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Numerical methods for nonsmooth mechanical systems

Objectives

Objectives of the lecture

Formulation and numerical algorithms
Focus on discrete frictional contact 3D problem.

I Linear Complementarity Problem (LCP)

I Nonlinear Complementarity Problem (NCP)

I Generalized, Nonsmooth and semi–smooth equations,

I Variational Inequalities (VI) and Complementarity problems
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Objectives

Objectives
The linear time–discretized problem
The Index Set of Forecast Active Constraints
Some further notation

The time–discretized problems
Definition
Algorithms for LCP
The Frictionless Case with Newton’s Impact
The frictional contact problem as an LCP
Comments

Linear Complementary problem (LCP) formulations and solution methods
Definition
The Frictionless Case with Newton’s Impact
Conclusions

Nonlinear Complementary problem (NCP) formulations and solution methods
Principle
Alart & Curnier’s Formulation
Variants and line–search procedures.

Nonsmooth Equations. Formulations and solution methods
VI/CP formulation

Formulation and Resolution as Variational inequalities (VI) / Complementarity
Problems(CP)
Theoretical interest
Optimization based Algorithms
Some comparisons and advices
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Numerical methods for nonsmooth mechanical systems

The time–discretized problems

The linear time–discretized problem

Summary of the linear time discretized equations

Frictionless case

One step linear problem

{
vk+1 = vfree + M̂−1pk+1

qk+1 = qk + h [θvk+1 + (1− θ)vk ]

Relations

{
Uαk+1 = HαT (qk ) vk+1

pαk+1 = Hα(qk ) Pαk+1

Nonsmooth Law


if gα(q̃k+1) 6 0, then

0 6 Uαk+1 ⊥ Pαk+1 > 0

if gα(q̃k+1) > 0 then Pα,k+1 = 0
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Numerical methods for nonsmooth mechanical systems

The time–discretized problems

The linear time–discretized problem

Summary of the linear time discretized equations

Frictional case

One step linear problem

{
vk+1 = vfree + M̂−1pk+1

qk+1 = qk + h [θvk+1 + (1− θ)vk ]

Relations

{
Uαk+1 = HαT (qk ) vk+1

pαk+1 = Hα(qk ) Pαk+1

Nonsmooth Law



Ûαk+1 =

[
Uα

N,k+1 + eUα
N,k + µα ||Uα

T,k+1||
Uα

T,k+1

]
if gα(q̃k+1) 6 0 then

Cα,∗ 3 Ûαk+1 ⊥ Pαk+1 ∈ Cα

if gα(q̃k+1) > 0 then Pα,k+1 = 0
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The time–discretized problems

The Index Set of Forecast Active Constraints

The time–discretized problems

The Index Set of Forecast Active Constraints
The index set I of all unilateral constraints in the system is denoted by:

I = {1 . . . ν} ⊂ IN (1)

The index-set Ia is the set of all forecast active constraints of the system and it is
denoted by

Ia(q̃k+1) = {α ∈ I | gα(q̃k+1) 6 0} ⊆ I (2)

where q̃k+1 is an explicit forecast of the position.

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 5/105
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The time–discretized problems

The Index Set of Forecast Active Constraints

The time–discretized problems

Cone complementarity reformulation for one contact α

Cα,∗ 3 Ûα ⊥ Pαk+1 ∈ Cα, ∀ α ∈ Ia(q̃k+1) (3)

assuming implicitly that Pα = 0 for all α ∈ I \ Ia(q̃k+1) and introducing the modified
local velocity

Ûαk+1 =
[
UαN,k+1 + eαUαN,k + µα ||UαT,k+1||,U

α
T,k+1

]T
(4)
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The time–discretized problems

The Index Set of Forecast Active Constraints

The time–discretized problems

The time–discretized linear OSNSP (PL)
The time–discretized linear OSNSP, denoted by (PL) is given by

(PL)



Uk+1 = ŴPk+1 + Ufree

∀α ∈ Ia(q̃k+1),
Ûαk+1 =

[
Uα

N,k+1 + eαUα
N,k + µα ||Uα

T,k+1||,U
α
T,k+1

]T
Cα,∗ 3 Ûαk+1 ⊥ Pαk+1 ∈ Cα
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The time–discretized problems

The Index Set of Forecast Active Constraints

The time–discretized problems

The time–discretized mixed linear OSNSP (PML)

(PML)



M̂(vk+1 − vfree) = pk+1 =
∑

α∈Ia(q̃k+1)

pαk+1

∀α ∈ Ia(q̃k+1),

Uαk+1 = Hα,T vk+1

pαk+1 = Hα Pαk+1

Ûαk+1 =
[
Uα

N,k+1 + eαUα
N,k + µα ||Uα

T,k+1||,U
α
T,k+1

]T
Cα,∗ 3 Ûαk+1 ⊥ Pαk+1 ∈ Cα
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The time–discretized problems

The Index Set of Forecast Active Constraints

The time–discretized problems

The time–discretized mixed nonlinear OSNSP (PMNL)

(PMNL)



R(vk+1) = pk+1 =
∑

α∈Ia(q̃k+1)

pαk+1

∀α ∈ Ia(q̃k+1)

Uαk+1 = Hα,T (qk + 1) vk+1

pαk+1 = Hα(qk + 1) Pαk+1

Ûαk+1 =
[
Uα

N,k+1 + eαUα
N,k + µα ||Uα

T,k+1||,U
α
T,k+1

]T
Cα,∗ 3 Ûαk+1 ⊥ Pαk+1 ∈ Cα
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The time–discretized problems

Some further notation

The time–discretized problems

Delassus’ Matrix notation

Ŵ = Ha,T M̂−1H

ŴNT = HT
N M̂−1HT

ŴNN = HT
N M̂−1HN

ŴTT = HT
T M̂−1HT

(5)
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The time–discretized problems

Some further notation
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Linear Complementary problem (LCP) formulations and solution methods

Definition

Linear Complementarity Problem (LCP)

Definition (Linear Complementarity Problem (LCP))
Given M ∈ IRn×n and q ∈ IRn, the Linear Complementarity Problem, is to find a
vector z ∈ IRn, denoted by LCP(M, q) such that

0 ≤ z ⊥ Mz + q ≥ 0 (6)

The inequalities have to be understood component-wise and the relation x ⊥ y means
xT y = 0.
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Linear Complementary problem (LCP) formulations and solution methods

Definition

LCP . General properties

Definition (P–matrix)
A matrix, M ∈ IRn×n is said to be a P–matrix if all its principal minors are positive.

Theorem
Let M ∈ IRn×n. The following statements are equivalent:

(a) M is a P–matrix

(b) M reverses the sign of no nonzero vector1, i.e. x ◦ Mx 6 0, =⇒ x = 0 This
property can be written equivalently,

∀x 6= 0, ∃i such that xi (Mx)i > 0. (7)

(c) All real eigenvalues of M and its principal submatrices are positive.

1A matrix A ∈ IRn×n reverses the sign of a vector x ∈ IRn if xi (Ax)i 6 0, ∀i ∈ {1, . . . , n}. The Hadamard
product x ◦ y is the vector with coordinates xi yi .
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Linear Complementary problem (LCP) formulations and solution methods

Definition

LCP. Fundamental theorem

Theorem
A matrix M ∈ IRn×n is a P–matrix if and only if LCP(M, q) has a unique solution for
all vectors q ∈ IRn.

Other properties

I In the worth case, the problem is N-P hard .i.e. there is no polynomial-time
algorithm to solve it.

