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The Quadratic Programing (QP) problem

Definition and Basic properties

Quadratic Programming (QP) problem

Definition (Quadratic Programming (QP) problem)
Let Q ∈ IRn×n be a symmetric matrix. Given the matrices A ∈ IRmi×n, C ∈ IRme×n

and the vectors p ∈ IRn, b ∈ IRmi , d ∈ IRme , the Quadratic Programming (QP)
problem is to find a vector z ∈ IRn denoted by QP(Q, p,A, b,C , d) such that

minimize q(z) =
1

2
zTQz + pT z

subject to Az − b ≥ 0
Cz − d = 0

(1)

Associated Lagrangian function
With this constrained optimization problem, a Lagrangian function is usually
associated

L(z, λ, µ) =
1

2
zTQz + pT z − λT (Az − b)− µT (Cz − d) (2)

where (λ, µ) ∈ IRmi × IRme are the Lagrange multipliers.
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The Quadratic Programing (QP) problem

Definition and Basic properties

Quadratic Programming (QP) problem

First order optimality conditions
The first order optimality conditions or Karush-Kuhn-Tucker (KKT) conditions of the
QP problem(1) with a set of equality constraints lead to the following MLCP :

∇zL(z̄, λ, µ) = Qz̄ + p − ATλ− CTµ = 0

Cz̄ − d = 0

0 ≤ λ ⊥ Az̄ − b ≥ 0

. (3)

Example
Let a ∈ R,

minimize q(z) = z2 − 1 minimize q(z) = 1− z2

subject to z > a subject to z > a
(4)

The Quadratic Programing (QP) problem – 4/60



Lecture 2. Solvers for the time-discretized problems.

The Quadratic Programing (QP) problem

Definition and Basic properties

Quadratic Programming (QP) problem

Basic properties

I The matrix Q is usually assumed to be a symmetric positive definite (PD).
Ü the QP is then convex and the existence and the uniqueness of the minimum is
ensured providing that the feasible set C = {z,Az − b ≥ 0,Cz − d = 0} is none
empty.

I Degenerate case.
I Q is only Semi-Definite Positive (SDP) matrix. (Non existence problems).
I A (or C) is not full-rank. The constraints are not linearly independent. (Non uniqueness

of the Lagrange Multipliers)
I The strict complementarity does not hold. (we can have 0 = z̄ = λ = 0 at the optimal

point. )

I For positive definite Q, the ellipsoid method solves the problem in polynomial
time. If, on the other hand, Q is indefinite, then the problem is NP-hard. In fact,
even if Q has only one negative eigenvalue, the problem is NP-hard. If the
objective function is purely quadratic, negative semi-definite and has fixed rank,
then the problem can be solved in polynomial time.
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The Quadratic Programing (QP) problem

Definition and Basic properties

Quadratic Programming (QP) problem

The dual problem and the Lagrangian relaxation
Due to the particular form of the Lagrangian function, the QP problem is equivalent
to solving

min
z

max
λ≥0,µ

L(z, λ, µ) (5)

The idea of the Lagrangian relaxation is to invert the min and the max introducing the
dual function

θ(λ, µ) = min
z
L(z, λ, µ) (6)

and the dual problem
max
λ≥0,µ

θ(λ, µ) (7)
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The Quadratic Programing (QP) problem

Definition and Basic properties

Quadratic Programming (QP) problem

The dual problem and the Lagrangian relaxation
In the particular case of a QP where the matrix Q is non singular, the dual function is
equal to :

θ(λ, µ) = min
z
L(z, λ, µ) = L(Q−1(ATλ+ CTµ− p), λ, µ) (8)

= −
1

2
(ATλ+ CTµ− p)TQ−1(ATλ+ CTµ− p) + bTλ+ dTµ (9)

and we obtain the following dual problem

max
λ≥0,µ

−
1

2
(ATλ+ CTµ− p)TQ−1(ATλ+ CTµ− p) + bTλ+ dTµ (10)

which is a QP with only inequality constraints of positivity.

Equivalences.
The strong duality theorem asserts that if the matrices Q and AQ−1AT are symmetric
semi-definite positive, then if the primal problem (1) has an optimal solution then the
dual has also an optimal solution.
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The Quadratic Programing (QP) problem

Overview of algorithms for QP

Quadratic Programming (QP) problem

Algorithms for QP
For the standard case

I Active sets methods. see Fletcher book’s [11]

I Interior point methods. see [3]

I Projection and splitting methods for large scale problems.

For the degenerate case,

I Lagrangian relaxation

I Active sets methods. see [12].

