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Motivations

Motivations

I Simulation of the mechanical behavior (statics and dynamics) of large collection
of bodies in interaction through:

I contact and impact,
I Coulomb dry friction,
I cohesive interfaces with damage and plasticity.

I Nonsmooth mechanics modeling framework:
I dedicated time–integration schemes,
I numerical optimization solvers for SOCCP.

I Applications in mining and geotechnical engineering.
I granular flows,
I fracture processes,
I rock stability.
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Nonsmooth modeling of mechanical systems

Smooth multibody dynamics

Equations of motion

8
>>>>>>><

>>>>>>>:

M(q)
dv

dt
+ F (t, q, v) = 0,

v = q̇

q(t0) = q0 2 IRn, v(t0) = v0 2 IRn,

(1)

where

I F (t, q, v) = N(q, v) + Fint(t, q, v)� Fext(t)
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Nonsmooth modeling of mechanical systems

Unilateral contact and impact

Body A

Body B
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I Unilateral contact (Signorini condition)

0 6 gN(q) ? RN > 0 (2)

Complementarity condition

I Local relative velocity at contact

U =


UN

UT

�
= GT (q)v (3)

I Impact Law (Newton Impact law)

U+
N = �e U�

N (4)

e is the coe�cient of restitution.
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Nonsmooth modeling of mechanical systems

Coulomb’s friction

Coulomb’s friction
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�û
�û
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Coulomb’s friction says the following:
If gN(q) = 0 then:

8
<

:

If UT = 0 then R 2 K
If UT 6= 0 then ||RT(t)|| = µ|RN| and there exists a scalar a > 0

such that RT = �aUT

(5)
where K = {R, ||RT|| 6 µ|RN| } is the Coulomb friction cone

Maximum dissipation principle in the tangent plane [Moreau, 1974].

max
RT2D(µRN)

�UT
T RT (6)
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Nonsmooth modeling of mechanical systems

Coulomb’s friction as a Second–Order Cone Complementarity Problem
(SOCCP)
Let us introduce the modified velocity bU defined by

bU = [UN + µ ||UT||,UT]T . (7)

This notation provides us with a synthetic form of the Coulomb friction as

� bU 2 INK(R), (8)

or
K⇤ 3 bU ? R 2 K. (9)

where K⇤ = {v 2 IRn | rT v > 0, 8r 2 K} is the dual cone.
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Nonsmooth modeling of mechanical systems

Nonsmooth cohesive zone model

160 3 Mechanical Systems with Unilateral Constraints and Friction
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Fig. 3.8. Uniaxial traction/compression test in the normal direction
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Nonsmooth modeling of mechanical systems

Nonsmooth cohesive zone model
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Nonsmooth modeling of mechanical systems

Nonsmooth Lagrangian Dynamics

Fundamental assumptions.

I The velocity v = q̇ is assumed to of Bounded Variations (B.V) and
right–continuous

v+ = q̇+ (10)

I q is an absolutely continuous function such that

q(t) = q(t0) +

Z t

t0

v+(t) dt (11)

I The acceleration (q̈ in the usual sense) is hence a di↵erential measure dv
associated with v such that

dv((a, b]) =

Z

(a,b]
dv = v+(b)� v+(a) (12)
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Nonsmooth modeling of mechanical systems

Nonsmooth Lagrangian Dynamics

Definition 1 (Nonsmooth Lagrangian Dynamics)

8
><

>:

M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

(13)

where di is the reaction measure and dt is the Lebesgue measure.

Remarks

I The nonsmooth Dynamics contains the impact equations and the smooth
evolution in a single equation.

I The formulation allows one to take into account very complex behaviors,
especially, finite accumulation (Zeno-state).

I This formulation is sound from a mathematical Analysis point of view.

References
[Schatzman, 1973, 1978, Moreau, 1983, 1988]
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Nonsmooth modeling of mechanical systems

Nonsmooth Lagrangian Dynamics

Measures Decomposition (for dummies)

⇢
dv = � dt+ (v+ � v�) d⌫+ dvs
di = f dt+ p d⌫+ dis

(14)

where

I � = q̈ is the acceleration defined in the usual sense.