I In practice, this ”P-matrix” assumption is difficult to ensure via numerical
computation, but a definite positive matrix (not necessarily symmetric), which is
a P-matrix is often encountered.
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Linear Complementary problem (LCP) formulations and solution methods

Definition

Mixed Linear Complementarity Problem (MLCP)

Definition (Mixed Linear Complementarity Problem (MLCP))
Given the matrices A ∈ IRn×n, B ∈ IRm×m, C ∈ IRn×m, D ∈ IRm×n, and the vectors
a ∈ IRn, b ∈ IRm, the Mixed Linear Complementarity Problem denoted by
MLCP(A,B,C ,D, a, b) consists in finding two vectors u ∈ IRn and v ∈ IRm such that{

Au + Cv + a = 0

0 ≤ v ⊥ Du + bv + b ≥ 0
(8)

Comments
The MLCP is a mixture between a LCP and a system of linear equations. Clearly, if
the matrix A is non singular, we may solve the embedded linear system to obtain u
and then reduced the MCLP to a LCP with q = b − DA−1a,M = b − DA−1C .
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Linear Complementarity Problem (LCP)

Algorithms for LCP

I Projection/Splitting based methods

I Generalized Newton methods

I Interior point method

I Pivoting based method

I QP methods for a SDP matrix.
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Projection/Splitting based methods

Principle
Decomposition of the matrix M as the sum of two matrices B and C

M = B + C (9)

which define the splitting. Then LCP(M, q) is solved via a fixed–point iteration.
For an arbitrary vector zν we consider LCP(B,qν) with

qν = q + Czν (10)

A vector z = zν solves LCP(M, q) if and only if zν is itself a solution of LCP(B,qν).

Choices of splitting

I The subproblem, LCP(B, q + Czν) needs to have at least one solution, i.e., B
has to be a Q–matrix.

I The splitting must also lead to a subproblem which is relatively easier to solve.
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Projection/Splitting based methods

Require: M, q, tol
Require: (B,C) a splitting of M
Ensure: z,w solution of LCP(M, q).

Compute a feasible initial point z0 > 0.
ν ← 0
while error > tol do

Solve the LCP(B, q + Czν).
Set zν+1 as an arbitrary solution.
Evaluate error.

end while
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Projection/Splitting based methods

Projected Jacobi Method
B is the identity matrix or any positive diagonal matrix D.
Ü component–wise maximum:

zν+1 = max{0, zν − D−1(q + Mzν)} (11)

Comment
In particular, if the matrix D is chosen as the diagonal part of the matrix M, i.e,
D = diag(mii ), we obtain the projected Jacobi method.
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Projection/Splitting based methods

Projected Gauss–Seidel and Projected Successive Overrelaxation (PSOR)
The following splitting of M can be used

M = B + C , with B = L + ω−1D, C = U, ω ∈ (0, 2) (12)

where

I L strictly lower part of the matrix M

I U strictly upper part of the matrix M

Ü Projected Successive OverRelaxation (PSOR) scheme

zk+1
i = max(0, zki − ωM

−1
ii (qi +

∑
j<i

Mijz
k+1
i +

∑
j≥i

Mijz
k
i )), i = 1, ...n (13)

When ω = 1 the PSOR method is called the Projected Gauss–Seidel (PGS) algorithm.
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Projection/Splitting based methods

Convergence

I Chapter 5 in (Cottle et al., 1992) and Chapter 9 in (Murty, 1988)
I Basic assumptions :

1.
2. the symmetry and the positive definiteness of the matrix
3. the contraction of the mapping defined in the fixed point algorithm

I Some results for PSD matrices

I few results concern the rate of convergence, but rather slow even extremely slow
in practice.
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Projection/Splitting based methods

Regularized PSOR
Diagonal matrix of M, D = diag (mii ) is not invertible.

w = Mz + q + ρ(z − z̃) = (M + ρI )z + q − ρz̃

0 6 w ⊥ z > 0

(14)

Regularized Projected Successive OverRelaxation (RPSOR) scheme is given by

zk+1
i = max(0, zki − ω(Mii + ρ)−1(qi +

∑
j<i

Mijz
k+1
i +

∑
j≥i

Mijz
k
i − ρz

k
i ) (15)

for i = 1, ...n. When ω = 1 the RPSOR method is called the Regularized Projected
Gauss–Seidel (RPGS) algorithm.
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Projection/Splitting based methods

Line–search in the Symmetric Case
Sketch of the general splitting scheme with line–search for the LCP(M, q) with M
symmetric.

Require: M, q, tol and (B,C) a splitting of a symmetric matrix M
Ensure: z,w solution of LCP(M, q).

Compute a feasible initial point z0 > 0.
ν ← 0
while error > tol do

Solve the LCP(B, q + Czν).
Set z? as an arbitrary solution.
Set dν ← z? − zν as the search direction.
Determine the step size αν by a line-search procedure.
Set zν+1 ← zν + ανdν .
Evaluate error.

end while
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Projection/Splitting based methods

Line–search in the Symmetric Case
If z? is a solution of LCP(B, q + Czν), the line search determines the step–size in the
direction dν defined by dν = z? − zν . If dνTMdν 6 0, then αν = 1; otherwise αν

must be a nonnegative number satisfying

f (zν + ανdν) = min{f (zν + ανdν), zν + ανdν > 0, α > 0} (16)

where f ( · ) is the objective function defined by

f (z) = zT (Mz + q) (17)

Analogy with QP
In the symmetric case, a clear analogy can be drawn with the following QP:

minimize q(z) =
1

2
zTMz + qT z

subject to z > 0

(18)

and dν is a descent direction of the objective function.
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Pivoting based methods

Principle
Let us consider a LCP(M, q).

1. If q > 0, then z = 0 solves the problem.

2. If there exists an index r such that

qr < 0 and mrj 6 0, ∀j ∈ {1 . . . n} (19)

then there is no vector z > 0 such that qr +
∑

j mrjzi > 0. Therefore the LCP is
infeasible thus unsolvable.

The LCP rarely possesses these properties in its standard form. The goal of pivoting
methods is to derive, by performing pivots, an equivalent system that has one of the
previous properties.
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Pivoting based methods

Pivotal Algebra
Let us consider the following linear system,

w = q + Mz (20)

which is represented in a tableau as

1 z1 . . . zn

w1 q1 m11 . . . m1n

...
...

...
...

wn q1 mn1 . . . mnn

I wi are called the basic variables

I the independent variables zi are called the nonbasic variables
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Pivoting based methods

Pivotal Algebra
Performing a pivot: exchanging a basic variable wr with a non basic variable zs
This operation is possible if and only if mrs 6= 0 and yields a new definition of the
tableau with (w ′, z ′, q′,M′) such that

w ′r = zs , w ′i = wi , i 6= r
z ′s = ws , z ′j = zj , j 6= s

q′r = −qr/mrs , q′i = qi − (mis/mrs)qr , i 6= r

m′rs = 1/mrs , m′is = mis/mrs , i 6= r
m′rj = −mrj/mrs , j 6= s, m′ij = mij − (mis/mrs)mrj , i 6= r , j 6= s

(21)
This pivot operation will be denoted by

(w ′, z ′,M′, q′) = Πrs(w , z,M, q) (22)
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Pivoting based methods

Interest of pivoting operation
Conservation of the fundamental properties of the matrix M under principal pivoting
and principal rearrangement

I the PD and PSD matrices are invariant under pivoting operations.

I the P–matrix property and the sufficiency are also conserved

I P0 property is more tricky and needs some additional care (see (Cottle et al.,
1992, Section 4.1)).
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Pivoting based methods

Murty’s Least Index Method
Simplest principal pivoting methods, also called “Bard–type” algorithm with
convergence for a P−matrix

Require: M, q
Ensure: z,w solution of LCP(M, q) with M a P–matrix.
ν ← 0
qν ← q, Mν ← M
while qν 6> 0 do

Choose the pivot row of index r such that

r = min{i, qνi < 0} (23)

Pivoting wνr and zνr .

(wν+1, zν+1,Mν+1, qν+1)← Πrr(wν , zν ,Mν , qν) (24)

ν ← ν + 1
end while
(zν = 0,wν = qν) solves LCP(Mν , qν).
Recover the solution of LCP(M, q).
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Pivoting based methods

Lemke’s Method
Lemke’s Algorithm (Lemke and Howson, 1964 ; Lemke, 1965) belongs to the larger
class of the complementary pivot algorithms.

I selection rule of the entering variable in each step, which is always the
complementary variable of the dropping variable in the previous step.