I Proximal point algorithm

Interest of the QP problem

I Reliability with SDP matrix

I Minimization algorithms imply stability
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The Quadratic Programing (QP) problem

Active sets methods for the QP

Equality constrained Quadratic Programming (QP) problem

Definition

minimize q(z) =
1

2
zTQz + pT z

subject to Cz − d = 0

(11)

KKT conditions  Q −CT

C 0

 z̄

µ

 =

 −p
d

 (12)

Lemma (Existence and uniqueness)
Let CT have full row rank and denote by Z ∈ IRn×(me ) whose columns form a basis of
the null space of the matrix CT , i.e. KerCT , we have CTZ = 0. Let us assume that
the reduced Hessian matrix, ZT Q Z is PD. Then the KKT matrix

K =

 Q CT

C 0

 (13)

is non singular, and there exists a unique vector pair (z̄, µ) satisfying (12).The Quadratic Programing (QP) problem – 9/60
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The Quadratic Programing (QP) problem

Active sets methods for the QP

Equality constrained Quadratic Programming (QP) problem

Algorithms
Solving (12) amounts to solve a indefinite linear system.

I Direct Methods of the whole KKT Matrix.
1. Dedicated symmetric indefinite factorizations for taking into account symmetry

[5, 4, 6, 16].
2. Iterative methods: QMR methods [13] and least-squares approaches such as LSQR

method [21]

I Range-Space Method. Assume that Q is positive definite. One obtains the
Lagrange multiplier µ

(CQ−1CT )µ = CQ−1g − h (14)

Solve the system (14) for µ by standard methods (Cholesky, . . . ) and then

Qr = CTµ− g (15)

I Null-Space Method . Given a feasible vector z0 (which is just a particular solution
of the system Cz = d), any feasible vector can be expressed as

z = z0 + Zw , w ∈ IRme (16)

If the reduced Hessian ZTQZ is PD, then the unique solution w̄ is given by the
solution of the following linear system :

ZTQZw = −ZT (Qz0 + p) (17)The Quadratic Programing (QP) problem – 10/60
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The Quadratic Programing (QP) problem

Active sets methods for the QP

Inequality constrained Quadratic Programming (QP) problem

Definition

minimize q(z) =
1

2
zTQz + pT z

subject to hTi z − gi > 0, i ∈ I
hTi z − gi = 0, i ∈ E

(18)

where E and I are finite sets of indices.

Definition (Active set of constraints)
Let us define the active set, A(z̄) at an optimal point z̄ in the following way

A(z̄) = {i ∈ E ∪ I | hTi z − gi = 0} (19)

Associated Equality constrained QP
An active-set method starts by using a guess of the active set of constraints A(z̄), and
solves the corresponding equality constrained QP

minimize q(z) =
1

2
zTQz + pT z

subject to hTi z − gi = 0, i ∈ A(z̄)

(20)
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The Quadratic Programing (QP) problem

Active sets methods for the QP

Inequality constrained Quadratic Programming (QP) problem

Reformulation
Given zk and Wk at the iteration k, we compute the step rk = z − zk from the
following QP

minimize
1

2
rTQr + sTk r

subject to hTi r = 0, i ∈ Wk

(21)

with sk = Qzk + p.

How to add a new active constraints ?
If rk 6= 0, we have to choose a step-length αk as large as possible to maintain the
feasibility with respect to all the constraints. We have the following property:

hTi (zk + αk rk ) = hTi zk = gi (22)

so the constraint value hTi z is constant along the direction rk . An explicit formula can
be derived for αk (see [11])

αk = min

{
1, min

i∈Wk ,h
T
i rk<0

{
gi − hTi zk

hTi rk

}}
(23)
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The Quadratic Programing (QP) problem

Active sets methods for the QP

Sketch of the active-set method for convex QP
Require: Q, p,H, g
Ensure: z̄, λ

Compute a feasible initial point z0.
Compute the working set W0 at z0.
IsTheSolutionNotFound← true
while IsTheSolutionNotFound do

Solve the equality constrained QP (21) for rk and λ̂ = λk.
if rk = 0 then

if λ̂i > 0, ∀i ∈ Wk ∩ I then
z̄← zk

IsTheSolutionNotFound← false
else

j← argminj∈Wk∩I{λ̂j}
zk+1 ← zk

Wk+1 ←Wk \ {j}
end if

else
Compute αk according to (23).
zk+1 ← zk + αkrk.
Update Wk+1 by adding one of the blocking constraints if any.

end if
end while
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The Quadratic Programing (QP) problem

Active sets methods for the QP

How to Chose the Right Method ?

1. Active-set methods are the best suited:
I for small to medium system sizes (n < 5000 ),
I when a good initial point is known especially for the active-set identification point of

view, for instance, in sequential quadratic programming or at each step of a dynamical
process,

I when an exact solution is searched. Active-set methods can be used as “purification”
techniques of interior point methods.

