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Motivations and Objectives

Elasto-dynamics with plasticity and unilateral contact

1. A single differential variational inequality

▶ pioneering work of J.J. Moreau (1974), Halphen & Nguyen (1975)
▶ multi-criteria elasto-plastic flow rules with contact constraints.

2. A nonsmooth dynamical framework for finite-dimensional systems

▶ dealing with jumps in velocities and impulsive forces (FEM
discretized)

3. A Moreau-Jean type time–stepping method,

▶ enabling the consistent integration of the nonsmooth dynamics.

4. A discrete energy balance

▶ a practically stable scheme with positive dissipation.

5. Variational approach:

▶ formulation of a saddle point problem (min-max problem) and a
convex quadratic program

▶ well-posedness results (existence and uniqueness)
▶ numerical optimization methods as an alternative to return-mapping

algorithm
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Formulation of elastodynamics with contact

Space and time discretization

Well posedness of the discrete problem

Discrete energy balance

Conclusion and perspectives
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Plasticity in the generalized standard materials framework

Simplest framework: Small perturbation, associative plasticity and linear
hardening

▶ Small perturbations hypothesis with additive decomposition of the strain

ε = εe + εp. (1)

▶ Linear elasticity and hardening laws

σ = E : εe and a = −D ·α. (2)

▶ Generalized standard material (GSM) (associative plasticity)(
ε̇p

α̇

)
∈ NC

(
σ
a

)
. (3)

C(σ, a) a convex set of admissible stresses σ and hardening forces a
▶ Clausius-Duhem dissipation inequality is automatically satisfied

d = σ : ε̇p+a · α̇ ⩾ 0 if 0 ∈ C . (4)
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Plasticity in the generalized standard materials framework

NC (σ)

ϵ̇p

Cσ

(
ε̇p

α̇

)
∈ NC

(
σ
a

)
⇐⇒

C = {(σ, a), f (σ, a) ⩾ 0}
ε̇p = −∇⊤

σ f (σ, a)λ
α̇ = −∇⊤

a f (σ, a)λ
0 ⩽ λ ⊥ f (σ, a) ⩾ 0,

⇕(
σ
a

)
= projC

(σ
a

)
− ρ

(
ε̇p

α̇

) , ρ > 0

(5)
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Unilateral contact

ΩΩ

CA(x)CB(x̃)
gN(x)

n(x)

gN(x): gap function

vN(x) =
d

dt
gN(x) : relative

velocity

▶ Signorini contact law:

0 ⩽ gN ⊥ rN ⩾ 0 ⇐⇒ −rN ∈ NIR+(gN). (6)

▶ Signorini contact law at the velocity level:

0 ⩽ rN ⊥ vN ⩾ 0 if gN = 0, else rN = 0
⇕

−rN ∈ NTIR+
(gN)(vN),

(7)

where TIR+(gN) is the tangent cone of IR+ at gN
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Space discretization

Standard FEM discretization to make is as simple as possible.

Finite dimensional smooth linear dynamics:

Mv̇(t) + BTσ(t) = fext(t) + r(t). (8)

▶ u, v nodal displacement and velocity vector,

▶ σ stress at Gauss points,

▶ M constant mass matrix,

▶ BT discrete divergence operator, B is the discrete gradient.

Elasto-plastic relation at Gauss points and contact kinematics
σ = Eεe = E(ε− εp)
a = −Dα(
ε̇p

α̇

)
∈ NC

(
σ
a

)
,

(9)
vN = H⊤(u)v
r = H(u)rN.

(10)
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Finite dimensional systems and nonsmooth dynamics

Measure differential equation

Ability to deal with velocity jumps and impulsive forces in discrete systems

Mdv + B⊤σ(t)dt = fext(t)dt + H(u(t))diN. (11)

▶ dv differential measure (“acceleration as measure”)

▶ diN contact reaction measure

Unilateral contact and Newton impact law

− diN ∈ NTIRm
+
(gN(t))(vN(t) + ev−

N (t)). (12)

where e is the coefficient of restitution
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Standard FEM discretization

After the differentiation of the constitutive law with S = E−1(similar to
incremental formulation) and the introduction of slack variable

y = −α̇ and z = −ε̇p

we get a differential measure variational inequality

Mdv + B⊤σ(t)dt = fext(t)dt + H(u(t))diN

u̇(t) = v(t)

S σ̇(t) = Bv(t) + z(t)

D−1ȧ(t) = y(t)

vN(t) = H⊤(u(t))v(t)

−

z(t)
y(t)
diN

 ∈ NC×TIRm
+
(gN(t))

 σ(t)
a(t)

(vN(t) + ev−
N (t))

 .

