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Bio.
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I Nonsmooth dynamical systems : Modeling, analysis, simulation and Control.

I Nonsmooth Optimization : Analysis & algorithms.

Personal research themes

I Nonsmooth Dynamical systems. Higher order Moreau’s sweeping process.
Complementarity systems and Filippov systems

I Modeling and simulation of switched electrical circuits

I Discretization method for sliding mode control and Optimal control.

I Formulation and numerical solvers for Coulomb’s friction and Signorini’s problem.
Second order cone programming.

I Time–integration techniques for nonsmooth mechanical systems : Mixed higher
order schemes, Time–discontinuous Galerkin methods, Projected time–stepping
schemes and generalized α–schemes.
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Mechanical systems with contact, impact and friction

Simulation of Circuit breakers (INRIA/Schneider Electric)

Flexible multibody systems.
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Mechanical systems with contact, impact and friction
Simulation of the ExoMars Rover (INRIA/Trasys Space/ESA)

Flexible multibody systems.
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Mechanical systems with contact, impact and friction

Simulation of wind turbines (DYNAWIND project)
Joint work with O. Brüls, Q.Z. Chen and G. Virlez (Université de Liège)

Flexible multibody systems.
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Mechanical systems with contact, impact and friction

Simulation of Tilt rotor. (Politechnico di Milano, Masarati, P.)

Flexible multibody systems.
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Objectives & Motivations

Objectives & Motivations

Outline
I Basic facts on nonsmooth dynamics and its time integration

I Measure differential inclusion
I Time–stepping schemes (Moreau–Jean and Schatzman–Paoli)

I Newmark based schemes for nonsmooth dynamics
I Splitting impulsive and non impulsive forces
I Velocity level constraints and impact law

I Simple Energy Analysis
I Impact in flexible structures

I jump in velocity or standard impact ?
I coefficient of restitution in flexible structure.
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Objectives & Motivations

Objectives & Motivations
Problem setting
Measures Decomposition

The Moreau’s sweeping process
State–of–the–art

Background
Newmark’s scheme.
HHT scheme
Generalized α-methods

Newmark’s scheme and the α–methods family

Nonsmooth Newmark’s scheme
Time–continuous energy balance equations
Energy analysis for Moreau–Jean scheme
Energy Analysis for the Newmark scheme

Energy Analysis
The impacting beam benchmark

Discussion and FEM applications
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Background

Problem setting

NonSmooth Multibody Systems

Scleronomous holonomic perfect unilateral constraints



M(q(t))v̇ = F (t, q(t), v(t)) + G(q(t))λ(t), a.e

q̇(t) = v(t),

g(t) = g(q(t)), ġ(t) = G T (q(t))v(t),

0 6 g(t) ⊥ λ(t) > 0,

ġ+(t) = −eġ−(t),

(1)

where G(q) = ∇g(q) and e is the coefficient of restitution.
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Background

Problem setting

Unilateral constraints as an inclusion

Definition (Perfect unilateral constraints on the smooth dynamics)

q̇ = v

M(q)
dv

dt
+ F (t, q, v) = r

−r ∈ NC(t)(q(t))

(2)

where r it the generalized force or generalized reaction due to the constraints.

Remark

I The unilateral constraints are said to be perfect due to the normality condition.

I Notion of normal cones can be extended to more general sets. see (Clarke, 1975,
1983 ; Mordukhovich, 1994)

I When C(t) = {q ∈ IRn, gα(q, t) > 0, α ∈ {1 . . . ν}}, the multipliers λ ∈ IRm such
that r = ∇T

q g(q, t)λ.
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Background

Problem setting

Nonsmooth Lagrangian Dynamics

Fundamental assumptions.

I The velocity v = q̇ is of Bounded Variations (B.V)
Ü The equation are written in terms of a right continuous B.V. (R.C.B.V.)
function, v+ such that

v+ = q̇+ (3)

I q is related to this velocity by

q(t) = q(t0) +

∫ t

t0

v+(t) dt (4)

I The acceleration, ( q̈ in the usual sense) is hence a differential measure dv
associated with v such that

dv(]a, b]) =

∫
]a,b]

dv = v+(b)− v+(a) (5)
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Background

Problem setting

Nonsmooth Lagrangian Dynamics

Definition (Nonsmooth Lagrangian Dynamics)
M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

(6)

where di is the reaction measure and dt is the Lebesgue measure.

Remarks

I The nonsmooth Dynamics contains the impact equations and the smooth
evolution in a single equation.

I The formulation allows one to take into account very complex behaviors,
especially, finite accumulation (Zeno-state).

I This formulation is sound from a mathematical Analysis point of view.