Recall that several methods are available to solve the equality constrained
sub-problem depending on the structure of the original QP.

2. Gradient-projection methods are well suited for large QP with simple constraints
(simple inequality, bound constrained, etc. . . )

3. Interior-point methods are well suited
I for large systems without the knowledge of a good starting point,
I when the problem has a special structure that can be exploited directly in solving the

Newton iteration.
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The Non Linear Programming (NLP) problem

Nonlinear Programming (NLP)

Definition (Nonlinear Programming (NLP) Problem)
Given a differentiable function θ : IRn 7→ IR, and two differentiable mappings
g : IRn 7→ IRmi g : IRn 7→ IRme , the Nonlinear Programming (NLP) problem is to find
a vector z ∈ IRn such that

minimize f (z)
subject to g(z) ≥ 0

h(z) = 0
(24)

Associated Lagrangian function
The Lagrangian of this NLP problem is introduced as follows

L(z, λ, µ) = f (z)− λT g(z)− µTh(z) (25)

where (λ, µ) ∈ IRmi × IRme are the Lagrange multipliers.
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The Non Linear Programming (NLP) problem

Nonlinear Programming (NLP)

First order optimality conditions
The Karush-Kuhn-Tucker (KKT) necessary conditions for the NLP problem are given
the following NCP:

∇zL(z, λ, µ) = ∇z f (z)−∇T
z g(z)λ−∇T

z h(z)µ = 0

h(z) = 0

0 ≤ λ ⊥ g(z) ≥ 0

. (26)
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The Non Linear Programming (NLP) problem

Algorithms for NLP

I Penalty, Barrier and Augmented Lagrangian Approaches
1. Exterior Penalty Approach

minimize f (z) +
1

2ε
‖h(z)‖2 +

1

2ε
‖max(0,−g(x))‖2 (27)

2. Barrier Methods
minimize f (z)− ε

∑mi
i=1 log gi (x) (28)

3. Augmented Lagrangian Approach

Lσ(z, λ, µ) = L(z, λ, µ) + λ
T max(

−λ
σ
, g(x)) +

σ

2
‖max(

−λ
σ
, g(x))‖2 (29)

I Successive Quadratic Programming (SQP)
I Gradient Projection Methods

1. The Goldstein–Levitin–Polyak Gradient projection method [15, 18] consists of the
iteration

yj+1 = PD(yj − αj∇f (yj )), (30)

where αj > 0 denotes the step size and D the feasible domain.
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The linear Complementarity Problem (LCP)

Definition and Basic properties

Linear Complementarity Problem (LCP)

Definition (Linear Complementarity Problem (LCP))
Given M ∈ IRn×n and q ∈ IRn, the Linear Complementarity Problem, is to find a
vector z ∈ IRn, denoted by LCP(M, q) such that

0 ≤ z ⊥ Mz + q ≥ 0 (31)

The inequalities have to be understood component-wise and the relation x ⊥ y means
xT y = 0.

Definition (P–matrix)
A matrix, M ∈ IRn×n is said to be a P–matrix if all its principal minors are positive.

Theorem
Let M ∈ IRn×n. The following statements are equivalent:

(a) M is a P–matrix

(b) M reverses the sign of no nonzero vector1, i.e. x ◦ Mx 6 0, =⇒ x = 0 This
property can be written equivalently,

∀x 6= 0, ∃i such that xi (Mx)i > 0. (32)

(c) All real eigenvalues of M and its principal submatrices are positive.

1A matrix A ∈ IRn×n reverses the sign of a vector x ∈ IRn if xi (Ax)i 6 0, ∀i ∈ {1, . . . , n}. The Hadamard
product x ◦ y is the vector with coordinates xi yi . The linear Complementarity Problem (LCP) – 20/60
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The linear Complementarity Problem (LCP)

Definition and Basic properties

Linear Complementarity Problem (LCP)

Theorem
A matrix M ∈ IRn×n is a P–matrix if and only if LCP(M, q) has a unique solution for
all vectors q ∈ IRn.

Other properties

I In the worth case, the problem is N-P hard .i.e. there is no polynomial-time
algorithm to solve it.