I f is the Lebesgue measurable force,

I v+ � v� is the di↵erence between the right continuous and the left continuous
functions associated with the B.V. function v = q̇,

I d⌫ is a purely atomic measure concentrated at the time ti of discontinuities of v ,
i.e. where (v+ � v�) 6= 0,i.e. d⌫ =

P
i �ti

I p is the purely atomic impact percussions such that pd⌫ =
P

i pi�ti
I dvS and diS are singular measures with the respect to dt + d⌘.
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Nonsmooth modeling of mechanical systems

Impact equations and Smooth Lagrangian dynamics

Substituting the decomposition of measures into the nonsmooth Lagrangian
Dynamics, one obtains

Impact equations

M(q)(v+ � v�)d⌫ = pd⌫, (15)

or
M(q(ti ))(v

+(ti )� v�(ti )) = pi , (16)

Smooth Dynamics between impacts

M(q)�dt + F (t, q, v)dt = fdt (17)

or

M(q)�+ + F (t, q, v+) = f + [dt � a.e.] (18)
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Nonsmooth modeling of mechanical systems

The Moreau’s sweeping process of second order

Moreau [1983, 1988]
A key stone of this formulation is the inclusion in terms of velocity.

8
>>>>>>>>>><

>>>>>>>>>>:

M(q)dv + F (t, q, v+)dt = di = G(q)dI

v+ = q̇+

U+ = GT (q)v+

gN(q) 6 0 =) 0 6 U+ + eU� ? dI > 0

(19)

Comments

�dI 2 NTIR+
(gN(q))(U

+) (20)

This formulation provides a common framework for the nonsmooth dynamics
containing inelastic impacts without decomposition.

‹ Foundation of the time–stepping approaches.
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Nonsmooth modeling of mechanical systems

Numerical methods for the simulation
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Numerical methods for the simulation

Principle of nonsmooth event capturing methods (Time–stepping schemes)

1. A unique formulation of the dynamics is considered. For instance, a dynamics in
terms of measures. 8

><

>:

�mdv = di

q = v̇+

0 6 di ? v̇+ > 0 if q 6 0

(21)

2. The time-integration is based on a consistent approximation of the equations in
terms of measures. For instance,

Z

]tk ,tk+1]
dv =

Z

]tk ,tk+1]
dv = (v+(tk+1)� v+(tk )) ⇡ (vk+1 � vk ) (22)

3. Consistent approximation of measure inclusion.

�di 2 NTC (t)(v
+(t)) (23) ‹

8
>>><

>>>:

pk+1 ⇡
Z

]tk ,tk+1]
di

pk+1 2 NK(t)(vk+1)

(24)
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Numerical methods for the simulation

Time Discretization of the nonsmooth dynamics

For sake of simplicity, the linear time invariant case is only considered.

(
Mdv + (Kq + Cv+) dt = Fext dt + di .

v+ = q̇+ (25)

Integrating both sides of this equation over a time step ]tk , tk+1] of length h,

8
>>>>><

>>>>>:

Z

]tk ,tk+1]
Mdv +

Z tk+1

tk

Cv+ + Kq dt =

Z tk+1

tk

Fext dt +

Z

]tk ,tk+1]
di ,

q(tk+1) = q(tk ) +

Z tk+1

tk

v+ dt .

(26)

By definition of the di↵erential measure dv ,
Z

]tk ,tk+1]
M dv = M

Z

]tk ,tk+1]
dv = M (v+(tk+1)� v+(tk )) . (27)

Note that the right velocities are involved in this formulation.
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Numerical methods for the simulation

Time Discretization of the nonsmooth dynamics

The equation of the nonsmooth motion can be written under an integral form as:

8
>>>>><

>>>>>:

M (v(tk+1)� v(tk )) =

Z tk+1

tk

�Cv+ � Kq + Fext dt +

Z

]tk ,tk+1]
di ,

q(tk+1) = q(tk ) +

Z tk+1

tk

v+ dt .