References
(Schatzman, 1973, 1978 ; Moreau, 1983, 1988)
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Background

Measures Decomposition

Nonsmooth Lagrangian Dynamics

Measures Decomposition (for dummies){
dv = γ dt+ (v+ − v−) dν+ dvs

di = f dt+ p dν+ dis
(7)

where

I γ = q̈ is the acceleration defined in the usual sense.

I f is the Lebesgue measurable force,

I v+ − v− is the difference between the right continuous and the left continuous
functions associated with the B.V. function v = q̇,

I dν is a purely atomic measure concentrated at the time ti of discontinuities of v ,
i.e. where (v+ − v−) 6= 0,i.e. dν =

∑
i δti

I p is the purely atomic impact percussions such that pdν =
∑

i piδti

I dvS and diS are singular measures with the respect to dt + dη.
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Background

Measures Decomposition

Impact equations and Smooth Lagrangian dynamics

Substituting the decomposition of measures into the nonsmooth Lagrangian
Dynamics, one obtains

Definition (Impact equations)

M(q)(v+ − v−)dν = pdν, (8)

or
M(q(ti ))(v+(ti )− v−(ti )) = pi , (9)

Definition (Smooth Dynamics between impacts)

M(q)γdt + F (t, q, v)dt = fdt (10)

or

M(q)γ+ + F (t, q, v+) = f + [dt − a.e.] (11)
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The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Definition (Moreau (1983, 1988))
A key stone of this formulation is the inclusion in terms of velocity. Indeed, the
inclusion (2) is “replaced” by the following inclusion

M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

−di ∈ NTC (q)(v+)

(12)

Comments
This formulation provides a common framework for the nonsmooth dynamics
containing inelastic impacts without decomposition.
Ü Foundation for the Moreau–Jean time–stepping approach.
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The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Comments

I The inclusion concerns measures. Therefore, it is necessary to define what is the
inclusion of a measure into a cone.

I The inclusion in terms of velocity v+ rather than of the coordinates q.

Interpretation

I Inclusion of measure, −di ∈ K
I Case di = r ′dt = fdt.

−f ∈ K (13)

I Case di = piδi .
−pi ∈ K (14)

I Inclusion in terms of the velocity. Viability Lemma
If q(t0) ∈ C(t0), then

v+ ∈ TC (q), t > t0 ⇒ q(t) ∈ C(t), t > t0

Ü The unilateral constraints on q are satisfied. The equivalence needs at least an
impact inelastic rule.
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The Moreau’s sweeping process

The Moreau’s sweeping process of second order

The Newton-Moreau impact rule

− di ∈ NTC (q(t))(v+(t) + ev−(t)) (15)

where e is a coefficient of restitution.

Velocity level formulation. Index reduction

0 6 y ⊥ λ > 0
m

−λ ∈ NIR+ (y)
⇑

−λ ∈ NTIR+ (y)(ẏ)

m
if y 6 0 then 0 6 ẏ ⊥ λ > 0

(16)
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The Moreau’s sweeping process

The Moreau’s sweeping process of second order

The case of C is finitely represented

C = {q ∈M(t), gα(q) > 0, α ∈ {1 . . . ν}} . (17)

Decomposition of di and v+ onto the tangent and the normal cone.

di =
∑
α

∇T
q gα(q) dλα (18)

U+
α = ∇qgα(q) v+, α ∈ {1 . . . ν} (19)

Complementarity formulation (under constraints qualification condition)

− dλα ∈ NTIR+
(gα)(U+

α )⇔ if gα(q) 6 0, then 0 6 U+
α ⊥ dλα > 0 (20)

The case of C is IR+

− di ∈ NC (q)⇔ 0 6 q ⊥ di > 0 (21)

is replaced by

− di ∈ NTC (q)(v+)⇔ if q 6 0, then 0 6 v+ ⊥ di > 0 (22)
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The Moreau’s sweeping process

State–of–the–art

Principle of nonsmooth event capturing methods (Time–stepping schemes)

1. A unique formulation of the dynamics is considered. For instance, a dynamics in
terms of measures. 

−mdu = dr

q = u̇+

0 6 dr ⊥ u̇+ > 0 if q 6 0

(23)

2. The time-integration is based on a consistent approximation of the equations in
terms of measures. For instance,∫

]tk ,tk+1]
du =

∫
]tk ,tk+1]

du = (v+(tk+1)− v+(tk )) ≈ (uk+1 − uk ) (24)

3. Consistent approximation of measure inclusion.

−dr ∈ NK(t)(u+(t)) (25)
Ü


pk+1 ≈

∫
]tk ,tk+1]

dr

pk+1 ∈ NK(t)(uk+1)

(26)
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The Moreau’s sweeping process

State–of–the–art

State–of–the–art

Numerical time–integration methods for Nonsmooth Multibody systems (NSMBS):

Nonsmooth event capturing methods (Time–stepping methods)