I In practice, this ”P-matrix” assumption is difficult to ensure via numerical
computation, but a definite positive matrix (not necessarily symmetric), which is
a P-matrix is often encountered.
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The linear Complementarity Problem (LCP)

Definition and Basic properties

Linear Complementarity Problem (LCP)

Definition (Mixed Linear Complementarity Problem (MLCP))
Given the matrices A ∈ IRn×n, B ∈ IRm×m, C ∈ IRn×m, D ∈ IRm×n, and the vectors
a ∈ IRn, b ∈ IRm, the Mixed Linear Complementarity Problem denoted by
MLCP(A,B,C ,D, a, b) consists in finding two vectors u ∈ IRn and v ∈ IRm such that{

Au + Cv + a = 0

0 ≤ v ⊥ Du + bv + b ≥ 0
(33)

Comments
The MLCP is a mixture between a LCP and a system of linear equations. Clearly, if
the matrix A is non singular, we may solve the embedded linear system to obtain u
and then reduced the MCLP to a LCP with q = b − DA−1a,M = b − DA−1C .
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The linear Complementarity Problem (LCP)

Link with previous problems

Linear Complementarity Problem (LCP)

Link with the QP
If the matrix M of LCP(M, q) is symmetric PD, a QP formulation of (31) is direct
into QP(M, q, In×n, 0n, ∅, ∅),mi = n,me = 0. For a non symmetric PD matrix M, the
inner product may be chosen as an objective function:

minimize q(z) = zT (q + Mz)
subject to q + Mz ≥ 0

z ≥ 0
(34)

and to identify (34) with (1), we set
Q = M + MT ,Az = (Mz, z)T , b = (−q, 0)T ,mi = 2n,me = 0. Moreover, the first
order optimality condition may be written as

(M + MT )z̄ + p − ATλ−MTµ > 0

zT ((M + MT )z̄ + p − ATλ−MTµ) = 0

µ > 0

uT (q + Mz̄) = 0

. (35)

Let us recall that a non symmetric matrix M is PD if and only if its symmetric part,
(M + MT ) is PD.
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The linear Complementarity Problem (LCP)

Link with previous problems

Linear Complementarity Problem (LCP)

Algorithms for LCP

I Splitting based methods

I Generalized Newton methods

I Interior point method

I Pivoting based method

I QP methods for a SDP matrix.
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The linear Complementarity Problem (LCP)

Splitting-based methods for the LCP

Linear Complementarity Problem (LCP)

Principle

1. Decomposition the matrix M as the sum of two matrices B and C

M = B + C (36)

which define the splitting.

2. Then LCP(M, q) is solved via a fixed–point iteration.

qν = q + Czν (37)

A vector z = zν solves LCP(M, q) if and only if zν is itself a solution of
LCP(B,qν).
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The linear Complementarity Problem (LCP)

Splitting-based methods for the LCP

Linear Complementarity Problem (LCP)

Require: M, q, tol
Require: (B,C) a splitting of M
Ensure: z,w solution of LCP(M, q).

Compute a feasible initial point z0 > 0.
ν ← 0
while error > tol do

Solve the LCP(B, q + Czν).
Set zν+1 as an arbitrary solution.
Evaluate error.

end while

Projected Jacobi Method
B is to choose the identity matrix or any positive diagonal matrix D

zν+1 = max{0, zν − D−1(q + Mzν)} (38)

if the matrix D is chosen as the diagonal part of the matrix M, i.e, D = diag(mii ), we
obtain the projected Jacobi method.
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The linear Complementarity Problem (LCP)

Splitting-based methods for the LCP

Linear Complementarity Problem (LCP)

Projected Gauss–Seidel and Projected Successive Overrelaxation (PSOR)
Methods
he following splitting of M can be used

M = B + C , with B = L + ω−1D, C = U (39)

where the matrices L and U are respectively the strictly lower part and upper part of
the matrix M and ω ∈ (0, 2) is an arbitrary relaxation parameter.

zk+1
i = max(0, zki − ωM

−1
ii (qi +

∑
j<i

Mijz
k+1
i +

∑
j≥i

Mijz
k
i )), i = 1, ...n (40)
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The linear Complementarity Problem (LCP)

Pivoting-based methods for the LCP

Linear Complementarity Problem (LCP)

Principle
If q > 0, then z = 0 solves the problem.
If there exists an index r such that

qr < 0 and mrj 6 0, ∀j ∈ {1 . . . n} (41)

then there is no vector z > 0 such that qr +
∑

j mrjzi > 0. Therefore the LCP is
infeasible thus unsolvable.
The goal of pivoting methods is to derive, by performing pivots, an equivalent system
that has one of the previous properties.
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The linear Complementarity Problem (LCP)

Pivoting-based methods for the LCP

Linear Complementarity Problem (LCP)

Pivotal Algebra
Canonical Tableau defined as

1 z1 . . . zn

w1 q1 m11 . . . m1n

...
...