(28)

The following notations will be used:

I qk ⇡ q(tk ) and qk+1 ⇡ q(tk+1),

I vk ⇡ v+(tk ) and vk+1 ⇡ v+(tk+1),

Impulse as primary unknown

The impulse

Z

]tk ,tk+1]
di of the reaction on the time interval ]tk , tk+1] emerges as a

natural unknown. we denote

pk+1 ⇡
Z

]tk ,tk+1]
di
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Numerical methods for the simulation

Time Discretization of the nonsmooth dynamics

Interpretation
The measure di may be decomposed as follows :

di = f dt + pd⌫

where

I f dt is the abs. continuous part of the measure di , and

I pd⌫ the atomic part.

Two particular cases:

I Impact at t⇤ 2]tk , tk+1] : If f = 0 and pd⌫ = p�tk+1 then

pk+1 = p

I Continuous force over ]tk , tk+1] : If di = fdt and p = 0 then

pk+1 =

Z tk+1

tk

f (t) dt
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Numerical methods for the simulation

Time Discretization of the nonsmooth dynamics

Remark

I A pointwise evaluation of a (Dirac) measure is a non sense. It practice using the
value

fk+1 ⇡ f (tk+1)

yield severe numerical inconsistencies, since

lim
h!0

fk+1 = +1

I Since discontinuities of the derivative v are to be expected if some shocks are
occurring, i.e. di has some Dirac atoms within the interval ]tk , tk+1], it is not
relevant to use high order approximations integration schemes for di . It may be
shown on some examples that, on the contrary, such high order schemes may
generate artefact numerical oscillations.
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Numerical methods for the simulation

Time Discretization of the nonsmooth dynamics

Discretization of smooth terms
✓-method is used for the term supposed to be su�ciently smooth,

Z tk+1

tk

Cv + Kq dt ⇡ h [✓(Cvk+1 + Kqk+1) + (1� ✓)(Cvk + Kqk )]

Z tk+1

tk

Fext(t) dt ⇡ h [✓(Fext)k+1 + (1� ✓)(Fext)k ]

The displacement, assumed to be absolutely continuous is approximated by:

qk+1 = qk + h [✓vk+1 + (1� ✓)vk ] .
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Numerical methods for the simulation

Time Discretization of the nonsmooth dynamics

Finally, introducing the expression of qk+1 in the first equation of (27), one obtains:

⇥
M + h✓C + h2✓2K

⇤
(vk+1 � vk ) = �hCvk � hKqk � h2✓Kvk

+h [✓(Fext)k+1) + (1� ✓)(Fext)k ] + pk+1 , (29)

which can be written :

vk+1 = vfree + bM�1pk+1 (30)

where,

I the matrix bM =
⇥
M + h✓C + h2✓2K

⇤
is usually called the iteration matrix and,

I The vector

vfree = vk + bM�1
⇥
� hCvk � hKqk � h2✓Kvk

+h [✓(Fext)k+1) + (1� ✓)(Fext)k ]
⇤

is the so-called “free” velocity, i.e. the velocity of the system when reaction
forces are null.
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Numerical methods for the simulation

Time Discretization of the kinematics relations

According to the implicit mind, the discretization of kinematic laws is proposed as
follows.
For a constraint ↵,

U↵
k+1 = H↵T (qk ) vk+1 ,

p↵k+1 = H↵(qk ) P↵
k+1 , pk+1 =

X

↵

p↵k+1 ,

where

P↵
k+1 ⇡

Z

]tk ,tk+1]
d�↵.