� robust, stable and proof of convergence

� low kinematic level for the constraints

� able to deal with finite accumulation

� very low order of accuracy even in free flight motions

Two main implementations

I Moreau–Jean time–stepping scheme

I Schatzman–Paoli time–stepping scheme
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The Moreau’s sweeping process

State–of–the–art

Moreau’s Time stepping scheme (Moreau, 1988 ; Jean, 1999)

Principle



M(qk+θ)(vk+1 − vk )− hFk+θ = pk+1 = G(qk+θ)Pk+1, (27a)

qk+1 = qk + hvk+θ, (27b)

Uk+1 = G T (qk+θ) vk+1 (27c)

0 6 Uαk+1 + eUαk ⊥ Pαk+1 > 0 if ḡαk,γ 6 0

Pαk+1 = 0 otherwise
. (27d)

with

I θ ∈ [0, 1]

I xk+θ = (1− θ)xk+1 + θxk

I Fk+θ = F (tkθ, qk+θ, vk+θ)

I ḡk,γ = gk + γhUk , , γ > 0 is a prediction of the constraints.
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The Moreau’s sweeping process

State–of–the–art

Schatzman’s Time stepping scheme (Paoli and Schatzman, 2002)

Principle



M(qk+1)(qk+1 − 2qk + qk−1)− h2Fk+θ = pk+1, (28a)

vk+1 =
qk+1 − qk−1

2h
, (28b)

−pk+1 ∈ NK

(
qk+1 + eqk−1

1 + e

)
, (28c)

where NK defined the normal cone to K .
For K = {q ∈ IRn, y = g(q) > 0}

0 6 g

(
qk+1 + eqk−1

1 + e

)
⊥ ∇g

(
qk+1 + eqk−1

1 + e

)
Pk+1 > 0 (29)

The Moreau’s sweeping process – 19/72



Time-integration of flexible multi-body systems with contact. Newmark based schemes and the coefficient of restitution

The Moreau’s sweeping process

State–of–the–art

Comparison

Shared mathematical properties

I Convergence results for one constraints

I Convergence results for multiple constraints problems with acute kinetic angles

I No theoretical proof of order

Mechanical properties

I Position vs. velocity constraints

I Respect of the impact law in one step (Moreau) vs. Two-steps(Schatzman)

I Linearized constraints rather than nonlinear.

But
Both schemes do not are quite inaccurate and “dissipate” a lot of energy of vibrations.
This is a consequence of the first order approximation of the smooth forces term F
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The Moreau’s sweeping process

State–of–the–art

Objectives & Motivations
Problem setting
Measures Decomposition

The Moreau’s sweeping process
State–of–the–art

Background
Newmark’s scheme.
HHT scheme
Generalized α-methods

Newmark’s scheme and the α–methods family

Nonsmooth Newmark’s scheme
Time–continuous energy balance equations
Energy analysis for Moreau–Jean scheme
Energy Analysis for the Newmark scheme

Energy Analysis
The impacting beam benchmark

Discussion and FEM applications
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Newmark’s scheme and the α–methods family

Newmark’s scheme.

The Newmark scheme

Linear Time “Invariant”Dynamics without contact

{
Mv̇(t) + Kq(t) + Cv(t) = f (t)

q̇(t) = v(t)
(30)
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Newmark’s scheme and the α–methods family

Newmark’s scheme.

The Newmark scheme (Newmark, 1959)

Principle
Given two parameters γ and β

Mak+1 = fk+1 − Kqk+1 − Cvk+1

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

(31)

Notations

f (tk+1) = fk+1, xk+1 ≈ x(tk+1),

xk+γ = (1− γ)xk + γxk+1

(32)
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Newmark’s scheme and the α–methods family

Newmark’s scheme.

The Newmark scheme

Implementation
Let us consider the following explicit prediction{

v∗k = vk + h(1− γ)ak

q∗k = qk + hvk + 1
2

(1− 2β)h2ak
(33)

The Newmark scheme may be written as
ak+1 = M̂−1(−Kq∗k − Cv∗k + fk+1)

vk+1 = v∗k + hγak+1

qk+1 = q∗k + h2βak+1

(34)

with the iteration matrix
M̂ = M + h2βK + γhC (35)
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Newmark’s scheme and the α–methods family

Newmark’s scheme.

The Newmark scheme

Properties

I One–step method in state. (Two steps in position)

I Second order accuracy if and only if γ = 1
2

I Unconditional stability for 2β > γ > 1
2

Average acceleration
(Trapezoidal rule)

implicit γ = 1
2

and β = 1
4

central difference explicit γ = 1
2

and β = 0

linear acceleration implicit γ = 1
2

and β = 1
6

Fox–Goodwin
(Royal Road)

implicit γ = 1
2

and β = 1
12

Table: Standard value for Newmark scheme ((Hughes, 1987, p 493)Géradin and Rixen (1993))
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Newmark’s scheme and the α–methods family

Newmark’s scheme.

