmooth Dynamical Systems (NSDS). Low relative degree Event-capturing (Time-stepping) schemes

Event-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with C^1 solutions

The discretized system (10) amounts to solving at each time-step the following one-step problem :

$$\begin{cases} y_{k+\gamma} = M\lambda_{k+\gamma} + q \\ K^* \in y_{k+\gamma} \perp \lambda_{k+\gamma} \in K, \end{cases}$$
(11)

with

$$M = D + h\gamma C(I - h\theta A)^{-1}B,$$

$$q = a_{k+\gamma} + \gamma C(I - h\theta A)^{-1} \left[(I + h(1 - \theta)A)x_k + hu_{k+\theta} \right] + C(1 - \gamma)x_k.$$
(12)

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with C^1 solutions

Rule of thumb

For $\dot{x} = Ax$, the θ -scheme

$$x_{k+1} - x_k = hAx_{k+\theta}$$

is of order 2 for $\theta = 1/2$. This requires sufficient smoothness of the solution (at least C^1). $\theta = \gamma = 1/2$ can only be used if the solution is C^1 .

For $\theta \ge 1/2$ and $\gamma \ge 1/2$, the scheme is unconditionally stable. Properties that comes with the implicit character of the scheme. The scheme dissipates also more energy.

Event-capturing (Time-stepping) schemes

Event-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Solutions as continuously differentiable functions (C^1 solutions)

Figure: The 4-diode bridge rectifier. LC oscillator with a load resistor

Event-capturing (Time-stepping) schemes - 16/55

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with C^1 solutions

State x1.k

(a) Voltage across the inductor V_L versus time. (b) Current through the inductor i_l versus time. state x2,k

Figure: Simulation of the circuit on Fig. ?? with the scheme (10). (1) $\theta = 1, \gamma = 1$ (2) $\theta = 1/2, \gamma = 1/2.$

> イロト 不得下 イヨト イヨト Event-capturing (Time-stepping) schemes - 17/55

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with C^1 solutions

(a) Potential at node 2 (V_2) versus time. Variable $\lambda_{1,k}$

(b) Potential at node 3 (V_3) versus time. Variable $\lambda_{2,k}$

Figure: Simulation of the circuit on Fig. ?? with the scheme (10). (1) $\theta = 1, \gamma = 1$ (2) $\theta = 1/2, \gamma = 1/2$.

Event-capturing (Time-stepping) schemes - 18/55

イロト イ押ト イヨト イヨト

Lecture. Time integration of Nonsmooth Dynamical Systems (NSDS). Low relative degree Event-capturing (Time-stepping) schemes

Event-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with C^1 solutions

The discrete storage function can be defined as

$$\mathcal{V}_{k+1} = \frac{1}{2} (C \, v_{L,k+1}^2 + L \, i_{L,k+1}^2) \tag{13}$$

and the discrete dissipation function as

$$\mathcal{D}_{k+1} = h \sum_{j=1}^{k+1} R(i_{R,j})^2 \tag{14}$$

and the cumulative function $\mathcal{V}_{k+1} + \mathcal{D}_{k+1}$. We remark that the scheme with $\theta = \gamma = 1/2$ is able to reproduce the exact energetic behaviour as in the continuous time case. Event-capturing (Time-stepping) schemes

Event-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event–capturing (Time-stepping) scheme for (LCS) with C^1 solutions

Figure: Simulation of the circuit on Fig. ?? with the scheme (10). (a) Storage function \mathcal{V}_{k+1} for $\theta = 1, \gamma = 1$ (b) Storage function \mathcal{V}_{k+1} for $\theta = 1/2, \gamma = 1/2$ (c) Dissipation function \mathcal{D}_{k+1} for $\theta = 1, \gamma = 1$ (b) Dissipation function \mathcal{D}_{k+1} for $\theta = 1/2, \gamma = 1/2$ (e) Cumulative function for $\theta = 1, \gamma = 1$ (f) Cumulative function for $\theta = 1/2, \gamma = 1/2$.