For the unilateral constraints, it is proposed

g↵
k+1 = g↵

k + h
h
✓U↵

k+1 + (1� ✓)U↵
k

i
.
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Numerical methods for the simulation

Discretization of the unilateral constraints

Recall that the unilateral constraint is expressed in terms of velocity as

�di 2 NTC (q)(v
+) (31)

or in local coordinates as

�d�↵ 2 NTIR+ (g(q))(U
↵,+) (32)

The time discretization is performed by

�P↵
k+1 2 NTIR+ (g↵(q̃k+1))(U

↵
k+1) (33)

where q̃k+1 is a forecast of the position for the activation of the constraints, for
instance,

q̃k+1 = qk +
h

2
vk

In the complementarity formalism, we obtain

if g↵(q̃k+1) 6 0, then 0 6 U↵
k+1 ? P↵

k+1 > 0
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Numerical methods for the simulation

Summary of the time discretized equations

One step linear problem

(
vk+1 = vfree + bM�1pk+1

qk+1 = qk + h [✓vk+1 + (1� ✓)vk ]

Relations

(
U↵
k+1 = H↵T (qk ) vk+1

p↵k+1 = H↵(qk ) P↵
k+1

Nonsmooth Law

(
if g↵(q̃k+1) 6 0, then

0 6 U↵
k+1 ? P↵

k+1 > 0

One step LCP

Uk+1 = HT (qk )vfree + HT (qk ) bM�1H(qk ) Pk+1

if g↵
p 6 0, then 0 6 U↵

k+1 ? P↵
k+1 > 0
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Numerical methods for the simulation

Moreau’s Time stepping scheme

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

M(qk+✓)(vk+1 � vk )� hF̃k+✓ = H(qk+✓)Pk+1, (34a)

qk+1 = qk + hvk+✓, (34b)

Uk+1 = HT (qk+✓) vk+1 (34c)

�Pk+1 2 @ TIRm
+

(ỹk+� )(Uk+1 + eUk ), (34d)

ỹk+� = yk + h�Uk , � 2 [0, 1]. (34e)

with ✓ 2 [0, 1], � > 0 and xk+↵ = (1� ↵)xk+1 + ↵xk and ỹk+� is a prediction of the
constraints.

Properties

I Convergence results for one constraints

I Convergence results for multiple constraints problems with acute kinetic angles

I No theoretical proof of order
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Numerical methods for the simulation

Schatzman–Paoli’s Time stepping scheme

8
>>>>>>>><

>>>>>>>>:

M(qk + 1)(qk+1 � 2qk + qk�1)� h2F (tk+✓, qk+✓, vk+✓) = pk+1, (35a)

vk+1 =
qk+1 � qk�1

2h
, (35b)

�pk+1 2 NK

✓
qk+1 + eqk�1

1 + e

◆
, (35c)

where NK defined the normal cone to K .
For K = {q 2 IRn, y = g(q) > 0}

0 6 g

✓
qk+1 + eqk�1

1 + e

◆
? rg

✓
qk+1 + eqk�1

1 + e

◆
Pk+1 > 0 (36)

Properties

I Convergence results for one constraints

I Convergence results for multiple constraints problems with acute kinetic angles

I No theoretical proof of order
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Numerical methods for the simulation

State–of–the–art

Numerical time–integration methods for Nonsmooth Multibody systems (NSMBS):

Nonsmooth event capturing methods (Time–stepping methods)

� robust, stable and proof of convergence

� low kinematic level for the constraints

� able to deal with finite accumulation

⌫ very low order of accuracy even in free flight motions

Two main implementations

I Moreau–Jean time–stepping scheme

I Schatzman–Paoli time–stepping scheme
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Numerical methods for the simulation

Comparison

Shared mathematical properties

I Convergence results for one constraints

I Convergence results for multiple constraints problems with acute kinetic angles

I No theoretical proof of order

Mechanical properties

I Position vs. velocity constraints

I Respect of the impact law in one step (Moreau) vs. Two-steps(Schatzman)

I Linearized constraints rather than nonlinear.
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Numerical methods for the simulation

Signorini’s condition and Coulomb’s friction

Modeling assumption
Let µ be the coe�cient of friction. Let us define the Coulomb friction cone K which is
chosen as the isotropic second order cone

K = {r 2 IR3 | krTk 6 µrn}. (37)

The Coulomb friction states

I for the sticking case that
uT = 0, r 2 K (38)

I and for the sliding case that

uT 6= 0, r 2 @K , 9↵ > 0, rT = �↵uT. (39)