I Augmented LCP LCP(M̃, q̃)
w = Mz + q + dz0

w0 = q0 − dT z

0 6 w ⊥ z > 0

0 6 w0 ⊥ z0 > 0

(25)

for a sufficiently large scalar q0 > 0 and a covering vector d > 0

I The LCP(M̃, q̃) is known to always possess a solution

I The augmented LCP allows one to obtain a first feasible basic solution

∃z̄0, w = q + dz0 > 0, ∀ z0 > z̄0 (26)
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Pivoting based methods

Lemke’s Method

I The first pivot row index α is chosen by the minimum ratio such that :

α = argi min

{
−
qi

di
| qi < 0

}
(27)

I This pivot index is chosen such that the basic variable component w = wα equals
zero for z0 = z̄0. Lemke’s method starts by pivoting z0 and wα.
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Pivoting based methods

Lemke’s Method. Algorithm Part I

Require: M, q LCP data and c the covering vector
Ensure: z, w solution of LCP(M, q)

if q > 0 then z = 0, w = q solves the LCP(M, q) end if.

ν ← 0, z̃ν ←
[

z0 z
]T, w̃ν ←

[
w0 w

]T, q̃ν ←
[

q0 q
]T , M̃ν ←

[
0 −cT

c M

]
Find an index α > 1 by using the minimum ratio test,

α ← argi min

{
−

qi

ci

| qi < 0

}
(28)

Pivot z̃ν0 = z0 and w̃να = wα .

(w̃ν+1
, z̃ν+1

, M̃ν+1
, q̃ν+1) ← Πα,0(w̃ν, z̃ν, M̃ν, q̃ν ) (29)

Set the index of the driving variable d ← α. The driving variable is zνα .
IsFound ← false, IsNotFound ← false
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Pivoting based methods

Lemke’s Method. Algorithm Part II
while IsFound = false and IsNotFound = false do

Step 1. Determination of the blocking variable w̃νb
if ∃i,mνid < 0 then

Use the minimum ratio test,

b ← argi min

− qνi

mν
id

| mνid < 0

 (30)

else
The blocking variable is w0. IsNotFound = true

end if
Step 2. Pivoting. The driving variable is blocked.
if b = α then

The blocking variable is z0. Pivoting w̃νb = z0 and zνd .

(w̃ν+1
, z̃ν+1

, M̃ν+1
, q̃ν+1) ← Πb+1d(w̃ν, z̃ν, M̃ν, q̃ν ) (31)

The solution is found. z̃ν+1 solves LCP(Mν+1, qν+1) with z0 = 0.
IsFound ← true

else
Pivoting the blocking variable w̃νb and the driving variable zνd = z0.

(w̃ν+1
, z̃ν+1

, M̃ν+1
, q̃ν+1) ← Πbd(w̃ν, z̃ν, M̃ν, q̃ν ) (32)

end if
Set the index of the driving variable d ← b.
ν ← ν + 1

end while
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Linear Complementary problem (LCP) formulations and solution methods

Algorithms for LCP

Pivoting based methods

Lemke’s Method. Algorithm Part III
if IsNotFound = true then

Interpret the output in terms of infeasibility or unsolvability.
end if
if IsFound = true then Recover the solution of LCP(M, q) end if.
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Pivoting based methods

Lemke’s Method solves LCPs for a large class of matrices

I A result ensures that for a feasible LCP with a matrix M which is copositive plus

xTMx > 0 for all x > 0 and [xTMx = 0, x > 0]⇒ (M + MT )x = 0

, the complementarity pivot algorithm terminates at a solution of the LCP. If it
does not, the LCP is feasible.

I Other results can be found for other classes of matrices (semi–monotone,
P0–matrices,. . . ) in the above cited books.
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Interior points method

Principle
Let us start with the horizontal monotone LCP defined by{

Qx + Rs = q

0 ≤ x ⊥ s ≥ 0
(33)

together with the monotonicity property

Qx + Rs = 0 =⇒ sT x > 0 (34)

Definition (central path)
The central path for the horizontal monotone LCP (33) is the set of points (x , s)
defined by 

x ◦ s = µ1l

Qx + Rs = q

x > 0, s ≥ 0

(35)

for µ describing the half–line, IR+. Here, 1l is the vector whose components are all
equal to 1.
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Principle

I for µ = 0, the central path equation (35) is equivalent to the horizontal
monotone LCP (33).

I for µ > 0, any point of the central path lies in the strictly primal–dual feasible
domain defined by

F◦ = {x , s ∈ IRn | Qx + Rs = q, x > 0, s > 0} (36)

I As with primal interior points and barrier methods, we see the link between the
primal–dual interior point methods and the logarithmic penalty.
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Principle
Drive the iterates of µ to 0. Two methods :

I Approximate minimization of the mixed potential (or some other variants) for a
sequence of µ that converges to 0 Ü potential reduction methods.

I Central path is approximated for a sequence of µ that converges to 0.

In any case, the direction between two iterates is the Newton direction associated with{
x ◦ s = σµ1l

Qx + Rs = q
(37)

The strict feasibility assumption is made, i.e, (x , s) ∈ F◦ and σ ∈ [0, 1] is the
reduction parameter of µ.
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Implementation
Linearizing the problem (37) around the current point (x , s) results in the following
linear system for the direction (u, v):{

s ◦ u + x ◦ v = σµ1l− x ◦ s
Qu + Rv = 0

(38)

We introduce a matrix notation of the previous system:[
S X
Q R

] [
u
v

]
=

[
σµ1l− x ◦ s

0

]
(39)

where the matrix S ∈ IRn×n and X ∈ IRn×n are defined by S = diag(s) and
X = diag(x).
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Implementation
Two extreme choices of σ are often encountered in practice,

(a) The value σ = 1 defines the so–called centering direction, (or a centralization
displacement). Indeed a Newton step points toward (xµ, sµ) on the central path:
xµi sµi = µ, i = 1 . . . n. A displacement along a centering direction makes little
progress, if any, toward reducing the value of µ.

(b) The value σ = 0 defines the so–called affine–scaling direction, which the standard
Newton step for the system {

x ◦ s = 0

Qx + Rs = q
(40)

This step therefore should ensure a decrease of µ.

Most of the algorithms choose an intermediate value for σ to have a good trade-off
between reducing µ and improving centrality. Finally, once the direction is chosen
through a value of σ, a step length α has to be chosen in the direction (u, v) to
respect the strict feasibility.
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Algorihtm

Require: Q,R, q, tol
Require: (x0, s0) ∈ F◦
Ensure: x, s solution of hLCP(Q,R, q)

µ0 ←
xT

0 s0

n
k← 0
while µk > tol do

Solve [
Sk Xk

Q R

] [
uk

vk

]
=

[
σkµk1l− xk ◦ sk

0

]
(41)

for some σk ∈ (0, 1).
Choose αk such that

(xk+1, sk+1)← (xk, sk) + αk(uk, vk) (42)

is strictly feasible i.e., xk+1 > 0, sk+1 > 0

µk ←
xT

k sk

n
end while
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A huge of family of methods
The path following primal–dual interior point methods generate a sequence of strictly
feasible points satisfying approximately the central path equation (35) for a sequence
of µ that converges to 0. The approximation may be measured by the centrality
measure

δ(s, x , µ) =

∥∥∥∥ x ◦ sµ − 1l

∥∥∥∥
2

(43)

In most methods, the sequence of points is constrained to lie in one of the following
two neighborhoods of the central path : the small neighborhood parametrized by θ

N2(θ) = {(x , s) ∈ F◦ | ‖x ◦ s − µ1l‖2 > µθ} for some θ ∈ (0, 1) (44)

and the large neighborhood parametrized by ε

N−∞(ε) = {(x , s) ∈ F◦ | xi si > µε} for some ε ∈ (0, 1). (45)
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LCP solution methods

How to choose ?

1. The splitting methods are well suited
I for very large and well conditioned LCP. Typically, the LCPs with symmetric PD matrix

are solved very easily by a splitting method,
I when a good initial solution is known in advance.