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with AC solutions

Assumptions

The solutions of the LCS

$$\begin{cases} \dot{x} = Ax + B\lambda + u \\ y = Cx + D\lambda + a \\ K^* \in y \perp \lambda \in K, \end{cases}$$
(15)

is assumed to be of class AC solutions

ć

The (θ) - scheme

The following time-stepping scheme is used when a absolutely continuous solution x(t) with $\lambda(t)$ function of Bounded Variations is expected:

$$\begin{cases} x_{k+1} - x_k = h (A x_{k+\theta} + u_{k+\theta} + B \lambda_{k+1}), \\ y_{k+1} = C x_{k+1} + D \lambda_{k+1} + a_{k+1}, \\ K^* \ni y_{k+1} \perp \lambda_{k+1} \in K, \end{cases}$$
(16)

with $\theta \in [0, 1]$.

Event-capturing (Time-stepping) schemes

Event-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with AC solutions

Figure: The 4-diode bridge rectifier. LC oscillator with a load resistor filtered by a capacitor

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with AC solutions

Figure: Simulation of the configuration in Fig. 5 with the scheme (16). (1) $\theta = 1$ (2) $\theta = 1/2$

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with AC solutions

Figure: Simulation of the configuration in Fig. 5 with the scheme (16). (1) $\theta = 1$ (2) $\theta = 1/2$

< □ → < □ → < ≡ → < ≡ → < ≡ → < ⊂
 Event–capturing (Time-stepping) schemes - 24/55

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with AC solutions

Figure: Simulation of the configuration in Fig. 5 with the scheme (16). (1) $\theta = 1$ (2) $\theta = 1/2$

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with AC solutions

(a) state $x_{1,k}$ and $x_{3,k}$

Figure: Simulation of the configuration in Fig. 5 with the scheme (10). (1) $\theta = 1, \gamma = 1$ (2) $\theta = 1/2, \gamma = 1/2$

イロト イボト イヨト イヨト

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with AC solutions

Figure: Simulation of the configuration in Fig. 5 with the scheme (10). (1) $\theta = 1, \gamma = 1$ (2) $\theta = 1/2, \gamma = 1/2$

→ Occurrence of instabilities in the numerical response with $\gamma \neq 1$

 Image: A state of the state of

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with AC solutions

Figure: Simulation of the configuration in Fig. 5 with the scheme (10). (1) $\theta = 1, \gamma = 1$ (2) $\theta = 1/2, \gamma = 1/2$

→ Occurrence of instabilities in the numerical response with $\gamma \neq 1$

Event-capturing (Time-stepping) schemes - 28/55

(a) < (a) < (b) < (b)

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with BV solutions

Assumptions

The solutions of the LCS

$$\begin{cases} \dot{x} = Ax + B\lambda + u\\ y = Cx + D\lambda + a\\ K^* \in y \perp \lambda \in K, \end{cases}$$
(17)

イロト イポト イラト イラト

Event-capturing (Time-stepping) schemes - 29/55

is assumed to be of class BV solutions

Warning

The time discretization of (??) has to take into account the nature of the solution to avoid point-wise evaluations of measures, which are not mathematically well-defined.

Lecture. Time integration of Nonsmooth Dynamical Systems (NSDS). Low relative degree Lecture-capturing (Time-stepping) schemes Lecture-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with BV solutions

Only the measure of the time-intervals $(t_k, t_{k+1}]$ must be considered such that :

$$dx((t_k, t_{k+1}]) = \int_{t_k}^{t_{k+1}} Ax(t) + u(t) dt + Bdi((t_k, t_{k+1}]).$$
(18)

By definition of the differential measure, we get

$$dx((t_k, t_{k+1}]) = x(t_{k+1}^+) - x(t_k^+).$$
(19)

The measure of the time-interval by di is kept as an unknown variable denoted by

$$\sigma_{k+1} = di((t_k, t_{k+1}]).$$
(20)

Finally, the remaining Lebesgue integral in (18) is approximated by an implicit Euler scheme

$$\int_{t_k}^{t_{k+1}} Ax(t) + u(t) dt \approx h(Ax_{k+1} + u_{k+1}).$$
(21)

The matrix D needs to be at least rank-deficient to expect some jumps in the state.