...
...

wn q1 mn1 . . . mnn

This pivot operation will be denoted by

(w ′, z ′,M′, q′) = Πrs(w , z,M, q) (42)

and corresponds to

w ′r = zs , w ′i = wi , i 6= r
z ′s = ws , z ′j = zj , j 6= s

q′r = −qr/mrs , q′i = qi − (mis/mrs)qr , i 6= r
m′rs = 1/mrs , m′is = mis/mrs , i 6= r
m′rj = −mrj/mrs , j 6= s, m′ij = mij − (mis/mrs)mrj , i 6= r , j 6= s

(43)
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The linear Complementarity Problem (LCP)

Pivoting-based methods for the LCP

Linear Complementarity Problem (LCP)

Murty’s Least Index Method

Require: M, q
Ensure: z,w solution of LCP(M, q) with M a P–matrix.
ν ← 0
qν ← q, Mν ← M
while qν 6> 0 do

Choose the pivot row of index r such that

r = min{i, qνi < 0} (44)

Pivoting wνr and zνr .

(wν+1, zν+1,Mν+1, qν+1)← Πrr(wν , zν ,Mν , qν) (45)

ν ← ν + 1
end while
(zν = 0,wν = qν) solves LCP(Mν , qν).
Recover the solution of LCP(M, q).
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The linear Complementarity Problem (LCP)

Pivoting-based methods for the LCP

Linear Complementarity Problem (LCP)

Other well–known pivoting based methods:

1. Lemke’s Algorithm

2. Cottle–Dantzig method

3. Van de Panne method

The linear Complementarity Problem (LCP) – 31/60
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The linear Complementarity Problem (LCP)

Interior–point Methods

Linear Complementarity Problem (LCP)

Horizontal Monotone LCP
Let us start with the horizontal monotone LCP defined by{

Qx + Rs = q

0 ≤ x ⊥ s ≥ 0
(46)

together with the monotonicity property Qx + Rs = 0 =⇒ sT x > 0.

Definition (central path)
The central path for the horizontal monotone LCP (46) is the set of points (x , s)
defined by 

x ◦ s = µ1l

Qx + Rs = q

x > 0, s ≥ 0

(47)

for µ describing the half–line, IR+.Here, 1l is the vector whose components are all
equal to 1.

Obviously, for µ = 0, the central path equation (47) is equivalent to the horizontal
monotone LCP (46).
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The linear Complementarity Problem (LCP)

Interior–point Methods

Linear Complementarity Problem (LCP)

Principle
In any case, the direction between two iterates is the Newton direction associated with{

x ◦ s = σµ1l

Qx + Rs = q
(48)

The strict feasibility assumption is made, i.e, (x , s) ∈ F◦ and σ ∈ [0, 1] is the
reduction parameter of µ. Linearizing the problem (48) around the current point (x , s)
results in the following linear system for the direction (u, v):{

s ◦ u + x ◦ v = σµ1l− x ◦ s
Qu + Rv = 0

(49)

We introduce a matrix notation of the previous system:[
S X
Q R

] [
u
v

]
=

[
σµ1l− x ◦ s

0

]
(50)

where the matrix S ∈ IRn×n and X ∈ IRn×n are defined by S = diag(s) and
X = diag(x).
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Interior–point Methods

Linear Complementarity Problem (LCP)

General scheme of the primal–dual interior–point methods

Require: Q,R, q, tol
Require: (x0, s0) ∈ F◦
Ensure: x, s solution of hLCP(Q,R, q)

µ0 ←
xT

0 s0

n
k← 0
while µk > tol do

Solve [
Sk Xk

Q R

] [
uk

vk

]
=

[
σkµk1l− xk ◦ sk

0

]
(51)

for some σk ∈ (0, 1).
Choose αk such that

(xk+1, sk+1)← (xk, sk) + αk(uk, vk) (52)

is strictly feasible i.e., xk+1 > 0, sk+1 > 0

µk ←
xT

k sk

n
end while
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The linear Complementarity Problem (LCP)

Interior–point Methods

Linear Complementarity Problem (LCP)

How to choose an LCP solver ?

1. The splitting methods are well suited
I for very large and well conditioned LCP. Typically, the LCP s with symmetric PD matrix

are solved very easily by a splitting method,
I when a good initial solution is known in advance.

2. The pivoting techniques are well suited
I for small to medium system sizes (n < 5000 ),
I for ”difficult problems” when the LCP has only a P–matrix, sufficient matrix or

copositive plus matrix,
I when one wants to test the solvability of the system.

3. Finally, interior–point methods can be used
I for large scale–problems without the knowledge of a good starting point,
I when the problem has a special structure that can be exploited directly in solving the

Newton direction with an adequate linear solver.
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The Nonlinear Complementarity Problem (NCP)

Definition and Basic properties

Nonlinear Complementarity Problem (NCP)

Definition (NCP)
Given a mapping F : IRn → IRn, the NCP denoted by NCP(F ) is to find a vector
z ∈ IRn such that

0 ≤ z ⊥ F (z) ≥ 0 (53)

A vector z is called feasible (respectively strictly feasible) for the NCP(F ) if z > 0 and
F (z) > 0 (respectively z > 0 and F (z) > 0).