(13)

A single variational inequality.
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Time stepping scheme

Extension of the Moreau–Jean scheme with θ ∈ (0, 1]

M(vk+1 − vk) + hB⊤σk+θ = hfext,k+θ + HpN,k+1

S(σk+1 − σk)− hBvk+θ = hzk+θ,

D−1(ak+1 − ak) = hyk+θ

vN,k+1 = H⊤vk+1

−

 zk+θ

yk+θ

pN,k+1

 ∈ NC×IRm
+

 σk+θ

ak+θ

vN,k+1 + evN,k


(14)

where

▶ notation: h time step, xk+θ = θxk+1 + (1− θ)xk

▶ the Signorini condition only on the active contact (gN,k ⩽ 0)

▶ displacements are updated afterwards uk+1 = uk + hvk+θ

▶ impulses pN,k+1 as primary variable

▶ elasto-plastic law with hardening is solved at k + θ.
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Variational approach: saddle point problem

Proposition (Saddle point problem)

The solutions of (v , ε̇, σ, a, vN) of the first order optimality conditions of

minv,ε̇ maxσ,a
1

2
(v − vk)

⊤M(v − vk)

−1

2
(σ − σk)

⊤S(σ − σk)−
1

2
(a− ak)

⊤D−1(a− ak)

+hθσ⊤ε̇− hθf ⊤ext,k+1v

s.t. Bv = ε̇

θvN = H⊤v − (1− θ)vN,k σ
a

vN + evN,k

 ∈ C × IRm
+.

(15)
are solutions of (14) for (vk+θ, zk+θ , σk+θ , ak+θ , vN,k+1).

▶ A kind of discrete ∂’Alembert principle for elastoplasticity with contact.
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Variational approach: saddle point problem

Assumption (1)

The matrices M, S and D are symmetric definite positive matrices.

Assumption (2)

It exists v 0, σ0, a0 such that

(
σ0

a0

)
∈ C 0 is at least in C

H⊤v 0 + (θ(1 + e)− 1)vN,k ⩾ 0 standard feasibility condition

(16)

Proposition

Under Assumptions 1 and 2, the saddle-point problem (15) has a unique
solution (v , ε̇, σ, a, vN).
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Variational approach: convex quadratic problem

Substitution of vk+1 in the linear equations in (14)

Reduction to local variables.

−

Q

 σk+θ

ak+θ

pN,k+1

+ p

 ∈ NC×IRm
+

 σk+θ

ak+θ

pN,k+1

 , (17)

with

Q =

 U 0 −V

0 D−1 0

−V⊤ 0 W

 and p =

 s

D−1ak
r

 . (18)

and
W = θ2H⊤M−1H Delassus matrix

U = S + h2θ2BM−1B⊤

V⊤ = hθ2H⊤M−1B⊤

s = −Sσk − hθB
(
vk + θhM−1fext,k+θ

)
r = θ2

(
evN,k + H

(
vk + θM−1

(
hfext,k+θ

)))
(19)
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Variational approach: convex quadratic problem

Equivalent convex minimization problem:

Equivalent convex minimization problem:

minσ,a,pN
1

2

 σ
a
pN


⊤

Q

 σ
a
pN

+ p⊤

 σ
a
pN



s.t.

 σ
a
pN

 ∈ C × IRm
+.

(20)

Assumption (3)

The matrix H has full rank.

Proposition

Under Assumptions 1 and 3 and for a sufficiently small time step, the
problem (20) has a unique solution (σ, a, pN) if the set 0 ∈ C.