The Newmark scheme

High frequencies dissipation

I In flexible multibody Dynamics or in standard structural dynamics discretized by
FEM, high frequency oscillations are artifacts of the semi-discrete structures.

I In Newmark’s scheme, maximum high frequency damping is obtained with

γ � 1

2
, β =

1

4
(γ +

1

2
)2 (36)

example for γ = 0.9, β = 0.49
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Newmark’s scheme and the α–methods family

Newmark’s scheme.

The Newmark scheme
From (Hughes, 1987) :
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Newmark’s scheme and the α–methods family

HHT scheme

The Hilber–Hughes–Taylor scheme. Hilber et al. (1977)

Objectives

I to introduce numerical damping without dropping the order to one.

Principle
Given three parameters γ, β and α and the notation

Mq̈k+1 = −(Kqk+1 + Cvk+1) + Fk+1 (37)
Mak+1 = Mq̈k+1+α = −(Kqk+1+α + Cvk+1+α) + Fk+1+α

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

(38)

Standard parameters (Hughes, 1987, p532) are

α ∈ [−1/3, 0], γ = (1− 2α/2) and β = (1− α)2/4 (39)

Warning
The notation are abusive. ak+1 is not the approximation of the acceleration at tk+1
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Newmark’s scheme and the α–methods family

HHT scheme

The HHT scheme

Properties

I Two–step method in state. (Three–steps method in position)

I Unconditional stability and second order accuracy with the previous rule. (39)

I For α = 0, we get the trapezoidal rule and the numerical dissipation increases
with |α|.
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Newmark’s scheme and the α–methods family

HHT scheme

The HHT scheme
From (Hughes, 1987) :
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Newmark’s scheme and the α–methods family

Generalized α-methods

Generalized α-methods (Chung and Hulbert, 1993)

Principle
Given three parameters γ, β, αm and αf and the notation

Mq̈k+1 = −(Kqk+1 + Cvk+1) + Fk+1 (40)
Mak+1−αm = Mq̈k+1−αf

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

(41)

Standard parameters (Chung and Hulbert, 1993) are chosen as

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞

ρ∞ + 1
, γ =

1

2
+ αf − αm and β =

1

4
(γ +

1

2
)2 (42)

where ρ∞ ∈ [0, 1] is the spectral radius of the algorithm at infinity.

Properties

I Two–step method in state.

I Unconditional stability and second order accuracy.

I Optimal combination of accuracy at low-frequency and numerical damping at
high-frequency. Newmark’s scheme and the α–methods family – 31/72
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Newmark’s scheme and the α–methods family

Generalized α-methods

Objectives & Motivations
Problem setting
Measures Decomposition

The Moreau’s sweeping process
State–of–the–art

Background
Newmark’s scheme.
HHT scheme
Generalized α-methods

Newmark’s scheme and the α–methods family

Nonsmooth Newmark’s scheme
Time–continuous energy balance equations
Energy analysis for Moreau–Jean scheme
Energy Analysis for the Newmark scheme

Energy Analysis
The impacting beam benchmark

Discussion and FEM applications
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Nonsmooth Newmark’s scheme

A first naive approach
Direct Application of the HHT scheme to Linear Time
“Invariant”Dynamics with contact



Mv̇(t) + Kq(t) + Cv(t) = f (t) + r(t), a.e

q̇(t) = v(t)

r(t) = G(q)λ(t)

g(t) = g(q(t)), ġ(t) = G T (q(t))v(t),

0 6 g(t) ⊥ λ(t) > 0,

(43)

results in {
Mq̈k+1 = −(Kqk+1 + Cvk+1) + Fk+1 + rk+1

rk+1 = Gk+1λk+1
(44)



Mak+1 = Mq̈k+1+α

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

0 6 gk+1 ⊥ λk+1 > 0,

(45)
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Nonsmooth Newmark’s scheme

A first naive approach

Direct Application of the HHT scheme to Linear Time
“Invariant”Dynamics with contact
The scheme is not consistent for mainly two reasons:

I If an impact occur between rigid bodies, or if a restitution law is needed which is
mandatory between semidiscrete structure, the impact law is not taken into
account by the discrete constraint at position level

I Even if the constraint is discretized at the velocity level, i.e.

if ḡk+1, then 0 6 ġk+1 + egk ⊥ λk+1 > 0 (46)

the scheme is consistent only for γ = 1 and α = 0 (first order approximation.)
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Nonsmooth Newmark’s scheme

A first naive approach

Velocity based constraints with standard Newmark scheme (α = 0.0)
Bouncing ball example. m = 1, g = 9.81, x0 = 1.0 v0 = 0.0, e = 0.9

h = 0.001, γ = 1.0, β = γ/2 h = 0.001, γ = 1/2, β = γ/2
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Nonsmooth Newmark’s scheme