Definition
A given mapping F : X ⊂ IRn −→ IRn is said to be

(a) monotone on X if

(x − y)T (F (x)− F (y)) > 0, for all x , y ∈ X (54)

(b) strictly monotone on X if

(x − y)T (F (x)− F (y)) > 0, for all x , y ∈ X , x 6= y (55)

(c) strongly monotone on X if there exists µ > 0 such that

(x − y)T (F (x)− F (y)) > µ‖x − y‖2, for all x , y ∈ X (56)
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Definition and Basic properties

Nonlinear Complementarity Problem (NCP)

Theorem
Given a continuously differentiable mapping F : D ⊂ IRn −→ IRn on the open convex
set D, the following statements are valid,

(a) F ( · ) is monotone on D if and only if ∇TF (x) is PSD for all x ∈ D
(b) F ( · ) is strictly monotone on D if ∇TF (x) is PD for all x ∈ D
(c) F ( · ) is strongly monotone on D if and only if ∇TF (x) is uniformly PD for all

x ∈ D , i.e.
∃µ > 0, zT∇TF (x)zT > µ‖z‖2, ∀x ∈ D (57)
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Definition and Basic properties

Nonlinear Complementarity Problem (NCP)

Definition
A given mapping F : X ⊂ IRn −→ IRn is said to be

(a) a P-function on X if

max
i=1...n

(xi − yi )(Fi (x)− Fi (y)) > 0, ∀x , y ∈ X , x 6= y (58)

(b) a uniform P-function if

∃µ > 0, max
i=1...n

(xi−yi )(Fi (x)−Fi (y)) > µ‖x−y‖2, ∀x , y ∈ X , x 6= y (59)

Theorem
Given a continuous mapping F : X ⊂ IRn −→ IRn, the following statements hold,

(a) If F ( · ) is a P-function on X, then the NCP(F ) has at most one solution

(b) If F ( · ) is a uniform P-function on X, then the NCP(F ) has a unique solution.

The proof can be found in [20].
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Definition and Basic properties

Nonlinear Complementarity Problem (NCP)

Newton–Josephy’s and Linearization Methods
The standard Newton method to linearize F ( · ) is used, the following LCP

0 6 z ⊥ F (zk ) +∇F (zk )(x − xk ) > 0 (60)

has to be solved to obtain zk+1.

Newton–Robinson’s
For theoretical considerations, Robinson [24, 25] proposed to use a linearization of the
so-called normal map (see Section 6 for a general definition for VIs)

F nor (y) = F (y+) + (y − y+) (61)

where y+ = max(0, y) stands for the positive part of y . Equivalence with the
NCP(F ), is as follows: y is a zero of the normal map if and only if y+ solves
NCP(F ). The Newton–Robinson method uses a piecewise linear approximation of the
normal map, namely

Lk (y) = F (y+
k ) +∇F (y+

k )(y+ − y+
k ) + y − y+ (62)

The Newton iterate yk+1 is a zero of Lk ( · ). The same yk+1 would be obtained by
Newton–Josephy’s method if zk were set to y+

k in (60).
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Definition and Basic properties

Nonlinear Complementarity Problem (NCP)

The PATH solver

I The PATH solver [9] is an efficient implementation of Newton–Robinson’s
method together with the path-search scheme.

I A “path-search” (as opposed to line–search) is then performed using the merit
function ‖F+(y)‖. Standard theory of damped Newton’s method can be extended
to prove standard local and global convergence results [23, 9].

I The construction of the piecewise linear path pk is based on the use of pivoting
methods. Each pivot corresponds to a kink in the path. In [9], a modification of
Lemke’s algorithm is proposed to construct the path.
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The Nonlinear Complementarity Problem (NCP)

Definition and Basic properties

Nonlinear Complementarity Problem (NCP)

Generalized or Semismooth Newton’s Methods
The principle of the generalized or semismooth Newton’s method for LCPs is based on
a reformulation in terms of possibly nonsmooth equations using the so-called
C-function also called NCP-function.