Disjunctive formulation of the frictional contact behavior
8
>><

>>:

r = 0 if gN > 0 (no contact)
r = 0, uN > 0 if gN 6 0 (take–o↵)
r 2 K , u = 0 if gN 6 0 (sticking)
r 2 @K , uN = 0, 9↵ > 0, uT = �↵rT if gN 6 0 (sliding)

(40)
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Numerical methods for the simulation

Signorini’s condition and Coulomb’s friction

Second Order Cone Complementarity (SOCCP) formulation De Saxcé
[1992]

I Modified relative velocity û 2 IR3 defined by

û = u + µkuTkN. (41)

I Second-Order Cone Complementarity Problem (SOCCP)

K? 3 û ? r 2 K (42)

if gN 6 0 and r = 0 otherwise. The set K? is the dual convex cone to K defined
by

K? = {u 2 IR3 | r>u > 0, for all r 2 K}. (43)
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Numerical methods for the simulation

Signorini’s condition and Coulomb’s friction
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Figure: Coulomb’s friction and the modified velocity û. The sliding case.
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Numerical methods for the simulation

3D frictional contact problem

Multiple contact notation
For each contact ↵ 2 {1, . . . nc}, we have

I the local velocity : u↵ 2 IR3, and

u = [[u↵]>,↵ = 1 . . . nc ]
>

I the local reaction vector r↵ 2 IR3

r = [[r↵]>,↵ = 1 . . . nc ]
>

I the local Coulomb cone

K↵ = {r↵, kr↵T k 6 µ↵|r↵N |} ⇢ IR3

and the set K is the cartesian product of Coulomb’s friction cone at each
contact, that

K =
Y

↵=1...nc

K↵ (44)

and K? is dual.
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Numerical methods for the simulation

3D frictional contact problems

Problem 2 (General discrete frictional contact problem)
Given

I a symmetric positive definite matrix M 2 IRn⇥n,

I a vector f 2 IRn,

I a matrix H 2 IRn⇥m,

I a vector w 2 IRm,

I a vector of coe�cients of friction µ 2 IRnc ,

find three vectors v 2 IRn, u 2 IRm and r 2 IRm, denoted by FC/I(M,H, f ,w , µ) such
that 8

>>>>>>><

>>>>>>>:

Mv = Hr + f

u = H>v + w

û = u + g(u)

K? 3 û ? r 2 K

(45)

with g(u) = [[µ↵ku↵T kN↵]>,↵ = 1 . . . nc ]>.

Numerical methods for the simulation – 34/49



The nonsmooth contact dynamics method for the simulation of granular matter flows and fracture in mining applications

Numerical methods for the simulation

3D frictional contact problems

Problem 3 (Reduced discrete frictional contact problem)
Given

I a symmetric positive semi–definite matrix W 2 IRm⇥m,

I a vector q 2 IRm,

I a vector µ 2 IRnc of coe�cients of friction,

find two vectors u 2 IRm and r 2 IRm, denoted by FC/II(W , q, µ) such that

8
>>><

>>>:

u = Wr + q

û = u + g(u)

K? 3 û ? r 2 K

(46)

with g(u) = [[µ↵ku↵T kN↵]>,↵ = 1 . . . nc ]>.

Relation with the general problem
W = H>M�1H and q = H>M�1f + w .
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Numerical methods for the simulation

3D frictional contact problems

Wide range of applications
Origin of the linear relations .

Mv = Hr + f , u = H>v + w

I Time–discretization of the discrete dynamical mechanical system
I Event–capturing time–stepping schemes
I Event–detecting time–stepping schemes (event-driven)

I Time–discretization and space discretization of the elasto dynamic problem of
solids

I Space discretization of the quasi–static problem of solids.

with a possible linearization (Newton procedure.)

‹ These problems are really representative of a lot of applications.
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Numerical methods for the simulation

From the mathematical programming point of view

Nonmonotone and nonsmooth problem

K? 3Wr + q + g(Wr + q) ? r 2 K (47)

I if we neglect g(·), (47) is a gentle monotone SOCLCP that is the KKT
conditions of a convex SOCQP.