A first naive approach

Position based constraints with standard Newmark scheme (α = 0.0)
Bouncing ball example. m = 1, g = 9.81, v0 = 0.0, e = 0.9, h = 0.001, γ = 1.0,
β = γ/2

x0 = 1.0 x0 = 1.01
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Dynamics with contact and (possibly) impact



M dv = F (t, q, v) dt + G(q) di

q̇(t) = v+(t),

g(t) = g(q(t)), ġ(t) = G T (q(t))v(t),

if g(t) 6 0, 0 6 g+(t) + eġ−(t) ⊥ di > 0,

(47)
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Splitting the dynamics between smooth and nonsmooth part

M dv = Ma(t) dt + M dv con (48)

with {
Ma dt = F (t, q, v) dt

M dv con = G(q) di
(49)

Different choices for the discrete approximation of the term Ma dt and M dv con
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Principles

I As usual is the Newmark scheme, the smooth part of the dynamics
Ma dt = F (t, q, v) dt is collocated, i.e.

Mak+1 = Fk+1 (50)

I the impulsive part a first order approximation is done over the time–step

M∆v con
k+1 = Gk+1 Λk+1 (51)
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Principles 

Mak+1 = Fk+1+α

M∆v con
k+1 = Gk+1 Λk+1

vk+1 = vk + hak+γ + ∆v con
k+1

qk+1 = qk + hvk +
h2

2
ak+2β +

1

2
h∆v con

k+1

(52)
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Example (Two balls oscillator with impact)

m = 1kg

k = 103N/m

q2

q1

m = 1kg
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time–step : h = 2e − 3. Moreau (θ = 1.0). Newmark (γ = 1.0, β = 0.5). HHT
(α = 0.1)
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Figure 7. Numerical results for the total energy of the bouncing oscillator.

An analytically-exact solution for this benchmark is detailed in [20]. For comparison, the same
parameters are applied in this test example: Young’s Modulus E =900 Pa, density of the bar
ρ =1 kg/m3, undeformed initial length L =10 m, initial height to the bottom h0 =5 m, and initial
velocity v0 =10 m/s. The restitution coefficient for the impact is set as 0. The gravity acceleration
g is set to 0 so that only one close impact will occur.

The bar is discretized in space by 200 finite elements. Time step size can be chosen based on
the evaluation of the Courant number – a relevant ratio which links the mesh size and the step size
[20]. The step size with this mesh discretization is then chosen as h =2 · 10−3 s. Other algorithmic
parameters are as: ρ∞ = 0.6 for the nonsmooth generalized-α method; θ = 1 for the Moreau–Jean
method; γ = 1 and β = 0.5625 for the fully implicit Newmark method.
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(b)

Figure 8. Comparison the numerical results for the bouncing elastic bar: (a) position, (b) pressure.

Figure 8 shows the position and the pressure on the bottom of the bar. Also, the total energy of the
bouncing elastic bar is analyzed, as shown in Figure 9. The numerical results of the position response
and the pressure are compared to the exact solution. As one can tell from the figures, close contact
analysis is stable for all the three methods. Compared to Moreau-Jean and fully implicit Newmark
methods, the nonsmooth generalized-α method has better accuracy for the position response and
the pressure, in particular for the period near/after the take-off. As for the energy performance

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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(a) (b) (c)

(d) (e)

Figure 2. Examples: (a) bouncing ball; (b) linear vertical oscillator; (c) bouncing of an elastic bar;
(d) bouncing of a nonlinear beam pendulum; (e)bouncing of a rigid pendulum

time integration algorithms, namely, the nonsmooth generalized-α, the Moreau-Jean and the fully
implicit Newmark schemes. The numerical parameters are set as: nominal time step h =10−3 s for
all the methods; for the nonsmooth generalized-α method, ρ∞ is chosen as 0.8, for the Moreau–Jean
time stepping method, θ = 1, and for the fully implicit Newmark, γ = 1 and β = 0.5625.

Figure 3 shows the position and velocity of the ball. The errors are computed by comparison with
an analytically-exact solution, see Appendix A [15]. Figure 4 shows the convergence analysis of the
valid methods. The relative error is analyzed on the L1 norm, which is defined as

‖e‖1 =

N∑

i=0

|ei|
/

N∑

i=0

|f(ti)| (33)

where ei = fi − f(ti), fi is the numerical solution and f(ti) is the exact solution.
The convergence analysis is made on the interval [0, 4] s. As one can see from the figure, all the

three methods remain first order accurate in the overall range. However, the nonsmooth generalized-
α and the fully implicit Newmark methods have a slightly better accuracy.

