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Motivations and Objectives

Elasto-dynamics with plasticity and unilateral contact

1. A single differential variational inequality
> pioneering work of J.J. Moreau (1974), Halphen & Nguyen (1975)
» multi-criteria elasto-plastic flow rules with contact constraints.
2. A nonsmooth dynamical framework for finite-dimensional systems
» dealing with jumps in velocities and impulsive forces (FEM
discretized)
3. A Moreau-Jean type time—stepping method,
> enabling the consistent integration of the nonsmooth dynamics.
4. A discrete energy balance
> a practically stable scheme with positive dissipation.
5. Variational approach:

> formulation of a saddle point problem (min-max problem) and a
convex quadratic program

> well-posedness results (existence and uniqueness)

» numerical optimization methods as an alternative to return-mapping
algorithm
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Plasticity in the generalized standard materials framework

Simplest framework: Small perturbation, associative plasticity and linear
hardening

» Small perturbations hypothesis with additive decomposition of the strain
e=¢e"+¢€’. (1)
» Linear elasticity and hardening laws
oc=E:e° anda=-D-a. 2

> Generalized standard material (GSM) (associative plasticity)

eP o
C(o,a) a convex set of admissible stresses o and hardening forces a

» Clausius-Duhem dissipation inequality is automatically satisfied

d=oc:é+a-a>0if0eC. 4
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Plasticity in the generalized standard materials framework
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Unilateral contact

an(x): gap function
n(x) w(x) = EgN(X) . relative

velocity
gn(x)

» Signorini contact law:
0<gvlm>0<= —n € Nr,(gu). (6)

» Signorini contact law at the velocity level:

0<mLlw>=0ifgy=0, elsery=0

i (7)

€ NT]R+(gN)(VN)7

where Tr, (gv) is the tangent cone of IR at gy
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Space discretization

Standard FEM discretization to make is as simple as possible.

Finite dimensional smooth linear dynamics:

MV (t) + B o(t) = fuxe(t) + r(2). (8)

» u, v nodal displacement and velocity vector,
» o stress at Gauss points,
» M constant mass matrix,

> BT discrete divergence operator, B is the discrete gradient.

Elasto-plastic relation at Gauss points and contact kinematics
o= Ee®=E(es—¢€P)
—Da w=HT"(u)v

a—=
<5'.p> € Ne <a> 7 (9) r=H(u)n. (10)
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Finite dimensional systems and nonsmooth dynamics

Measure differential equation
Ability to deal with velocity jumps and impulsive forces in discrete systems

Mdv + BT o(t)dt = fox(t)dt + H(u(t))dix. (11)
> dv differential measure (“acceleration as measure”)
> diy contact reaction measure
Unilateral contact and Newton impact law

= div € N au(en (v (2) + ewy (2))- (12)

where e is the coefficient of restitution
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Standard FEM discretization

After the differentiation of the constitutive law with S = E~!(similar to
incremental formulation) and the introduction of slack variable

y=—ca&and z=—¢£"

we get a differential measure variational inequality

Mdv + BT a(t)dt = foxe(t)dt + H(u(t))diy
i(t) = v(t)

So(t) = Bv(t) + z(t)

D™1a(t) = y(t)

w(t) = HT (u(t))v(t)

z(t) o(t)
= [ Y(O) | € Nexrppue a(t)
din (w(t) + ey (1))

A single variational inequality.

(13)
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Time stepping scheme
Extension of the Moreau—Jean scheme with 6 € (0, 1]

M(vis1 — vik) + hB T okro = hfext ko + Hpu ki
S(ok+1 — ok) — hBvkto = hziy,
D™ (aks1 — ak) = hykro

.
W,k+1 = H ' Vi1

Zk+6 Ok+6
—| yero | € Nexme ak+o
PN, k41 WN,k+1 + €Wn k

where
> notation: h time step, xk+o0 = Oxk+1 + (1 — 0)xk
> the Signorini condition only on the active contact (gn,«x < 0)
» displacements are updated afterwards ux1 = ux + hviio
> impulses py k41 as primary variable
>

elasto-plastic law with hardening is solved at k + 6.

(14)
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Variational approach: saddle point problem

Proposition (Saddle point problem)

The solutions of (v, &, 0, a, vy) of the first order optimality conditions of

min, ¢ MaXey,a %(v — vk)TM(v — k)

1 1 _
—E(O'—O'k)TS(G'—O'k)—E(a—ak)TD l(a—ak)
+hfo "E — hOf Ly 41V

s.t. Bv =¢
Ovy=H"v— (1= 0)vuk
o
a € C xIRT.
Vi + eV k

(15)
are solutions of (14) for (Vir6,2,,4: 00> 3> Vi,k+1)-

» A kind of discrete 0'Alembert principle for elastoplasticity with contact.
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Variational approach: saddle point problem

Assumption (1)

The matrices M, S and D are symmetric definite positive matrices.