I otherwise, the problem is nonmonotone and nonsmooth since g() is nonsmooth

‹ The problem is very hard to solve e�ciently.

Possible reformulation

I Variational inequality or normal cone inclusion

� (Wr + q + g(Wr + q))
�
= �F (r) 2 NK (r). (48)

I Nonsmooth equations G(r) = 0
• The natural map F nat associated with the VI (48) F nat(z) = z � PX (z � F (z)).
• Variants of this map (Alart-Curnier formulation, . . . )
• one of the SOCCP-functions. (Fisher-Bursmeister function)

I and many other ...
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Numerical methods for the simulation

VI based methods

Standard methods

I Basic fixed point iterations with projection

zk+1  PX(zk � ⇢k F(zk))

I Extragradient method

zk+1  PX(zk � ⇢k F(PX(zk � ⇢kF(zk))))

I Hyperplane projection method

Self-adaptive procedure for ⇢k
For instance,

mk 2 IN such that
⇢k = ⇢2mk ,

⇢kkF (zk )� F (z̄k )k 6 kzk � z̄kk
(49)
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Numerical methods for the simulation

Nonsmooth Equations based methods

Nonsmooth Newton on G (z) = 0

zk+1 = zk � ��1(zk )(G(zk )), �(zk ) 2 @G(zk )

I Alart–Curnier Formulation Alart and Curnier [1991]

(
rN � PIRnc

+
(rN � ⇢NuN) = 0,

rT � PD(µ,rN,+)(rT � ⇢TuT) = 0,
(50)

I Direct normal map reformulation

r � PK (r � ⇢(u + g(u))) = 0

I Extension of Fischer-Burmeister function to SOCCP

�FB(x , y) = x + y � (x2 + y2)1/2

with Jordan product and square root
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Numerical methods for the simulation

Matrix block-splitting and projection based algorithms Moreau [1994], Jean
and Touzot [1988]

Block splitting algorithm with W

↵↵ 2 IR

3

8
>>>>>>>><

>>>>>>>>:

u↵i+1 �W↵↵P↵
i+1 = q↵ +

X

�<↵

W↵�r�i+1 +
X

�>↵

W↵�r�i

bu↵i+1 =
h
u↵

N,i+1 + µ↵ ||u↵
T,i+1||, u

↵
T,i+1

iT

K↵,⇤ 3 bu↵i+1 ? r↵i+1 2 K↵

(51)

for all ↵ 2 {1 . . .m}.

One contact point problem

I closed form solutions

I Any solver listed before.
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Numerical methods for the simulation

Proximal point technique Moreau [1962, 1965], Rockafellar [1976]

Principle
We want to solve

min
x

f (x) (52)

We define the approximation problem for a given xk

min
x

f (x) + ⇢kx � xkk2 (53)

with the optimal point x?.

x?
�
= proxf ,⇢(xk ) (54)

Proximal point algorithm

xk+1 = proxf ,⇢k (xk )

Special case for solving G (x) = 0

f (x) =
1

2
G>(x)G(x)
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Numerical methods for the simulation

Optimization based methods

I Successive approximation with Tresca friction (Haslinger et al.)

8
>>><

>>>:

✓ = h(rN)

min
1

2
r>Wr + r>q

s.t. r 2 C(µ, ✓)

(55)

where C(µ, ✓) is the cylinder of radius µ✓.

I Fixed point on the norm of the tangential velocity [A., Cadoux, Lemaréchal,
Malick(2011)] . 8

>>><

>>>:

s = kuTk

min
1

2
r>Wr + r>(q + ↵s)

s.t. r 2 K

(56)

Fixed point or Newton Method on F (s) = s

I Alternating optimization problems (Panagiotopoulos et al.)
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Numerical methods for the simulation