Lecture. Time integration of Nonsmooth Dynamical Systems (NSDS). Low relative degree Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with BV solutions

Let us start with the simplest case of D = 0. The following time-stepping scheme is used when a solution of bounded variations x(t) with di a measure is expected and D = 0

$$\begin{cases} x_{k+1} - x_k = h(Ax_{k+\theta} + u_{k+\theta}) + B\sigma_{k+1}, \\ y_{k+1} = Cx_{k+1} + a_{k+1}, \\ 0 \in y_{k+1} + N_K(\sigma_{k+1}), \end{cases}$$
(22)

with $\theta \in [0, 1]$. If $D \neq 0$, the second line of (22) is augmented in the following way

$$y_{k+1} = Cx_{k+1} + a_{k+1} + \frac{1}{h}D\sigma_{k+1}.$$
(23)

Lecture. Time integration of Nonsmooth Dynamical Systems (NSDS). Low relative degree Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with BV solutions

The discretized system (22) amounts to solving at each time-step the following one-step nonsmooth problem:

$$\begin{cases} y_{k+1} = M\sigma_{k+1} + q, \\ 0 \in y_{k+1} + N_{K}(\sigma_{k+1}), \end{cases}$$
(24)

with

$$M = C(I - h\theta A)^{-1}B,$$

$$q = a_{k+1} + C(I - h\theta A)^{-1} [(I + h(1 - \theta)A)x_k + hu_{k+\theta}].$$
(25)

It is worth noting that the matrix M remains consistent when the time-step h vanishes if CB is assumed to be regular. This is not necessarily the case in (12).

Event-capturing (Time-stepping) schemes

Event-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS) with BV solutions

(b) phase portrait $x_{1,k}$ vs $x_{2,k}$

Figure: Simulation of the configuration 5. (1) scheme (24) (2) scheme (10) $\theta = 1/2, \gamma = 1/2$

→ the state jump law is not respected when $\gamma \neq 1/2$

イロト 不得 トイヨト イヨト 二日 Event-capturing (Time-stepping) schemes - 33/55

Event-capturing (Time-stepping) schemes

Event-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Event-capturing (Time-stepping) scheme for (LCS)

Backward Euler scheme

Starting from the LCS

$$\begin{aligned} \dot{x} &= Ax + B\lambda \\ y &= Cx + D\lambda \\ 0 &\leq y \perp \lambda \geq 0 \end{aligned}$$
 (26)

Camlibel et al. [1] apply a backward Euler scheme to evaluate the time derivative \dot{x} leading to the following scheme:

$$\begin{pmatrix}
x_{k+1} - x_k \\
h &= Ax_{k+1} + B\lambda_{k+1} \\
y_{k+1} &= Cx_{k+1} + D\lambda_{k+1} \\
0 &\leq \lambda_{k+1} \perp y_{k+1} \geq 0
\end{cases}$$
(27)

イロト イボト イヨト イヨト

Event-capturing (Time-stepping) schemes - 34/55

which can be reduced to a LCP by a straightforward substitution:

$$0 \leq \lambda_{k+1} \perp C(I - hA)^{-1} x_k + (hC(I - hA)^{-1}B + D)\lambda_{k+1} \geq 0$$
(28)

Event-capturing (Time-stepping) schemes

Event-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Time stepping scheme for Linear Complementarity Systems (LCS)

Convergence results

If D is nonnegative definite or that the triplet (A, B, C) is observable and controllable and (A, B, C, D) is positive real, they exhibit that some subsequences of $\{y_k\}, \{\lambda_k\}, \{x_k\}$ converge weakly to a solution y, λ, x of the LCS. [1] Such assumptions imply that the relative degree r is less or equal to 1.

Remarks

- In the case of the relative degree 0, the LCS is equivalent to a standard system of ODE with a Lipschitz-continuous r.h.s field. The result of convergence is then similar to the standard result of convergence for the Euler backward scheme.
- ▶ In the case of a relative degree equal to 1, the initial condition must satisfy the unilateral constraints $y_0 = Cx_0 \ge 0$. Otherwise, the approximation $\frac{x_{k+1} x_k}{h}$ has non chance to converge if the state possesses a jump. This situation is precluded in the result of convergence in [1].

Event-capturing (Time-stepping) schemes

Levent-capturing (Time-stepping) scheme for Linear Complementarity Systems (LCS)

Time stepping scheme for Linear Complementarity Systems (LCS)

Remark

Following the remark 43, we can note some similarities with the catching-up algorithm. Two main differences have however to be noted:

- the first one is that the sweeping process can be equivalent to a LCS under the condition C = B^T. In this way, the previous time-stepping scheme extend the catching-up algorithm to more general systems.
- ▶ The second major discrepancy is a s follows. The catching-up algorithm does not approximate directly the time-derivative \dot{x} as

$$\dot{x}(t) \approx \frac{x(t+h) - x(t)}{h}$$
⁽²⁹⁾

but directly the measure of the time interval by

$$dx(]t, t+h]) = x^{+}(t+h) - x^{+}(t)$$
(30)

This difference leads to a consistent time-stepping scheme if the state possesses an initial jump. A direct consequence is that the primary variable μ_{k+1} in the catching up algorithm is homogeneous to a measure of the time-interval.