Definition
A function φ : IR2 → IR is called a C-function (for complementarity) if

0 6 w ⊥ z > 0⇐⇒ φ(w , z) = 0 (63)

Well-known examples of C-function are

φ(w , z) = min(w , z) (64a)

φ(w , z) = max(0,w − ρz)− w , ρ > 0 (64b)

φ(w , z) = max(0, z − ρw)− z, ρ > 0 (64c)

φ(w , z) =
√

w2 + z2 − z − w (64d)

φ(w , z) = λ(
√

w2 + z2 − z − w)− (1− λ)w+z+), λ ∈ (0, 1) (64e)

φ(w , z) = −wz +
1

2
min2(0,w + z) (64f)
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The Nonlinear Complementarity Problem (NCP)

Definition and Basic properties

Nonlinear Complementarity Problem (NCP)
Then defining the following function associated with NCP(F ):

Φ(z) =



φ(F1(z), z1)
...

φ(Fi (z), zi )
...

φ(Fn(z), zn)


(65)

we obtain as an immediate consequence of the definitions of φ( · ) and Φ( · ) the
following equivalence.

Lemma
Let φ( · ) be a C-function and the corresponding operator Φ( · ) defined by (65). A
vector z̄ is a solution of NCP(F ) if and only if z̄ solves the nonlinear system of
equations Φ(z) = 0.

Numerical method
The standard Newton method is generalized to the nonsmooth case by the following
scheme

zk+1 = zk − Hk
−1Φ(zk ), Hk ∈ ∂Φ(zk ) (66)

Because the set ∂Φ(zk ) may not be a singleton (if zk is a point of discontinuity of
Φ( · )), we have to select an arbitrary element for Hk .
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Definition and Basic properties

Nonlinear Complementarity Problem (NCP)

Comparison of the following implementation of solvers

I MILES [26] which is an implementation of the classical Newton–Josephy method,

I PATH

I NE/SQP [14, 22] which is a generalized Newton’s method based on the minimum
function (64a); the search direction is computed by solving a convex QP at each
iteration,

I QPCOMP [2] which is an enhancement of the NE/SQP algorithm to allow
iterates to escape from local minima,

I SMOOTH [7] which is based on solving a sequence of smooth approximations of
the NCP,

I PROXI [1] which is a variant of the QPCOMP algorithm using a nonsmooth
Newton solver rather than a QP solver,

I SEMISMOOTH [8] which is an implementation of a semismooth Newton method
using the Fischer–Bursmeister function,

I SEMICOMP [1] which is an enhancement of SEMISMOOTH based on the same
strategy as QPCOMP.

All of these comparisons, which have been made in the framework of the MCP show
that the PROXI, PATH and SMOOTH are superior on a large sample of test problems.
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Definition and basic properties.

The Variational Inequalities and Complementarity Problem(VI/CP)

Definition (Variational Inequality (VI) problem)
Let X be a nonempty subset of IRn and let F be a mapping form IRn into itself. The
Variational Inequality problem, denoted by VI(X ,F ) is to find a vector z ∈ IRn such
that

F (z)T (y − z) ≥ 0, ∀y ∈ X (67)
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Definition and basic properties.

The Variational Inequalities (VI)

Basic properties

I The set X is often assumed to closed and convex. In most of the applications, X
is polyhedral. The function is also assumed to continuous, nevertheless some VI
are defined for set-valued mappings and nonconvex sets.

I If X is a closed set and F continuous, the solution set of VI(X ,F ) denoted by
SOL(X ,F ) is always a closed set.

I A geometrical interpretation if the VI(X ,F ) leads to the equivalent formulation
in terms of inclusion into a normal cone of X , i.e.,

− F (x) ∈ NX (x) (68)

or equivalently, in terms of Generalized Equation(GE)

0 ∈ F (x) + NX (x) (69)
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Definition and basic properties.

The Variational Inequalities and Complementarity Problem(VI/CP)

Basic properties

I It is noteworthy that the VI(X ,F ) extends the problem of solving non linear
equations, F (x) = 0 taking X = IRn.

I If F is affine function, F (x) = Mz + q, the VI(X ,F ) is called Affine VI denoted
by, AVI(X ,F ).

I If X is polyhedral, we say that the VI(X ,F ) is linearly constrained, or that is a
linearly constrained VI. A important case is the box constrained VI where the set
X is a closed rectangle (possibly unbounded) of IRn, i.e

K = {x ∈ IRn,−∞ 6 ai 6 x 6 bi 6 +∞} (70)
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Definition and basic properties.

The Variational Inequalities and Complementarity Problem(VI/CP)

Definition (Complementarity Problem (CP))
Given a cone K ⊂ IRn and a mapping F : IRn 7→ IRn,the Complementarity Problem is
to find a vector x ∈ IRn denoted by CP(K ,F ) such that

K 3 x ⊥ F (z) ∈ K? (71)

where K? is the dual (negative polar) cone of K defined by

K? = {d ∈ IRn, vTd > 0,∀v ∈ K} (72)
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Definition and basic properties.

The Variational Inequalities and Complementarity Problem(VI/CP)

Links between VI and CP, NCP, MCP, LCP, . . .