Siconos/Numerics

Siconos

Open source software for modelling and simulation of nonsmooth systems

Siconos/Numerics

Collection of C routines to solve FC3D problem

I NonSmoothGaussSeidel : VI based projection/splitting algorithm

I TrescaFixedPoint : fixed point algorithm on Tresca fixed point

I LocalAlartCurnier : semi–smooth newton method of Alart–Curnier formulation

I ProximalFixedPoint : proximal point algorithm

I VIFixedPointProjection : VI based fixed-point projection

I VIExtragradient : VI based extra-gradient method

I . . .

http://siconos.gforge.inria.fr

use and contribute ...
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Numerical methods for the simulation

Applications applications in mining and geotechnical engineering
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Applications in mining and geotechnical engineering

Fields of expertise

Mechanical systems with contact, friction, impacts or cohesive interfaces
Modelling and numerical simulations of:

I Granular matter (flows, quasi-static equilibria, dense packing)

I Fracture dynamics.

I Jointed rock mechanics.

I Fluid/Granular flows (sedimentation).

I Multibody system dynamics.

Numerical methods are a kind of Discrete Element method (DEM), but

I Hard contact laws. (Nonsmooth Dynamics)

I Real Coulomb friction

I Enhanced cohesive zone model (CZM) with elasticity, damage
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Applications in mining and geotechnical engineering

Possible applications in mining industry and geotechnical applications.

Mines engineering process of ore

I Ore (granular) transport and transfer chutes (conveyor)

I Stirred mills, SAG mills, crushers and High Pressure Grinding Rolls

I E�cient separation, screening performance,

I Surface wear.

I Fluid flows with grains (sedimentation and transports)

Geotechnical engineering

I Rocky and snow avalanches

I Stability of jointed rock mass

I Earthquake engineering (friction and instability)
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Applications in mining and geotechnical engineering

Possible applications in mining industry.

Stability of Rock masses
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Applications in mining and geotechnical engineering

Starting studies for mines in Chile

Flows and filling process of a hopper

Acquisition of real geometries and flows data in progress for the “El Teniente” mine
(Codelco)
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Starting studies for mines in Chile

Studies of fracture processes in block caving techniques
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Ilustración 2.2-1 Diseño de Macro Bloques y Niveles de Explotación   

 
Las obras y/o actividades de cada etapa del PMCHS que son sometidas a evaluación están 
indicadas en el Cuadro 2.2-1. La descripción del Proyecto se ha dividido en cuatro tipos de 
obras y actividades, las que se desarrollan tanto en la etapa de construcción como de 
operación, y corresponden a: 
 
• Obras de Infraestructura;  
• Actividades de Preparación Mina; 
• Actividades de Producción; 
• Actividades de Cierre. 
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Applications in mining and geotechnical engineering

Starting studies for mines in Chile

Studies of fracture processes in block caving techniques
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Applications in mining and geotechnical engineering

Starting studies for mines in Chile

Studies of fracture processes in block caving techniques

Fault

Risk of flow of waste !!

Weak rock

Strong Rock

Exploitation levels

Open pit

Academic study in progress for the “Chuquicamata” mine (Codelco)
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V. Acary, F. Cadoux, C. Lemaréchal, and J. Malick. A formulation of the linear discrete coulomb friction problem via convex optimization.
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 91(2):155–175,
2011. ISSN 1521-4001. doi: 10.1002/zamm.201000073. URL http://dx.doi.org/10.1002/zamm.201000073.

P. Alart and A. Curnier. A mixed formulation for frictional contact problems prone to Newton like solution method. Computer Methods in
Applied Mechanics and Engineering, 92(3):353–375, 1991.
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1473–1476, 1983.

J.J. Moreau. Unilateral contact and dry friction in finite freedom dynamics. In J.J. Moreau and Panagiotopoulos P.D., editors, Nonsmooth
Mechanics and Applications, number 302 in CISM, Courses and lectures, pages 1–82. CISM 302, Spinger Verlag, Wien- New York,
1988. Formulation mathematiques tire du livre Contacts mechanics.

J.J. Moreau. Some numerical methods in multibody dynamics: Application to granular materials. European Journal of Mechanics -
A/Solids, supp.(4):93–114, 1994.

R.T. Rockafellar. Augmented lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of
Operations research, 1(2):97–116, 1976.
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