Event-capturing (Time-stepping) schemes

The Moreau's catching-up algorithm for the first order sweeping process

The Moreau's catching-up algorithm for the first order sweeping process

Event-capturing (Time-stepping) schemes

L The Moreau's catching-up algorithm for the first order sweeping process

Principle of Time-stepping schemes

1. A unique formulation of the dynamics is considered. For instance, for a first order sweeping process, a dynamics in terms of measures.

$$\begin{cases} -du = dr\\ dr \in N_{K(t)}(u^+(t)) \end{cases}$$
(31)

ſ

2. The time-integration is based on a consistent approximation of the equations in terms of measures. For instance,

$$\int_{]t_k,t_{k+1}]} du = \int_{]t_k,t_{k+1}]} du = (v^+(t_{k+1}) - v^+(t_k)) \approx (u_{k+1} - u_k)$$
(32)

1

3. Consistent approximation of measure inclusion.

$$-dr \in N_{\mathcal{K}(t)}(u^{+}(t)) \qquad (33) \quad \Rightarrow \qquad \begin{cases} p_{k+1} \approx \int_{]t_k, t_{k+1}]} dr \\ p_{k+1} \in N_{\mathcal{K}(t)}(u_{k+1}) \end{cases}$$
(34)

イロト 不得下 イヨト イヨト

Event-capturing (Time-stepping) schemes

L The Moreau's catching-up algorithm for the first order sweeping process

The Moreau's catching-up algorithm for the first order sweeping process

Catching-up algorithm

Let us consider the first order sweeping process with a B.V. solution:

$$\begin{cases} -du \in N_{K(t)}(u^{+}(t)) \ (t \ge 0), \\ u(0) = u_{0}. \end{cases}$$
(35)

The so-called "Catching-up algorithm" is defined in [5]:

$$-(u_{k+1}-u_k) \in \partial \psi_{K(t_{k+1})}(u_{k+1})$$
(36)

where u_k stands for the approximation of the right limit of u at t_k . By elementary convex analysis, this is equivalent to:

$$u_{k+1} = prox(K(t_{k+1}), u_k).$$
 (37)

Event-capturing (Time-stepping) schemes - 39/55

Event-capturing (Time-stepping) schemes

The Moreau's catching-up algorithm for the first order sweeping process

The Moreau's catching-up algorithm for the first order sweeping process

Difference with an backward Euler scheme

- ▶ the catching-up algorithm is based on the evaluation of the measure du on the interval $]t_k, t_{k+1}]$, i.e. $du(]t_k, t_{k+1}] = u^+(t_{k+1}) u^+(t_k)$.
- the backward Euler scheme is based on the approximation of $\dot{u}(t)$ which is not defined in a classical sense for our case.

When the time step vanishes, the approximation of the measure du tends to a finite value corresponding to the jump of u. Particularly, this fact ensures that we handle only finite values.

Higher order approximation

Higher order schemes are meant to approximate the *n*-th derivative of the discretized function. Non sense for a non smooth solution.

Mathematical results

For Lipschitz and RCBV sweeping processes, convergence and consistency results are based on the catching–up algorithm.

[4, 3]

イロト イポト イラト イラト

Event-capturing (Time-stepping) schemes

- The Moreau's catching-up algorithm for the first order sweeping process

The Moreau's catching-up algorithm for the first order sweeping process

Time-independent convex set K

Let us recall now the UDI

$$-(\dot{x}(t) + f(x(t)) + g(t)) \in \mathbb{N}_{K}(x(t)), \quad x(0) = x_{0}$$
(38)

In the same way, the inclusion can be discretized by

$$-(x_{k+1}-x_k)+h(f(x_{k+1})+g(t_{k+1}))=\mu_{k+1}\in\mathbb{N}_{\mathcal{K}}(x_{k+1}),$$
(39)

- ▶ In this discretization, an evaluation of the measure dx by the approximates value μ_{k+1} .
- If the initial condition does not satisfy the inclusion at the initial time, the jump in the state can be treated in a consistent way.