2. The pivoting techniques are well suited
I for small to medium system sizes (n < 5000 ),
I for ”difficult problems” when the LCP has only a P–matrix, sufficient matrix or

copositive plus matrix,
I when one wants to test the solvability of the system.

3. Finally, interior–point methods can be used
I for large scale–problems without the knowledge of a good starting point,
I when the problem has a special structure that can be exploited directly in solving the

Newton direction with an adequate linear solver.
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The Frictionless Case with Newton’s Impact

The frictionless contact problem (PLWF )
Remind that the frictionless contact problem in the form (PL) can be written as
(PLWF ):

(PLWF )



UN,k+1 = ŴNNPN,k+1 + UN,free

Ûα
N,k+1 = Uα

N,k+1 + eαUα
N,k

0 6 Ûα
N,k+1 ⊥ Pα

N,k+1 > 0

∀α ∈ Ia(q̃k+1)

LCP formulation
The formulation in terms of LCP is straightforward,

UN,k+1 = ŴNNPN,k+1 + UN,free

ÛN,k+1 = UN,k+1 + e ◦ UN,k

0 6 PN,k+1 ⊥ ÛN,k+1 > 0

(46)

where the vector e collects the coefficients of restitution for α ∈ Ia(q̃k+1), and x ◦ y is
the Hadamard product of the vectors x and y .
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The Frictionless Case with Newton’s Impact

LCP formulation
To obtain a proper LCP formulation it suffices to write ÛN,k+1 = ŴNNPN,k+1 + UN,free − e ◦ UN,k

0 6 ÛN,k+1 ⊥ PN,k+1 > 0

(47)

and we can conclude that (ÛN,k+1,PN,k+1) solves the following LCP

LCP(ŴNN,UN,free − e ◦ UN,k ) (48)

LCP Resolution
Almost all of the methods can be applied to solve (48).

I The matrix ŴNN is a symmetric PSD matrix, provided that M̂ is PD

I The fact that ŴNN is PSD and not necessarily PD can cause troubles in
numerical applications. This is due to the rank deficiency of H and can be
interpreted in terms of redundant constraints.

I In practice, it may happen that the splitting–based algorithms have difficulties to
converge.
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The Frictionless Case with Newton’s Impact and Linear Perfect Bilateral
Constraints

The mixed linear OSNSP
Remind that the mixed linear OSNSP with linear perfect bilateral constraints
GTq + b = 0 is given by

(PMLb )



M̂(vk+1 − vfree) = pk+1 + GPµ,k+1

GT vk+1 = 0

Uα
N,k+1 = Hα,TN vk+1

pαk+1 = HαN Pα
N,k+1

Ûα
N,k+1 = Uα

N,k+1 + eαUα
N,k

0 6 Ûα
N,k+1 ⊥ Pα

N,k+1 > 0

∀α ∈ Ia(q̃k+1)
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The Frictionless Case with Newton’s Impact and Linear Perfect Bilateral
Constraints

MCLP reformulation
Let us substitute the generalized velocities q̇k+1 = vk+1 thanks to

vk+1 = vfree + M̂−1
(
GPµ,k+1 + HNPN,k+1

)
= 0 (49)

in order to obtain the following MLCP in the form,

GT vfree + GT M̂−1G Pµ,k+1 + GT M̂−1HN Pk+1 = 0

Ûα
N,k+1 =

[
HT

N vfree + e ◦ UN,k + GT M̂−1G Pµ,k+1 + GT M̂−1HN Pk+1

]
0 6 Ûα

N,k+1 ⊥ Pα
N,k+1 > 0

(50)
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The 3D frictional contact problem as an LCP

The nonlinear nature of the friction cone
The second order cone C which cannot be written as a polyhedral cone due to the
nonlinear nature of the section of the friction cone, i.e., the disk D(µRN) defined by

D(µRN) = {RT | σ(RT) = µRN − ‖RT‖ ≥ 0} (51)

Faceting of the Coulomb’s cone.
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Figure: Approximation of the base of the Coulomb cone by an outer approximation (a) and by an
interior 2ω-gon (b).
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Outer Faceting
The friction disk D can be approximated by an outer polygon (Klarbring, 1986 ;
Klarbring and Björkman, 1988):

Douter (µRN) =
⋂ω

i=1 Di (µRN)

with

Di (µRN) =
{
RT, σi (RT) = µRN − cTi RT ≥ 0

} (52)

We now assume that the contact law is of the form

− UT ∈ NDouter (µRN)(RT) (53)

From (Rockafellar, 1970), the normal cone to Douter (µRN) is given by :

NDouter (µRN)(RT) = Σωi=1NDi (µRN)(RT) (54)

and the inclusion can be stated as:

− UT = Σωi=1κi∂σi (RT), 0 ≤ σi (RT) ⊥ κi ≥ 0 (55)

Since σi (RT) is linear with respect to RT, we obtain the following LCP :

− UT = Σωi=1κici , 0 ≤ σi (RT) ⊥ κi ≥ 0 (56)
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The time–discretized linear OSNSP, (PL)

(PL)



Uk+1 = ŴPk+1 + Ufree

∀α ∈ Ia(q̃k+1),

−Uα
T,k+1 = Σωi=1κ

α
i ci

σi (P
α
T,k+1) = µPα

N,k+1 − cTi Pα
T,k+1

0 6 Uα
N,k+1 + eαUα

N,k ⊥ Pα
N,k+1 > 0

0 ≤ σαi (Pα
T,k+1) ⊥ καi ≥ 0

(57)

LCP Formulation
Generally, the MLCP (57) can be reduced in an LCP in standard form assuming that
at least one pair of vectors ci is linearly independent. (see Glocker (2001)).
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Inner Faceting
Another approach is based on an inner approximation as exposed in (Al-Fahed et al.,
1991) and (Stewart and Trinkle, 1996),

Dinner (µRN) =
{
RT = Dβ | β ≥ 0, µRN ≥ 1lT β

}
(58)

where

I β ∈ IR2,

I 1l = [1, . . . , 1]T ∈ IRω ,

I D ∈ IR2×ω whose columns are the directions vectors dj which are the coordinates
of the vertices of the polygon.

MLCP formulation 
RT = Dβ

0 ≤ β ⊥ λ1l + DTUT ≥ 0

0 ≤ λ ⊥ µRN − 1lT β ≥ 0

(59)

where λ ∈ IR.
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The 3D frictional contact problem as an LCP

The time–discretized linear OSNSP, (PL)



Uk+1 = ŴPk+1 + Ufree

PαT ,k+1 = Dαβαk+1

0 6 Uα
N,k+1 + eαUα

N,k ⊥ Pα
N,k+1 > 0

0 ≤ βαk+1 ⊥ λ
α
k+11l

α + Dα,TUα
T,k+1 ≥ 0

0 ≤ λ ⊥ µPα
N,k+1 − 1lT ,alpha βαk+1 ≥ 0


∀α ∈ Ia(q̃k+1)

(60)
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The 3D frictional contact problem as an LCP

LCP form for the inner faceting

 UN,k+1 + eUN,k

κk+1

σk+1

 = M

 PN,k+1

βk+1

λk+1

+ q

0 6

 UN,k+1 + eUα
N,k

κk+1

σk+1

 ⊥
 PN,k+1

βk+1

λk+1

 > 0

(61)

where

M =


ŴNN ŴNTD 0

DT ŴTN DT ŴTTD 1l

µ −1lT 0

 (62)

and

q =


UN,free + eUN,free

DT (UT,free)

0

 (63)
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The 3D frictional contact problem as an LCP

LCP form for the inner faceting
The variables κk+1 ∈ IRω and σk+1 ∈ IR are given by the following equations:

κk+1 = λk+1 + DTUT,k+1, σk+1 = µPN,k+1 − 1lTβk+1 (61)
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Proposition ((Stewart and Trinkle, 1996))
Let Ŵ be a PD matrix. The LCP defined by (61), (62) and (63) possesses solutions,
which can be computed by Lemke’s algorithm provided precautions are taken against
cycling due to degeneracy.