5.2. Bouncing of a linear oscillator

In this example, the bouncing of a vertical linear oscillator model is studied, see Figure 2(b). The
oscillator consists of two masses connected by a spring. It is subjected to the gravity and has two
DOFs in the vertical direction. After the lower mass impacts against the plane, it bounces back with a
restitution coefficient of e = 0.8. In the meanwhile, it is also subjected to a force by the compressed
spring. Thus, a second impact or multiple impacts can occur right after the first impact. In the free-
flight mode after impacts, the system is oscillating with its natural frequency. Physical parameters
used in this model are as: mass m =1 kg and radius R =0.2 m for each ball; the stiffness of the
spring k=104 N/m and the unstretched length l =1 m; the initial velocity is zero and the initial
height h0 =1.001 m; the gravity acceleration g =10 m/s2.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme
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Nonsmooth generalized−α (h=2⋅10−3s)

Moreau−Jean (h=2⋅10−3s)

Fully implicit Newmark (h=2⋅10−3s)

Moreau−Jean (h=2⋅10−4s)

Moreau−Jean (h=2⋅10−5s)

h=2⋅10−5s

h=2⋅10−4s

Figure 9. Numerical results for the total energy of the bouncing elastic bar

analysis, finer step sizes (h =2 · 10−4 s and h =2 · 10−5 s) are adjusted for the Moreau–Jean method
in order to compare the energy dissipation. The analysis of the Moreau-Jean scheme shows that the
numerical solution tends to converge to a behaviour without energy dissipation after impact. As can
be seen from Figure 9, the nonsmooth generalized-α method has the least energy dissipation after
the impact. One can thus conclude that the nonsmooth generalized-α scheme has better quality of
global energy behaviour, as already shown in Section 5.2.

5.4. Impact of a flexible rotating beam

The following example studies the impact of a flexible rotating beam. The beam works as a flexible
simple pendulum, that is, it is subjected to the gravity force and swings around a pivot point, as
shown in Figure 2(d). The beam is modelled using a geometrically exact, two-dimensional finite
element formulation, based on Timoshenko’s theory. The planar beam finite element is capable of
handling arbitrarily large finite rotations. It is a special case of the 3D model presented in [3]. It is of
interest to verify the nonsmooth time integration methods for such a highly nonlinear application.

The beam studied in this example has a square cross section. The parameters of the beam are
as follows: length l =1 m, width b =0.01 m, height d =0.01 m, cross-sectional area A = bd, cross-
sectional inertia I = bd3/12, reduced cross-sectional area for shear A2 = 5/6A, Young’s modulus
E =2.1 · 1011 N/m2, Poisson ratio ν = 0.3 and density ρ =7800 kg/m3. The acceleration of gravity
is g =9.81 m/s2.

In the beginning, the beam is placed horizontally with the tip pointing to the right. It is released
from standstill and is restricted to planar motion under gravity. A hurdle is placed on the way so that
a unilateral constraint is applied as follows:

√
2/2 ≤ x ⊥ λu ≥ 0. Likewise, the complementarity

condition is expressed at the velocity level as in Equation (4). The coefficient of restitution is set as
e = 0.8.

The beam is discretized into 4 finite elements. The model is first simulated with time step-size
h =5 · 10−4 s. Since it is difficult to obtain the exact solution, a finer step size of h =2 · 10−5 s
is then chosen for the Moreau-Jean method in order to compare the accuracy. This makes sense
as the Moreau-Jean method is commonly known as a validated method and has been proven to
be convergent. Other numerical parameters are as: ρ∞ = 0.65 for the nonsmooth generalized-
α method, θ = 1 for the Moreau–Jean method, and γ = 1 and β = 0.5625 for the fully implicit
Newmark method.

Figure 10 shows the response of position and velocity at the tip of the beam. Comparatively, the
nonsmooth generalized-α scheme tends to have results much closer to the Moreau-Jean method with
a smaller time step size. Higher numerical damping in the Moreau-Jean and fully implicit Newmark
methods leads to higher energy dissipation even during the smooth motion, as can be seen in the

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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velocity response in Figure 10(b). However, higher numerical damping does not necessarily result
in better stability performance. As a matter of fact, if one further increase the time step size to
10−3 s, the nonsmooth generalized-α scheme is still convergent in Newton iteration, but neither
are the other two methods. As for the choice of numerical damping, if one chooses θ = 0.5 for the
Moreau-Jean method, which means that no numerical damping is considered, the results become
divergent. It indicates that controllable numerical damping is necessary in this highly-nonlinear
case. Comparison in the overall scale can be seen in the energy performance, as shown in Figure 11.
The nonsmooth generalized-α method has the best energy performance between impacts, where no
physical dissipation is expected.
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Figure 10. Numerical results for the impact of a flexible rotating beam: (a) position, (b) velocity.
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Moreau−Jean, h=10−5s

Figure 11. Numerical results for the total energy of the bouncing beam

5.5. Bouncing of a rigid pendulum

This example studies the impact of a simple rigid pendulum with both unilateral and bilateral
constraints. The purpose is to validate the proposed time integration methods in the regime
of nonlinear, bilaterally-constrained problems. The pendulum is constrained to swing around a
pivot in the x-y plane. It consists of a massless rod and a concentrated mass at the tip. The

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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Observed properties on examples

I the scheme is consistent and globally of order one.