A monolithic computational method for elasto-dynamics with plasticity and contact Vincent Acary, Franck Bourrier, Benoit Viano – 14



Convex Quadratic problem

C finitely represented

C = {(σ, a) | f (σ, a) ⩾ 0}, (21)

f is a smooth vector-valued function with non-vanishing gradients

minσ,a,pN
1
2

 σ
pN

a


⊤

Q

 σ
pN

a

+ p⊤

 σ
pN

a


s.t. f (σ, a) ⩾ 0

pN ⩾ 0

(22)
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Numerical methods from optimization

▶ Direct pivoting techniques (Active set, Lemke, PATH)
Direct solution if C is polyhedral

▶ First order (Nesterov) accelerated techniques (ADMM, APGD, . . . )

▶ Second order methods:

1. interior point methods
2. semi-smooth Newton method

0 =

 σ
a
pN

− projC×IRm
+


 σ

a
pN

− ρ

Q

 σ
a
pN

+ p


 , ρ > 0

Comments on semi-smooth Newton methods
Similarity with return-mapping algorithm [Hager, Wolhmuth (2009), Christensen(2009)]

but with more flexibility:

▶ optimal choice of ρ with self-adaptation (proximal technique)

▶ rescaling technique are easier

▶ no explicit need of a consistent tangent operator
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Discrete energy balance

▶ Energy balance for discrete systems:

dE(t) = d(T(t) + Ψ(t)) = −D(t)dt + Pext(t)dt + dPimpact, (23)

with

T(t) =
1

2
v⊤(t)Mv(t), and Ψ(t) =

1

2
εe

⊤(t)Eεe(t) +
1

2
α⊤(t)Dα(t)

(24)

▶ The dissipation and the power of external forces are

D(t) = σ⊤(t)ε̇p(t)+a⊤(t)α̇(t) and Pext(t) = f ⊤ext(t)v(t). (25)

▶ The power of the reaction impulse is given by

dPimpact =
1

2
(v+

N + v−
N )diN. (26)
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Discrete energy balance

Approximation of works by the θ-method as

W k+1
ext k := hv⊤

k+θfext,k+θ ≈
∫ tk+1

tk

Pext(t)dt, (27)

and

W k+1
p k := hσ⊤

k+θ ε̇
p
k+θ − ha⊤k+θyk+θ ≈

∫ tk+1

tk

D(t)dt, (28)

Approximation of the work dissipated by the percussion

W k+1
c k := v⊤

N,k+θpN,k+1 = (1− θ(1 + e))v⊤
N,kpN,k+1, (29)

the increment of total energy is then given by

∆Ek+1
k −W k+1

ext k +W k+1
p k −W k+1

c k =

( 1
2
− θ)

(
∥vk+1 − vk∥2M + ∥εek+1 − εek∥2E + ∥αk+1 − αk∥2D

)
.

(30)
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Discrete energy balance

Proposition

Under Assumption 1, energy dissipation of the scheme is as follows

1. When θ = 1
2
, the time–stepping scheme satisfies the approximation of the

discrete energy balance :

∆Ek+1
k −W k+1

ext k = −W k+1
p k +W k+1

c k . (31)

2. The dissipated work due to plasticity is always positive

3. When θ ⩽ 1
1+e

, the dissipated work due to impact is also positive.

4. When 1
2
⩽ θ ⩽ 1

1+e
⩽ 1, we have the following dissipation inequality

∆Ek+1
k −W k+1

ext k ⩽ 0. (32)
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Conclusions & perspectives

Conclusions
A monolithic solver for elastodynamics with contact, impact and plasticity:

▶ A practically stable scheme with a discrete energy balance

▶ A variational formulation (optimization problem) of plasticity with contact

▶ A gateway to a host of multiple optimisation algorithms

▶ Useful also for quasi-static application, even with perfect plasticity

Vincent Acary, Franck Bourrier, Benoit Viano.
Variational approach for nonsmooth elasto-plastic dynamics with contact and impacts. 2023.
〈hal-03978387v1〉 to appear in Computer Methods in Applied Mechanics and Engineering

Perspectives

▶ Non associated plasticity and Coulomb friction

▶ Implicit standard materials (De Saxcé) ➜ quasi-variational inequality

▶ Finite strain plasticity and mortar method ([Seitz, Popp, Wall (2015)])

▶ Material point method (PhD Louis Guillet)

▶ Application to gravity-driven flows of geomaterials in mountains (mud
and debris flows).
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