Sketch of the proof

I M is co-positive

I

zT M z > 0 :, for all z > 0, (62)

is satisfied

I Theorem 3.8.6 in (Cottle et al., 1992, page 179)

M only PSD
A condition has to be added on Ufree to retrieve a similar result. This condition is
related to the existence of a solution (?Cadoux, 2009)
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Comments

The 3D frictional contact problem as an LCP

Advantages and weaknesses of LCP formulation

� Existence results and convergence for pivoting algorithms

� Anisotropy in the frictional behaviour

� Scaling issues. Number of variables and pivoting algorithms.
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Comments

Faceting process and induced anisotropy

Let us consider a ball of mass m lying on a horizontal plane under gravity g . A cycling
external force defined by

F (t) =


µmg(cos π

3
i + sin π

3
j), t ∈ [15k, 5 + 15k)

−µmg i, t ∈ [5 + 15k, 10 + 15k)

µmg(cos π
3
i +− sin π

3
j), t ∈ [10 + 15k, 15(k + 1))

, k ∈ IN (63)

is applied to the ball.
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Comments

Faceting process and induced anisotropy
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Figure: Ball trajectory under cycling loading.
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Definition

Nonlinear Complementarity Problem (NCP)

Definition (NCP)
Given a mapping F : IRn → IRn, the NCP denoted by NCP(F ) is to find a vector
z ∈ IRn such that

0 ≤ z ⊥ F (z) ≥ 0 (63)

A vector z is called feasible (respectively strictly feasible) for the NCP(F ) if z > 0 and
F (z) > 0 (respectively z > 0 and F (z) > 0).

Definition
A given mapping F : X ⊂ IRn −→ IRn is said to be

(a) monotone on X if

(x − y)T (F (x)− F (y)) > 0, for all x , y ∈ X (64)

(b) strictly monotone on X if

(x − y)T (F (x)− F (y)) > 0, for all x , y ∈ X , x 6= y (65)

(c) strongly monotone on X if there exists µ > 0 such that

(x − y)T (F (x)− F (y)) > µ‖x − y‖2, for all x , y ∈ X (66)
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Definition

Nonlinear Complementarity Problem (NCP)

Theorem (Characterization of monotone mapping)
Given a continuously differentiable mapping F : D ⊂ IRn −→ IRn on the open convex
set D, the following statements are valid,

(a) F ( · ) is monotone on D if and only if ∇TF (x) is PSD for all x ∈ D
(b) F ( · ) is strictly monotone on D if ∇TF (x) is PD for all x ∈ D
(c) F ( · ) is strongly monotone on D if and only if ∇TF (x) is uniformly PD for all

x ∈ D , i.e.
∃µ > 0, zT∇TF (x)zT > µ‖z‖2, ∀x ∈ D (67)

Theorem
Given a continuous mapping F : X ⊂ IRn −→ IRn, the following statements hold,

(a) If ( · )F is monotone on X = IRn
+, the NCP(F ) has a convex (possibly empty)

solution set. Furthermore, if there exists a strictly feasible point, the NCP(F ) has
a non empty and compact solution set.

(b) If F ( · ) is strictly monotone on X = IRn
+, the NCP(F ) has at most one solution.

(c) If F ( · ) is strongly monotone on X = IRn
+, the NCP(F ) has a unique solution.
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Numerical methods for nonsmooth mechanical systems

Nonlinear Complementary problem (NCP) formulations and solution methods

Definition

Nonlinear Complementarity Problem (NCP)

Definition
A given mapping F : X ⊂ IRn −→ IRn is said to be

(a) a P-function on X if

max
i=1...n

(xi − yi )(Fi (x)− Fi (y)) > 0, ∀x , y ∈ X , x 6= y (68)

(b) a uniform P-function if

∃µ > 0, max
i=1...n

(xi−yi )(Fi (x)−Fi (y)) > µ‖x−y‖2, ∀x , y ∈ X , x 6= y (69)

Theorem
Given a continuous mapping F : X ⊂ IRn −→ IRn, the following statements hold,

(a) If F ( · ) is a P-function on X , then the NCP(F ) has at most one solution

(b) If F ( · ) is a uniform P-function on X , then the NCP(F ) has a unique solution.

The proof can be found in (Moré, 1974).

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 60/105
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Definition

Nonlinear Complementarity Problem (NCP)

Newton–Josephy’s and Linearization Methods
The standard Newton method to linearize F ( · ) is used, the following LCP

0 6 z ⊥ F (zk ) +∇F (zk )(x − xk ) > 0 (70)

has to be solved to obtain zk+1.

Newton–Robinson’s
For theoretical considerations, Robinson (1988, 1992) proposed to use a linearization
of the so-called normal map

F nor (y) = F (y+) + (y − y+) (71)

where y+ = max(0, y) stands for the positive part of y . Equivalence with the
NCP(F ), is as follows: y is a zero of the normal map if and only if y+ solves
NCP(F ). The Newton–Robinson method uses a piecewise linear approximation of the
normal map, namely

Lk (y) = F (y+
k ) +∇F (y+

k )(y+ − y+
k ) + y − y+ (72)

The Newton iterate yk+1 is a zero of Lk ( · ). The same yk+1 would be obtained by
Newton–Josephy’s method if zk were set to y+

k in (70).
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Definition

Nonlinear Complementarity Problem (NCP)

The PATH solver

I The PATH solver (Dirkse and Ferris, 1995) is an efficient implementation of
Newton–Robinson’s method together with the path-search scheme.

I A “path-search” (as opposed to line–search) is then performed using the merit
function ‖F+(y)‖. Standard theory of damped Newton’s method can be extended
to prove standard local and global convergence results (Ralph, 1994 ; Dirkse and
Ferris, 1995).

I The construction of the piecewise linear path pk is based on the use of pivoting
methods. Each pivot corresponds to a kink in the path. In (Dirkse and Ferris,
1995), a modification of Lemke’s algorithm is proposed to construct the path.

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 62/105
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Definition

Nonlinear Complementarity Problem (NCP)

Generalized or Semismooth Newton’s Methods
The principle of the generalized or semismooth Newton’s method for LCPs is based on
a reformulation in terms of possibly nonsmooth equations using the so-called
C-function also called NCP-function.

Definition
A function φ : IR2 → IR is called a C-function (for complementarity) if

0 6 w ⊥ z > 0⇐⇒ φ(w , z) = 0 (73)

Well-known examples of C-function are

φ(w , z) = min(w , z) (74a)

φ(w , z) = max(0,w − ρz)− w , ρ > 0 (74b)

φ(w , z) = max(0, z − ρw)− z, ρ > 0 (74c)

φ(w , z) =
√

w2 + z2 − z − w (74d)

φ(w , z) = λ(
√

w2 + z2 − z − w)− (1− λ)w+z+), λ ∈ (0, 1) (74e)

φ(w , z) = −wz +
1

2
min2(0,w + z) (74f)
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Definition

Nonlinear Complementarity Problem (NCP)
Then defining the following function associated with NCP(F ):

Φ(z) =



φ(F1(z), z1)
...

φ(Fi (z), zi )
...

φ(Fn(z), zn)


(75)

we obtain as an immediate consequence of the definitions of φ( · ) and Φ( · ) the
following equivalence.

Lemma
Let φ( · ) be a C-function and the corresponding operator Φ( · ) defined by (75). A
vector z̄ is a solution of NCP(F ) if and only if z̄ solves the nonlinear system of
equations Φ(z) = 0.