I the scheme seems to share the stability property as the original HHT

I the scheme dissipates energy only in high-frequency oscillations (w.r.t the
time–step.)

Conclusions & perspectives

I Extension to any multi–step schemes can be done in the same way.

I Improvements of the order by splitting.

I Recast into time–discontinuous Galerkin formulation.
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Discussion and FEM applications

Nonsmooth Newmark’s scheme – 50/72



Time-integration of flexible multi-body systems with contact. Newmark based schemes and the coefficient of restitution

Energy Analysis

Time–continuous energy balance equations

Energy analysis

Time–continuous energy balance equations
Let us start with the “LTI” Dynamics{

M dv + (Kq + Cv)dt = F dt + di

dq = v±dt
(53)

we get for the Energy Balance

d(v>Mv) + (v+ + v−)(Kq + Cv) dt = (v+ + v−)F dt + (v+ + v−)di (54)

that is

2dE := d(v>Mv) + 2q>Kdq = 2v>F dt − 2v>Cv dt + (v+ + v−)> di
(55)

with

E :=
1

2
v>Mv +

1

2
q>Kq. (56)
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Time–continuous energy balance equations

If we split the differential measure in di = λ dt +
∑

i piδti , we get

2dE = = 2v>(F + λ) dt − 2v>Cv dt + (v+ + v−)>piδti (57)

By integration over a time interval [t0, t0] such that ti ∈ [t0, t1], we obtain an energy
balance equation as

∆E := E(t1)− E(t0)

=

∫ t1

t0

v>F dt︸ ︷︷ ︸
W ext

−
∫ t1

t0

v>Cv dt︸ ︷︷ ︸
W damping

+

∫ t1

t0

v>λdt︸ ︷︷ ︸
W con

+
1

2

∑
i

(v+(ti ) + v−(ti ))>pi︸ ︷︷ ︸
W impact

(58)
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Work performed by the reaction impulse di

I The term

W con =

∫ t1

t0

v>λ dt (59)

is the work done by the contact forces within the time–step. If we consider
perfect unilateral constraints, we have W con = 0.

I The term

W impact =
1

2

∑
i

(v+(ti ) + v−(ti ))>pi (60)

represents the work done by the contact impulse pi at the time of impact ti .
Since pi = G(ti )Pi and if we consider the Newton impact law, we have

W impact =
1

2

∑
i (v+(ti ) + v−(ti ))>G(ti )Pi

=
1

2

∑
i (U+(ti ) + U−(ti ))>Pi

=
1

2

∑
i ((1− e)U−(ti ))>Pi 6 0 for 0 6 e 6 1

(61)

with the local relative velocity defines as U(t) = G>(t)v(t)
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Energy analysis for Moreau–Jean scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the
discrete approximation of the work done by the external forces within the step (supply
rate) by

W̄ ext
k+1 = hv>k+θFk+θ ≈

∫ tk+1

tk

Fv dt (62)

Then the variation of energy over a time–step performed by the Moreau–Jean is

∆E − W̄ ext
k+1 = (

1

2
− θ)

[
‖vk+1 − vk‖2

M + ‖(qk+1 − qk )‖2
K

]
+ U>k+θPk+1 (63)
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Proposition
Let us assume that the dynamics is a LTI dynamics. The Moreau–Jean scheme
dissipates energy in the sense that

E(tk+1)− E(tk )− W̄ ext
k+1 6 0 (64)

if
1

2
6 θ 6

1

1 + e
6 1 (65)

In particular, for e = 0, we get
1

2
6 θ 6 1 and for e = 1, we get θ =

1

2
.
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Variant of the Moreau scheme that always dissipates energy
Let us consider the variant of the Moreau scheme

M(vk+1 − vk ) + hKqk+θ − hFk+θ = pk+1 = GPk+1, (66a)

qk+1 = qk + hvk+1/2, (66b)

Uk+1 = G> vk+1 (66c)

if ḡαk+1 6 0 then 0 6 Uαk+1 + eUαk ⊥ Pαk+1 > 0,

otherwise Pαk+1 = 0.
, α ∈ I (66d)
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Energy analysis for Moreau–Jean scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Then the variation of
energy performed by the variant scheme over a time–step is