Assumption (2)

It exists v°, ¢, a° such that

o0
K eC 0 is at least in C
(16)

HTV® +(0(14e) — 1)vnx >0  standard feasibility condition

Proposition

Under Assumptions 1 and 2, the saddle-point problem (15) has a unique
solution (v, €, 0, a, vy).
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Variational approach: convex quadratic problem

Substitution of viy1 in the linear equations in (14)

Reduction to local variables.

Ok+6 Ok+6
—| Q| a+o | +p| €Nexmy | ante |,
PN k+1 PN, k+1
with
U 0 -V s
Q= 0 p—! 0 and p = Dflak
—vT 0 w r
and
W=6*H M~'H Delassus matrix

U=S+h0e2BM—1BT
vT = h?H M~ 1BT

s=—So, — hoB (vk + ehM—lfext.Hg)

r= 02 <evN,k +H (vk + oMt (hfextyﬂg)))

(17)

(18)

(19)
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Variational approach: convex quadratic problem

Equivalent convex minimization problem:

Equivalent convex minimization problem:

T
_ 1 o o -
MiNg,a,py 502 Ql al|+p a
Pn Pn Pn
o
s.t. a | e C xR
Pn

Assumption (3)
The matrix H has full rank.

Proposition
Under Assumptions 1 and 3 and for a sufficiently small time step, the
problem (20) has a unique solution (o, a, py) if the set 0 € C.

(20)
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Convex Quadratic problem

C finitely represented

C={(0,a) | f(0,a) > 0}, (21)
f is a smooth vector-valued function with non-vanishing gradients
T
ag g ag
. 1 T
Ming., a py s{en] Qlpv]|+p | pn
a a a (22)
s.t. f(o,a) >0
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Numerical methods from optimization

» Direct pivoting techniques (Active set, Lemke, PATH)
Direct solution if C is polyhedral

> First order (Nesterov) accelerated techniques (ADMM, APGD, ...)
» Second order methods:

1. interior point methods
2. semi-smooth Newton method

o o o
0= a | —projcxmr al-p|Qla]+p||, p>0
Pn Pn Pn

Comments on semi-smooth Newton methods
Similarity with return-mapping algorithm [Hager, Wolhmuth (2009), Christensen(2009)]
but with more flexibility:

> optimal choice of p with self-adaptation (proximal technique)
» rescaling technique are easier

» no explicit need of a consistent tangent operator
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Discrete energy balance

» Energy balance for discrete systems:
dE(t) = d(T(t) + W(t)) = —D(t)dt + Pext(t)dt + dPimpact, (23)
with
1 T 1 eT e 1 T
T(t) = 5V (t)Mv(t), and V(t) = € (t)Ee®(t) + 5a (t)Da(t)
(24)
» The dissipation and the power of external forces are

D(t) =o' (t)eP(t)4a' (t)c(t) and Pexi(t) = fuxe(t)v(t).  (25)

» The power of the reaction impulse is given by

1 -
dPimpact - E(VI\T + W )dIN' (26)
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Discrete energy balance

Approximation of works by the §-method as

k+1 T fett
Wext k = hvk+0 ﬁext,k+0 ~ / Pext(t)dt,

ty
and
k1 T .p T Bt
Wp K = hgk+9€k+9 — hak+9yk+9 ~ / D(t)dt,

ty
Approximation of the work dissipated by the percussion
W, S = Vr\—ll,—k+9PN,k+l =(1-6(1+ e))VAIkPN,kH,
the increment of total energy is then given by
AE —w_ T pw T ow =
P

ext k c
(3 = 0) (lIvicrr = villds + Il — <51 + o — el

(27)

(28)

(29)

(30)
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Discrete energy balance

Proposition
Under Assumption 1, energy dissipation of the scheme is as follows

1. When 0 = 3, the time—stepping scheme satisfies the approximation of the
discrete energy balance :

AEk+1 _ Wext ll<<+1 _W k+1 + W k+1' (31)

2. The dissipated work due to plasticity is always positive
3. When 6 <

4. When % <0< m < 1, we have the following dissipation inequality

<1 +e, the dissipated work due to impact is also positive.

AESTY w5t <. (32)
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Conclusions & perspectives

Conclusions
A monolithic solver for elastodynamics with contact, impact and plasticity:

» A practically stable scheme with a discrete energy balance

> A variational formulation (optimization problem) of plasticity with contact
> A gateway to a host of multiple optimisation algorithms

» Useful also for quasi-static application, even with perfect plasticity

Vincent Acary, Franck Bourrier, Benoit Viano.
Variational approach for nonsmooth elasto-plastic dynamics with contact and impacts. 2023.
(hal-03978387v1) to appear in Computer Methods in Applied Mechanics and Engineering

Perspectives
» Non associated plasticity and Coulomb friction
> Implicit standard materials (De Saxcé) =¥ guasi-variational inequality
> Finite strain plasticity and mortar method ([Seitz, Popp, Wall (2015)])
» Material point method (PhD Louis Guillet)

> Application to gravity-driven flows of geomaterials in mountains (mud
and debris flows).
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