Numerical method
The standard Newton method is generalized to the nonsmooth case by the following
scheme

zk+1 = zk − Hk
−1Φ(zk ), Hk ∈ ∂Φ(zk ) (76)

Because the set ∂Φ(zk ) may not be a singleton (if zk is a point of discontinuity of
Φ( · )), we have to select an arbitrary element for Hk .
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Definition

Nonlinear Complementarity Problem (NCP)

Comparison of the following implementation of solvers

I MILES (Rutherford, 1993) which is an implementation of the classical
Newton–Josephy method,

I PATH

I NE/SQP (Gabriel and Pang, 1992 ; Pang and Gabriel, 1993) which is a
generalized Newton’s method based on the minimum function (74a); the search
direction is computed by solving a convex QP at each iteration,

I QPCOMP (Billups and Ferris, 1995) which is an enhancement of the NE/SQP
algorithm to allow iterates to escape from local minima,

I SMOOTH (Chen and Mangasarian, 1996) which is based on solving a sequence
of smooth approximations of the NCP,

I PROXI (Billups, 1995) which is a variant of the QPCOMP algorithm using a
nonsmooth Newton solver rather than a QP solver,

I SEMISMOOTH (DeLuca et al., 1996) which is an implementation of a
semismooth Newton method using the Fischer–Bursmeister function,

I SEMICOMP (Billups, 1995) which is an enhancement of SEMISMOOTH based
on the same strategy as QPCOMP.

All of these comparisons, which have been made in the framework of the MCP show
that the PROXI, PATH and SMOOTH are superior on a large sample of test problems.
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The Frictionless Case with Newton’s Impact

The Frictionless Case with Newton’s Impact as an NCP

This problem can stated in the following NCP for vk+1 and Pα
N,k+1, α ∈ Ia(q̃k+1)

R(vk+1) =
∑

α∈Ia(q̃k+1)

HαN (qk + 1) PαN,k+1

0 6 Ĥα,TN (qk + 1) vk+1 + eαUα
N,k ⊥ Pα

N,k+1 > 0, ∀α ∈ Ia(q̃k+1).

(77)
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The Frictionless Case with Newton’s Impact

A first NCP formulation

The Coulomb friction model can be easily reformulated into the following CP:
RT ‖UT‖+ ‖RT‖UT = 0

0 6 ‖UT‖ ⊥ µRN − ‖RT‖ ≥ 0

(78)

Let us denote κ = ‖UT‖ the norm of UT. The following CP can be stated

κ = ‖UT‖

RT κ+ ‖RT‖UT = 0

0 6 κ ⊥ µRN − ‖RT‖ ≥ 0

(79)
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The Frictionless Case with Newton’s Impact

A first NCP formulation



Uk+1 = ŴPk+1 + Ufree

καk+1 = ‖Uα
T,k+1‖

Ũα
N,k+1 = Uα

N,k+1 + eαUα
N,k

Pα
T,k+1 κ

α
k+1 + ‖Pα

N,k+1‖U
α
T,k+1 = 0

0 6 καk+1 ⊥ µ
αPα

N,k+1 − ‖P
α
T,k+1‖ ≥ 0

0 6 Ũα
N,k+1 ⊥ Pα

N,k+1 > 0


∀α ∈ Ia(q̃k+1)

(80)

which can be casted into the MCP form with u = [Uα
T,k+1,P

α
N,k+1,P

α
T,k+1]T and

v = [καk+1,UN]T .

Weaknesses of the formulation
Besides the difficulty to directly deal with a MCP in general form, the main drawback
of this formulation is the lack of differentiability in the mapping involved in the CP.
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The Frictionless Case with Newton’s Impact

A clever NCP formulation due to Glocker (1999)

Glocker (1999) adds three inequalities

σi (RT) = µRN − eTi RT ≥ 0, i = 1, 2, 3 (81)

where e1, e2, e3 are three unit outwards vector defined by

ei = [cosαi , sinαi ], αi =
(4i − 3)π

6
(82)

We can remark that
D(µRN) = ∩3

i=1Di ∩D(µrN) (83)

thus the Coulomb’s frictional law remains identical. This normal cone condition leads
to

− UT ∈ Σ3
i=1eiκi + ∂σD(RT)κD (84)

where σD(RT) = µ2R2
N − ‖RT‖2 is a nonlinear friction saturation associated with the

second–order cone.
The trick introduced by Glocker lies into the reformulation of this inclusion into an
equation of the form

− UT = Σ3
i=1eiκi + 2RT κD , 0 ≤ κj ⊥ σj ≥ 0, j = 1, 2, 3,D (85)
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Numerical methods for nonsmooth mechanical systems

Nonlinear Complementary problem (NCP) formulations and solution methods

The Frictionless Case with Newton’s Impact

A clever NCP formulation due to Glocker (1999)

The previous CP formulation yields

Uk+1 = ŴPk+1 + Ufree

−Uα
T,k+1 =

3∑
i=1

eiκ
α
i,k+1 + 2PαT,k+1 κ

α
C ,k+1

σαi (Pα
T,k+1) = µαPα

N,k+1 − eTi Pα
T,k+1, i = 1, 2, 3

σαD (Pα
T,k+1) = (µαPα

N,k+1)2 − ‖Pα
T,k+1‖

2

0 6 Uα
N,k+1 + eαUα

N,k ⊥ Pα
N,k+1 > 0

0 ≤ καj,k+1 ⊥ σ
α
j,k+1 ≥ 0, j = 1, 2, 3,D


∀α ∈ Ia(q̃k+1)

(86)

Advantages
The mappings involved in the NCP formulation are differentiable, so standard NCP
solvers should work
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Conclusions

NCP summary

I It is difficult to say something on the abilities of the NCP formulation to provide
good numerical solvers, mainly due to the fact there is quite no attempt to use it
in the literature.

I Note that NCP methods based on generalized newton methods provide new
solvers for LCP.

I If the problem is over-constrained (hyper-staticity), standard NCP solvers are in
troubles.
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Principle

The Frictional contact 3D problem as a nonsmooth equation

Principle

(PL)



Uk+1 = ŴPk+1 + Ufree

∀α ∈ Ia(q̃k+1),
Ûαk+1 =

[
Uα

N,k+1 + eαUα
N,k + µα ||Uα

T,k+1||,U
α
T,k+1

]T
Cα,∗ 3 Ûαk+1 ⊥ Pαk+1 ∈ Cα

is equivalent to
Φ(U,R) = 0 (87)
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Alart & Curnier’s Formulation

The Frictional contact 3D problem as a nonsmooth equation

Alart& Curnier’s formulation
Curnier and Alart (1988) ; Alart and Curnier (1991) The previous linear problem can
be written as

Uk+1 = ŴPk+1 + Ufree

Pα
N,k+1 = projIR+

(Pα
N,k+1 − ρ

α
N (Uα

N,k+1 + eαUα
N,k ))

Pα
T,k+1 = proj

D̂α(Pα
N,k+1

,Uα
N,k+1

)
(Pα

T,k+1 − ρ
α
T ◦ Uα

T,k+1)

∀α ∈ Ia(q̃k+1)

(88)

where ραN > 0, ραT ∈ IR2
+ \ {0} for all α ∈ Ia(q̃k+1) and the modified friction disk is

D̂α(PαN,k+1,U
α
N,k+1) = D(µ(projIR+

(PαN,k+1 − ρ
α
N (UαN,k+1 + eαUαN,k ))) (89)

for all α ∈ Ia(q̃k+1).
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Alart & Curnier’s Formulation

The Frictional contact 3D problem as a nonsmooth equation

Alart& Curnier’s formulation
The use of the projection operators proj( · ), or more generally the natural and normal
map, allows one to restate a CP or a VI into a system of nonlinear nonsmooth
equations,

Φ(Uk+1,Pk+1) =


−Uk+1 + ŴPk+1 + Ufree

PN,k+1 − projIRa
+

(PN,k+1 − ρN ◦ (UN,k+1 + e ◦ UN,k ))

PT,k+1 − proj
D̂(PN,k+1,UN,k+1)

(PT,k+1 − ρT ◦ UT,k+1)

 = 0

(90)
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Alart & Curnier’s Formulation

The Frictional contact 3D problem as a nonsmooth equation

Nonsmooth Newton’s method
The standard Newton method is generalized to the nonsmooth case by the following
scheme

zk+1 = zk − Hk
−1Φ(zk ), Hk ∈ ∂Φ(zk ) (91)