Event-capturing (Time-stepping) schemes

The Moreau's catching-up algorithm for the first order sweeping process

The Moreau's catching-up algorithm for the first order sweeping process

Time-independent convex set $K = \mathbb{IR}^n_+$

The previous problem can be written as a special non linear complementarity problem:

$$\begin{cases} (x_{k+1} - x_k) - h(f(x_{k+1}) + g(t_{k+1})) = \mu_{k+1} \\ 0 \leq x_{k+1} \perp \mu_{k+1} \ge 0 \end{cases}$$
(40)

If f(x) = Ax we obtain the following LCP(q,M):

$$\begin{cases} (I - hA)x_{k+1} - (x_k + hg(t_{k+1})) = \mu_{k+1} \\ 0 \le x_{k+1} \perp \mu_{k+1} \ge 0 \end{cases}$$
(41)

with M = (I - hA) and $q = -(x_k + hg(t_{k+1}))$.

Remark

It is noteworthy that the value μ_{k+1} approximates the measure $d\lambda$ on the time interval rather than directly the value of λ .

Event-capturing (Time-stepping) schemes

L The Moreau's catching-up algorithm for the first order sweeping process

The Moreau's catching-up algorithm for the first order sweeping process

Remark

Particularly, if the set K is polyhedral by :

$$\mathcal{K} = \{x, Cx \ge 0\} \tag{42}$$

If a constraint qualification holds, the DI (38) in the linear case f(x) = -Ax is equivalent the following LCS:

$$\begin{cases} \dot{x} = Ax + C^{T}\lambda \\ y = Cx \\ 0 \leqslant y \perp \lambda \geqslant 0 \end{cases}$$
(43)

In this case, the catching-up algorithms yields:

$$\begin{cases} x_{k+1} - x_k = hAx_{k+1} + C^T \mu^{k+1} \\ y_{k+1} = Cx_{k+1} \\ 0 \leqslant y_{k+1} \perp \mu_{k+1} \geqslant 0 \end{cases}$$
(44)

We will see later in Section 2 that this discretization is very similar to the discretization proposed by [1] for LCS.

Event-capturing (Time-stepping) schemes - 43/55

化口压 化塑成 化医压 化医压

Event-capturing (Time-stepping) schemes

L Time stepping scheme for Differential Variational Inequalities (DVI)

Time stepping scheme for Differential Variational Inequalities (DVI)

Time stepping scheme for Differential Variational Inequalities (DVI)

In [6], several time-stepping schemes are designed for DVI which are separable in u,

$$\dot{x}(t) = f(t, x(t)) + B(x(t), t)u(t)$$
(45)

$$u(t) = SOL(K, G(t, x(t)) + F(\cdot))$$
(46)

We recall that the second equation means that $u(t) \in K$ is the solution of the following VI

$$(v-u)^T \cdot (G(t,x(t)) + F(u(t))) \ge 0, \forall v \in K$$
(47)

Two cases are treated with a time-stepping scheme: the Initial Value Problem(IVP) and the Boundary Value Problem(BVP).

Lecture. Time integration of Nonsmooth Dynamical Systems (NSDS). Low relative degree Event-capturing (Time-stepping) schemes

Time stepping scheme for Differential Variational Inequalities (DVI)

Time stepping scheme for DVI. IVP case.

IVP case.

$$\dot{x}(t) = f(t, x(t)) + B(x(t), t)u(t)$$
(48)

$$u(t) = SOL(K, G(t, x(t)) + F(\cdot))$$
(49)

$$x(0) = x_0 \tag{50}$$

The proposed time-stepping method is given as follows

$$x_{k+1} - x_k = h[f(t_k, \theta x_{k+1} + (1-\theta)x_k) + B(x_k, t_k)u_{k+1}]$$
(51)

$$u_{k+1} = \text{SOL}(K, G(t_{k+1}, x_{k+1}) + F(\cdot))$$
 (52)

Lecture. Time integration of Nonsmooth Dynamical Systems (NSDS). Low relative degree Event-capturing (Time-stepping) schemes

L Time stepping scheme for Differential Variational Inequalities (DVI)

Time stepping scheme for DVI. IVP case.