I Let X = K ⊂ IRn be a cone. A vector x solves the VI(X ,F ) if and only if x
solves the CP(K ,F ). If K is equal to the non negative orthant of IRn

+, a vector x
solves the VI(X ,F ) if and only if x solves the NCP(F ).

I A box-constrained VI is equivalent to a NCP or a MCP choosing the bounds ai
and bi in the right way. If, in CP(K ,F ), K is polyhedral and F is affine, we get
an LCP.

I An interesting non polyhedral example is when

K = {z ∈ IRn+1 | z0 > ‖(z1, . . . zn)‖} (73)

is the so–called second–order cone or ice–cream cone.
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Definition and basic properties.

The Variational Inequalities and Complementarity Problem(VI/CP)

Links between VI and NLP
Let us consider the following NLP

minimize G(z)
subject to z ∈ K

(74)

where G is supposed continuously differentiable. If the set K is convex, any local
minimizer z̄ of (74) must satisfy the following first order optimality conditions:

(y − z̄)T∇G(z̄) > 0, ∀y ∈ K (75)

Theorem
Let F : Ω ⊂ IRn → IRn be a continuously differentiable mapping on a convex set Ω;
then the following statements are equivalent:

(a) there exists a real-valued function G such that F (x) = ∇GT (x) on Ω,

(b) the Jacobian matrix, ∇FT (x) is symmetric on Ω,

(c) the integral of F along any closed curve in Ω is zero.
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Problem (Generalized Equation (GE) problem)
Let Ω ⊂ IRn be an open set. Given a continuously Fréchet differentiable mapping
F : Ω ⊂ IRn → IRn and a maximal monotone operator T : IRn  IRn, find a vector
z ∈ IRn such that

0 ∈ F (z) + T (z) (76)

Link between VI and Generalized Equation (GE)
The GE problem is closely related to CP problems and to the NLP. For instance, the
NCP (53) can represented into a GE by

0 ∈ F (z) + NIRn
+

(z) (77)

and the MCP (26), which provides the KKT conditions for the NLP can be recast into
a GE of the form

0 ∈ F (z) + NK (z), z ∈ IRn+me+mi (78)

with

F (z) =

 L(z, u, v)
−g(z)
−h(z)

 K = IRn × IR
mi
+ × IRme (79)
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Lemma
Let X ⊂ IRn be a closed convex set and a mapping F : X → IRn an let PX denote the
projection operator onto X. The following statement holds

x solves VI(X ,F )⇐⇒ Fnat
X (x) = 0 (80)

where F nat
X is the so-called natural map, defined by

Fnat
X (y) = y − PX (y − F (y)) (81)

Lemma
Let X ⊂ IRn be a closed convex set and a mapping F : X → IRn. The following
statement holds

x solves VI(X ,F )⇐⇒ x = PX (z) for some z such that Fnor (z) = 0 (82)

where F nor
X is the so-called normal map, defined by

Fnor
X (y) = F (PX (y)) + y − PX (y) (83)
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The Variational Inequalities and Complementarity Problem(VI/CP)

Algorithms for VI

I General VI (unstructured closed convex set K).
Reformulation with the normal map associated the VI(K ,F )

Fnor
K (z) = F (ΠK (z)) + z − ΠK (z) (84)

A solution x of the VI(K ,F ) is given by Fnor
K (z) = 0 with x = ΠK (z)

I General projection algorithm for VI/CP. (Fixed point). Need at least the definition of
the projection onto the cone.
Ü Slow and inefficient algorithm.

I Newton Methods for VI/CP. Need the definition of the projection and the Jacobian of
Fnor
K (z)

Ü Difficult computation for a unstructured closed convex set K

I If the problem has a better structure, the problem is then reformulated into a
specific complementarity problem through a nonsmooth equation.
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Algorithms for VI/CP

The Variational Inequalities and Complementarity Problem(VI/CP)

Main Types of Algorithms for the VI

(a) Projection–type and splitting methods.

(b) Minimization of merit functions.

(b) Generalized Newton Methods.

(c) Interior and smoothing methods.
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The Variational Inequalities and Complementarity Problem(VI/CP)

Projection–type and Splitting Methods

1. Basic Fixed–Point Scheme

zk+1 = PX (zk − γF (zk )), γ > 0 (85)

2. The Extragradient Method.

zk+1 = PX (zk − γF (PX (zk − γF (zk )))) (86)

3. Splitting Methods
In the case of the AVI(X , q,M), most of the previous projection methods have
been extended by splitting the matrix M as for the LCP case in [27, 28, 19, 10].

4. The Hyperplane Projection Method [17]
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Algorithms for VI/CP

Thank you for your attention.
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