Because the set ∂Φ(zk ) may not be a singleton (if zk is a point of discontinuity of
Φ( · )), we have to select an arbitrary element for Hk .
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Alart & Curnier’s Formulation

The Frictional contact 3D problem as a nonsmooth equation

Computation of a subgradient for the Alart–Curnier formulation
H(U,P) ∈ ∂Φ(U,P) which has the structure

H(U,P) =



−I 0 ŴNN ŴNT

0 −I ŴTN ŴTT

∂UN
Φ2(U,P) 0 ∂PN

Φ2(U,P) 0

0 ∂UT
Φ3(U,P) ∂PN

Φ3(U,P) ∂PT
Φ3(U,P)


(92)

where the components of Φ are defined by

Φ1(U,P) = −Uk+1 + ŴPk+1 + Ufree

Φ2(U,P) = PN − projIRa
+

(PN − ρN ◦ (UN + e ◦ UN,k ))

Φ3(U,P) = PT − proj
D̂(PN,UN)

(PT,k+1 − ρT ◦ UT)

(93)
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Alart & Curnier’s Formulation

The Frictional contact 3D problem as a nonsmooth equation

Computation of a subgradient for the Alart–Curnier formulation

∂UN
Φ2(U,P) =

{
ρN if PN − ρNUN > 0
0 otherwise

∂PN
Φ2(U,P) =

{
0 if PN − ρNUN > 0
1 otherwise

∂UT
Φ3(U,P) =

{
ρTI2×2 if PT − ρTUT ∈ D̂(PN,UN)
ρTµPN Γ(PT − ρTUT) otherwise

∂PN
Φ3(U,P) =


0 if PT − ρTUT ∈ D̂(PN,UN)

0 if PT − ρTUT /∈ D̂(PN,UN) and PN − ρNUN 6 0

−µ
PT − ρTUT

‖PT − ρTUT‖
otherwise

∂PT
Φ3(U,P) =

 0 if PT − ρTUT ∈ D̂(PN,UN)

I2 if PT − ρTUT /∈ D̂(PN,UN) and PN − ρNUN 6 0
I2 − µ(PN − ρNUN) Γ(PT − ρTUT) otherwise

(94)

where the function Γ( · ) is defined by Γ(x) =
I2×2

‖x‖
−

x xT

‖x‖3
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Variants and line–search procedures.

The Frictional contact 3D problem as a nonsmooth equation

Line–search procedure.

I (Christensen et al., 1998 ; Christensen and Pang, 1998 ; Christensen, 2000), the
semi–smoothness is shown and a line–search procedure is based on a merit
function such as

Ψ(U,P) =
1

2
Φ(U,P)T Φ(U,P). (95)

Let αi = ρm
i
, where ρ ∈ (0, 1) and mi is the smallest non-negative integer m for

which the following decrease criterion holds:

Ψ(z i + ρmd i ) > (1− 2σρm)Ψ(z i ) (96)

where σ ∈ (0, 1
2

) is a given parameter.

I There is no clear study of the influence of the line–search procedure.
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Variants and line–search procedures.

The Frictional contact 3D problem as a nonsmooth equation

Variants

I (Park and Kwak, 1994 ; Leung et al., 1998) write the 2D problem as

If g(q) 6 0, Ψ1(UN,RN) = min(UN,RN) = 0 (97)

Ψ2(UT,RT) = UT + min(0, µmax(0,RN − UN) + RT − UT)

+ max(0,−µmax(0,RN − UN) + RT − UT) = 0
(98)

and the 3D case, they introduce the sliding angle as variable.

I citepXuewen.ea2000, another direct equation–based reformulation is presented
Ψ1(U,R) = min(UN,RN) = 0

Ψ2(U,R) = min(‖UT‖, µRN − ‖RT‖)
Ψ3(U,R) = |UT1RT2 − UT2RT1|+ max(0,UT1RT1)

(99)
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Formulation and Resolution as Variational inequalities (VI) / Complementarity Problems(CP)

VI/CP formulation

The Frictional contact 3D problem as a VI/CP problem

With the following definitions for the Cartesian product of Coulomb cones,

C =
∏

α∈Ia(q̃k+1)

Cα, C∗ =
∏

α∈Ia(q̃k+1)

Cα,∗, (100)

the following CP over cones can be written
Ûk+1 = ŴPk+1 + Ufree − G(Pk+1)

C∗ 3 Ûk+1 ⊥ Pk+1 ∈ C.

(101)

The function G : IR3a → IR3a defined by

G(P) =

[ [
µα‖[WP + Ufree]αT ‖+ eαUαN,k , 0

]
, α ∈ Ia(q̃k+1)

]T
(102)

is a nonlinear and nonsmooth function of P.
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Numerical methods for nonsmooth mechanical systems

Formulation and Resolution as Variational inequalities (VI) / Complementarity Problems(CP)

VI/CP formulation

The Frictional contact 3D problem as a VI/CP problem

The formulation in terms of VI is straightforward due to the equivalence between VIs
and CPs. The linear problem (PL) is equivalent to the following VI

(ŴPk+1 + Ufree − G(Pk+1))T (P∗ − Pk+1) > 0, for all P∗ ∈ C. (103)
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Formulation and Resolution as Variational inequalities (VI) / Complementarity Problems(CP)

VI/CP formulation

The Frictional contact 3D problem as a VI/CP problem

Projection–type methods for VI
We recall that the most basic projection–type method for the VI

F (P)T (P∗ − P) > 0, for all P∗ ∈ C (104)

is a fixed point method such that

P i+1 = projC(P i − ρF (P i )), ρ > 0. (105)

Variants: Extra–gradient, hyperplane method

Projection–type methods for VI
For the three-dimensional frictional contact, i.e. F (P) = ŴP +Ufree−G(P) , it yields

P i+1 = projC

[
(I − ρŴ )P i − ρG(P i ) + ρUfree

]
ρ > 0. (106)

This method has been initiated by De Saxcé and Feng (1991) and extensively tested in
(Feng, 1991, 1995 ; De Saxcé and Feng, 1998). The authors term this method an
Uzawa’s method for solving the variational inequality.
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Formulation and Resolution as Variational inequalities (VI) / Complementarity Problems(CP)

VI/CP formulation

The Frictional contact 3D problem as a VI/CP problem

Projection/splitting methods. The NSGS method (Jean and Moreau,
1992)

1. The Delassus operator W is usually sparse block structured in multibody
dynamics (see the formulation. The splitting is chosen to take advantage of this
structure.

2. Each subproblem of frictionless/frictional contact for a single contact α can be
either analytically solved or easily approximated.

Principle



Uα,i+1
k+1 − ŴααPα,i+1

k+1 = Uαfree +
∑
β<α

ŴαβPβ,i+1
k+1 +

∑
β>α

ŴαβPβ,ik+1

Ûα,i+1
k+1 =

[
Uα,i+1

N + eαUα
N,k + µα ||Uα,i+1

T,k+1 ||,U
α,i+1
T,k+1

]T
Cα,∗ 3 Ûα,i+1

k+1 ⊥ Pα,i+1
k+1 ∈ Cα

(107)

for all α, β ∈ Ia(q̃k+1).
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Numerical methods for nonsmooth mechanical systems

Formulation and Resolution as Variational inequalities (VI) / Complementarity Problems(CP)

VI/CP formulation

The Frictional contact 3D problem as a VI/CP problem

Possible local solvers :

I Analytical solutions for the frictionless and the 2D frictional case

I Projection onto the friction cone or the friction disk

I Local newton solver on one contact.
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Formulation and Resolution as Variational inequalities (VI) / Complementarity Problems(CP)

VI/CP formulation

The Frictional contact 3D problem as a VI/CP problem

Newton’s method for VI
the following nonsmooth equations holds

Fnat
C (P) = P − projC((I − Ŵ )P + Ufree − G(P)) = 0 (108)

or equivalently

Φ(P) = P − projC((I − ρŴ )P + ρUfree − ρG(P)) = 0, ρ > 0. (109)

Use the Clarke generalized subgradient to generate iterates such that

P i+1 = P i − H i−1Φ(P i ), with H i−1 ∈ ∂Φ(P i ). (110)
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Formulation and Resolution as Variational inequalities (VI) / Complementarity Problems(CP)

VI/CP formulation

The Frictional contact 3D problem as a VI/CP problem

C-function for CP over second order cone. Second Order Cone
Complementarity (SOCC) function.
A SOCC-function φ is defined by

K? 3 x ⊥ y ∈ K ⇐⇒ φ(x , y) = 0. (111)

Clearly, the nonsmooth equations of the previous sections provides several examples of
SOCC-functions and the natural map offers the most simplest SOCC-function.