Explicit scheme $\theta = 0$

An explicit discretization of \dot{x} is realized leading to the one-step non smooth problem

$$x_{k+1} = x_k + h[f(t_k, x_k) + B(x_k, t_k)u_{k+1}]$$
(53)

where u_{k+1} solves the $VI(K, F_{k+1})$ with

$$F_{k+1}(u) = G(t_{k+1}, h[f(t_k, x_k) + B(x_k, t_k)u]) + F(u)$$
(54)

Remark

- \blacktriangleright In the last VI, the value u_{k+1} can be evaluated in explicit way with respect to x_{k+1} .
- It is noteworthy that even in the explicit case, the VI is always solved in a implicit ways, i.e. for x_{k+1} and u_{k+1} .

Semi-implicit scheme

If $\theta \in [0,1]$, the pair u_{k+1}, x_{k+1} solves the $VI(\mathbb{R}^n \times K, F_{k+1})$ with

$$F_{k+1}(x, u) = \begin{bmatrix} x - x_k - h[f(t_k, \theta x + (1 - \theta)x_k) + B(x_k, t_k)u] \\ G(t_{k+1}, x) + F(u) \\ Event-capturing [Time-steeping] schemes - 47/5 \end{bmatrix} (55)$$

47/55

L Time stepping scheme for Differential Variational Inequalities (DVI)

Time stepping scheme for DVI. IVP case.

Convergence results

In [6], the convergence of the semi-implicit case is proved. For that, a continuous piecewise linear function, x^h is built by interpolation of the approximate values x_k ,

$$x^{h}(t) = x_{k} + \frac{t - t_{k}}{h} (x_{k+1} - x_{k}), \forall t \in [t_{k}, t_{k} + 1]$$
(56)

and a piecewise constant function u^h is build such that

$$u^{h}(t) = u_{k+1}, \forall t \in]t_{k}, t_{k} + 1]$$
(57)

It is noteworthy that the approximation x^h is constructed as a continuous function rather than u^h may be discontinuous.

L Time stepping scheme for Differential Variational Inequalities (DVI)

Time stepping scheme for DVI. IVP case.

Convergence results

The existence of a subsequence of u_h, x_h denoted by u^{h_ν}, x^{h_ν} such that

- $x^{h_{\nu}}$ converges uniformly to \hat{x} on [0, T]
- $u^{h_{\nu}}$ converges weakly to \hat{u} in $\mathcal{L}^2(0, T)$

under the following assumptions:

- 1. f and G are Lipschitz continuous on $\Omega = [0, T] \times \mathbb{R}^n$,
- 2. B is a continuous bounded matrix-valued function on Ω ,
- 3. K is closed and convex (not necessarily bounded)
- 4. F is continuous
- 5. $SOL(K, q + F) \neq \emptyset$ and convex such that $\forall q \in G(\Omega)$, the following growth condition holds

$$\exists \rho > 0, \sup\{\|u\|, u \in SOL(K, q+F)\} \leq \rho(1+\|q\|)$$
(56)

This assumption is used to prove that a pair u_{k+1} , x_{k+1} exists for the VI (55). This assumption of the type "growth condition" is quite usual to prove existence of solution of VI through fixed-point theorem (see [2]).

L Time stepping scheme for Differential Variational Inequalities (DVI)

Time stepping scheme for DVI. IVP case.

Convergence results

Furthermore, under either one of the following two conditions:

- F(u) = Du (i.e. linear VI) for some positive semidefinite matrix, D
- ► $F(u) = \Psi(Eu)$, where Ψ is Lipschitz continuous and $\exists c > 0$ such that

$$\|Eu_{k+1} - E_k\| \leqslant ch \tag{56}$$

all limits (\hat{x}, \hat{u}) are weak solutions of the initial-value DVI.

→ This proof convergence provide us with an existence result for such DVI with a separable in *u*.

The linear growth condition which is strong assumption in most of practical case can be dropped. In this case, some monotonicity assumption has to be made on F and strong monotonicity assumption on the map $u \mapsto G(t,x) \circ (r + B(t,x)u)$ for all $t \in [0, T], x \in \mathbb{R}^n, r \in \mathbb{R}^n$. We refer to [6] for more details. If G(x, t) = Cx, the last assumption means that CB is positive definite.