Jordan Algebra

I In Fukushima et al. (2001), Extension of standard C-function (min and
Fischer-Burmeister) to the SOCCP by means of Jordan algebra.

I Smoothing functions are also given with theirs Jacobians and they studied their
properties in view of the application of Newton’s method.
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VI/CP formulation

The Frictional contact 3D problem as a VI/CP problem

Jordan Algebra
For the second order cone K , the Jordan algebra can be defined with the following
non-associative Jordan product,

x · y =

[
x>y

µyNxT + µxNyT

]
(112)

and the usual componentwise addition x + y . The vector x2 denotes x · x and their
exists an unique vector x1/2 ∈ K for all x ∈ K such that

(x1/2)2 = x1/2 · x1/2 = x . (113)

A direct calculation yields

x1/2 =

[
s
xT

2s

]
, where s =

√
(xN +

√
x2

N − ‖xT‖2)/2 (114)

If x = 0, we can remark that xT = 0 and then s = 0. In this case, x/2s is defined to
be zero, that is x1/2 = 0. The vector |x | ∈ K denotes (x2)1/2.
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Formulation and Resolution as Variational inequalities (VI) / Complementarity Problems(CP)

VI/CP formulation

The Frictional contact 3D problem as a VI/CP problem

Jordan Algebra
Thanks to this algebra and its associated operator, the projection onto K can be
written as

PK (x) =
x + |x |

2
. (115)

This formula provides a new expression for the natural map and its associated
nonsmooth equations. More interesting is the fact that more complicated C-functions
can be extended and smoothed version of this function can be also developed. Let us
start with the Fischer-Burmeister function for NCP that can be written

φFB(x , y) = x + y − (x2 + y2)1/2 (116)

and its smoothed version with a regularization parameter µ > 0 as

φFB,µ(x , y) = x + y − (x2 + y2 + 2µ2e)1/2 (117)

where e is the identity element of the Jordan algebra, that is e · x = x . In the same
vein, the class of smoothing function of the natural map for NCP developed in Chen
and Mangasarian (1996) is extended to SOCCP in Fukushima et al. (2001).
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Optimization based Algorithms

Optimization–based algorithms.

Principle
Try to rely the solvers for the 3D frictional contact problem on (convex) optimization
problems.
Why ?

I Reliable existing solvers may be available

I Convergence may be shown on stability arguments (decreasing an cost function)

Main approaches
Sequential convex QP on

I the Tresca’s cylinder

I the second order cone
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Optimization–based algorithms.

Tresca’s Friction
the so-called Tresca friction model can be invoked If UT = 0 then ||RT|| 6 θ

If UT 6= 0 then ||RT(t)|| = θ, and ∃ a > 0 such that RT(t) = −aUT(t)
(118)

where θ is the friction threshold.

Equivalent formulation

− U ∈ ∂ψTθ (R), or R ∈ ∂ψ∗Tθ (−U) (119)

with Tθ = IR+ ×Dθ is the friction cylinder or the Tresca cylinder and Dθ is a disk
with radius θ.
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Optimization–based algorithms.

Inclusion into the normal cone for Tresca’s friction.
Introducing the Cartesian product of the Tresca cylinders such that

T =
∏

α∈Ia(q̃k+1)

Tαθ , T∗ =
∏

α∈Ia(q̃k+1)

Tα,∗θ , (120)

the following inclusion can be written for the linear problem (PL) with Tresca’s friction

−
(
ŴPk+1 + Ue

free

)
∈ ∂ψT(Pk+1) (121)

where Ue
free = Ufree +

[[
eα ◦ Uα

N,k , 0
]
, α ∈ Ia(q̃k+1)

]T
.

Equivalent minimization problem
Under the assumption that Ŵ is a symmetric PSD matrix, we may consider the
following minimization problem

minimize
1

2
PT
k+1ŴPk+1 + PT

k+1U
e
free

subject to Pk+1 ∈ T

(122)
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Optimization–based algorithms.

Require: W,Ue
free,Ufree, µ

Require: P0
k+1

Ensure: Uk+1,Pk+1 solution of the problem (PL)
i← 0
while error > tol do
θi ← µ ◦ Pi

N,k+1

Solve (possibly inexactly) the minimization problem (122)that is

Pi+1
k+1 ← argmin

P∈T
θi

1

2
PTŴP + PTUe

free

i← i + 1
Evaluate error.

end while
Uk+1 ← ŴPk+1 + Ufree

Fixed–point algorithm on the friction threshold
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Optimization–based algorithms.

PhD Thesis of Florent Cadoux. (co-supervised with C. Lemaréchal)

I Introduce extra variable s i at each contact

s i := ‖U i
T ‖ (123)

I perform the change of variables (cf De Saxcé)

U −→ Û := U + µsn

Incremental problem 
Mv + f = H>P

Û = Hv + w + µsn

C∗ 3 Û ⊥ P ∈ C

(124)
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Optimization based Algorithms

Why should we do that ?

(124) are KKT conditions of two convex optimization problems
(SOCP: second order cone programs)

primal problem {
min J(v) := 1

2
v>Mv + f >v

Hv + w + αs ∈ C∗
(Ds)

dual problem {
min Js(P) := 1

2
P>WP − b>s P

P ∈ C
(Ps)

with W = HM−1H> and bs = αs + β

Side note: when µ = 0, incremental problem is a QP (Moreau)
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Optimization based Algorithms

Final reformulation

I Introducing
U(s) := argmin

U
(Ps) = argmin

U
(Ds)

practically computable by optimization software, and

F i (s) := ‖U i
T (s)‖,

I the incremental problem becomes

fixed point problem

F (s) = s
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Theoretical interest

Assumption

Assumption

∃v ∈ lRm : Hv + w ∈ C∗

I Interpretation: it is kinematically possible to enforce

u ∈ C∗

at each contact

I not only the intuitive uN > 0 !
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Theoretical interest

Consequence

Using the assumption,

I the application F : lRn
+ → lRn

+ is well-defined

I it is continuous

I it is bounded

I apply Brouwer’s theorem

Theorem
A fixed point exists
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Theoretical interest

Can this be used in practice ?

The fixed point equation F (s) = s can be tackled by

I fixed-point iterations
s ← F (s)

I Newton iterations
s ← Jac[F ](s)\F (s)

I Variants possible (truncated resolution of inner problem. . . )
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Theoretical interest

Does it work ?

I fixed-point iterations:
I expensive
I not very robust

I Newton:
I usually very few iterations. . .
I . . . but they are expensive

I bottleneck: SOCP solver
I practical interest is unclear yet

I more robust ?
I faster ?
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Some comparisons and advices

Comparisons between solvers

There is no thorough and systematic comparisons of the various methods Ü We need
a standard library of benchmarks (as for MCPLib).
but

I For the 3D second–order cone, there is no results of convergence of solvers if a
solution exists.

I When Ŵ has full rank, damped newton methods based on the Alart–Curnier
formulation or the SOCP formulation provides quite good results.

I When Ŵ has not full rank, the projection–splitting based (projected
gradient–like) methods provide a robust alternative but very slow convergence is
achieved. Cycling can also be noted.

I The methods based on some optimization sub–problems can provide a good
alternative to the previous methods, but their convergence are not shown.
Moreover, they need specific developments of optimization solver that take into
account the specific nature of the mechanical problem.
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Some comparisons and advices

Thank you for your attention.
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