化口压 化晶体 化温压 化温压

Lecture. Time integration of Nonsmooth Dynamical Systems (NSDS). Low relative degree Lecture-capturing (Time-stepping) schemes Time stepping scheme for Differential Variational Inequalities (DVI)

Time stepping scheme for DVI. BVP case

BVP case

Let us consider now the Boundary value problem with linear boundary function

$$\dot{x}(t) = f(t, x(t)) + B(x(t), t)u(t)$$
 (57)

$$u(t) = SOL(K, G(t, x(t)) + F(\cdot))$$
(58)

$$b = M_X(0) + N_X(T)$$
(59)

The time-stepping proposed by [6] is as follows :

$$x_{k+1} - x_k = h[f(t_k, \theta x_{k+1} + (1-\theta)x_k) + B(x_k, t_k)u_{k+1}], \quad k \in \{0, \dots, N-(\mathbf{b}\})$$

$$u_{k+1} = \text{SOL}(K, G(t_{k+1}, x_{k+1}) + F(\cdot)), \quad k \in \{0, \dots, N-1\}$$
(61)

(62)

plus the boundary condition

$$b = Mx_0 + Nx_N \tag{63}$$

Event-capturing (Time-stepping) schemes - 49/55

Comments

The system is henceforth a coupled and large VI for which the numerical solution is not trivial.

Time stepping scheme for Differential Variational Inequalities (DVI)

Time stepping scheme for DVI. BVP case

Convergence results

The existence of the discrete time-trajectory is ensured under the following assumption

- 1. F monotone and VI solutions have linear growth
- 2. the map $u \mapsto G(t,x) \circ (r + B(t,x)u)$ is strongly monotone
- 3. M + N is non singular and satisfies

$$\exp(T\psi_x) < 1 + \frac{1}{\|(M+N)^{-1}N\|}$$

where $\times \downarrow 0$ is a constant derived from problem data.

The convergence of the discrete time trajectory is proved if F is linear.

Event-capturing (Time-stepping) schemes

L Time stepping scheme for Differential Variational Inequalities (DVI)

Time stepping scheme for Differential Variational Inequalities (DVI)

General remarks

- The time-stepping scheme can be viewed as extension of the DCS, the UDI and the Moreau's catching up algorithm.
- But, the scheme is more a mathematical discretization rather a numerical method. In practice, the numerical solution of a VI is difficult to obtain when the set K is unstructured.
- ▶ The case *K* is polyhedral is equivalent to a DCS.

Event-capturing (Time-stepping) schemes

L Time stepping scheme for Higher order Moreau's sweeping process

Time stepping scheme for Higher order Moreau's sweeping process

Event-capturing (Time-stepping) schemes

L Time stepping scheme for Higher order Moreau's sweeping process

Time stepping scheme for Higher order Moreau's sweeping process

• • •

Advantages and disadvantages. Time-stepping

Advantages

- Compact formulation which allow existence and uniqueness results
- Dissipativity and monotonicity properties

Disadvantages :

- More difficult mathematical framework
- Low order accuracy

Lead to Time-stepping integration schemes (without event-handling) suitable :

- Large systems with a large number of events
- Accumulation of events in finite time
- Convergence results and Existence proofs

Thank you for your attention.

Lecture. Time integration of Nonsmooth Dynamical Systems (NSDS). Low relative degree Event-capturing (Time-stepping) schemes Comments

- K. Camlibel, W.P.M.H. Heemels, and J.M. Schumacher. Consistency of a time-stepping method for a class of piecewise-linear networks. *IEEE Transactions* on Circuits and Systems 1, 49:349–357, 2002.
- [2] F. Facchinei and J. S. Pang. Finite-dimensional Variational Inequalities and Complementarity Problems, volume 1 & II of Springer Series in Operations Research. Springer Verlag NY. Inc., 2003.
- [3] M. Kunze and M.D.P. Monteiro Marquès. An introduction to Moreau's sweeping process. In B. Brogliato, editor, *Impact in Mechanical systems: Analysis and Modelling*, volume 551 of *Lecture Notes in Physics*, pages 1–60. Springer, 2000.
- [4] M.D.P. Monteiro Marques. Differential Inclusions in Nonsmooth Mechanical Problems. Shocks and Dry Friction. Progress in Nonlinear Differential Equations and their Applications, vol.9. Birkhauser, Basel, 1993.
- [5] J.J. Moreau. Evolution problem associated with a moving convex set in a Hilbert space. *Journal of Differential Equations*, 26:347–374, 1977.
- [6] D. Pang, J.-S. an Stewart. Differential variational inequalities. Mathematical Programming A., 2006. submitted, preprint available at http://www.cis.upenn.edu/davinci/publications/pang-stewart03.pdf.

イロト イポト イヨト イヨト