∆E − W̄ ext
k+1 = (

1

2
− θ)‖(qk+1 − qk )‖2

K + U>
k+1/2

Pk+1 (67)

The scheme dissipates energy in the sense that

E(tk+1)− E(tk )− W̄ ext
k+1 6 0 (68)

if

θ >
1

2
(69)
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Energy analysis for Newmark’s scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the
discrete approximation of the work done by the external forces within the step by

W̄ ext
k+1 = (qk+1 − qk )>Fk+γ ≈

∫ tk+1

tk

Fv dt (70)

Then the variation of energy over a time–step performed by the scheme is

∆E − W̄ ext
k+1 = (

1

2
− γ)‖(qk+1 − qk )‖2

K

+
h

2
(2β − γ)

[
(qk+1 − qk )>K(vk+1 − vk )− (vk+1 − vk )> [Fk+1 − Fk ]

]
+

1

2
P>k+1(Uk+1 + Uk ) +

h

2
(2β − γ)(ak+1 − ak )>GPk+1

(71)
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Energy analysis for Newmark’s scheme
Define an discrete “algorithmic energy” (discrete storage function) of the form

K(q, v , a) = E(q, v) +
h2

4
(2β − γ)a>Ma. (72)

The following result can be given

Proposition
Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the
discrete approximation of the work done by the external forces within the step by

W̄ ext
k+1 = (qk+1 − qk )>Fk+γ ≈

∫ tk+1

tk

Fv dt (73)

Then the variation of energy over a time–step performed by the nonsmooth Newmark
scheme is

∆K− W̄ ext
k+1 = −(γ − 1

2
)

[
‖qk+1 − qk‖2

K +
h

2
(2β − γ)‖(ak+1 − ak )‖2

M

]
+ U>

k+1/2
Pk+1

(74)
Moreover, the nonsmooth Newmark scheme is stable in the following sense

∆K− W̄ ext
k+1 6 0 (75)

for

2β > γ >
1

2
(76)Energy Analysis – 59/72
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Augmented dynamics
Let us introduce the modified dynamics

Ma(t) + Cv(t) + Kq(t) = F (t) +
α

ν
[Kw(t) + Cx(t)− y(t)] (77)

and the following auxiliary dynamics that filter the previous one

νhẇ(t) + w(t) = νhq̇(t)
νhẋ(t) + x(t) = νhv̇(t)

νhẏ(t) + y(t) = νhḞ (t)
(78)
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Discretized Augmented dynamics
The equation (78) are discretized as follows

ν(wk+1 − wk ) +
1

2
(wk+1 + wk ) = ν(qk+1 − qk )

ν(xk+1 − xk ) +
1

2
(xk+1 + xk ) = ν(vk+1 − vk )

ν(yk+1 − yk ) +
1

2
(yk+1 + yk ) = ν(Fk+1 − Fk )

(79)

or rearranging the terms

(
1

2
+ ν)wk+1 + (

1

2
− ν)wk = ν(qk+1 − qk )

(
1

2
+ ν)xk+1 + (

1

2
− ν)xk = ν(vk+1 − vk )

(
1

2
+ ν)yk+1 + (

1

2
− ν)yk = ν(Fk+1 − Fk )

(80)

With the special choice ν =
1

2
, we obtain the HHT scheme collocation that is

Mak+1 + (1− α)[Kqk+1 + Cvk+1] + α[Kqk + Cvk ] = (1− α)Fk+1 + αFk (81)
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Discretized storage function
With

H(q, v , a,w) = E(q, v) +
h2

4
(2β − γ)a>Ma + 2α(1− γ)w>Kw . (82)

we get

2∆H = 2U>
k+1/2

Pk+1

− h2(γ − 1

2
)(2β − γ)‖(ak+1 − ak )‖2

M

− 2(γ − 1

2
− α)‖qk+1 − qk‖2

K

− 2α(1− 2(γ − 1

2
))‖wk+1 − wk‖2

K

+ 2(Fk+γ−α)>(qk+1 − qk ) + 2α(1− 2(γ − 1

2
))(qk+1 − qk )>(yk+1 − yk )
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Energy analysis for HHT scheme

Discretized storage function
With

H(q, v , a,w) = E(q, v) +
h2

4
(2β − γ)a>Ma + 2α(1− γ)w>Kw . (82)

and with α = γ − 1

2
, we obtain

2∆H = 2U>
k+1/2

Pk+1

− h2(α)(2β − γ)‖(ak+1 − ak )‖2
M

− 2α(1− 2α)‖wk+1 − wk‖2
K

+ 2(Fk+γ−α)>(qk+1 − qk ) + 2α(1− 2α)(qk+1 − qk )>(yk+1 − yk )

(83)
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Conclusions

I For the Moreau–Jean, a simple variant allows us to obtain a scheme which always
dissipates energy.

I For the Newmark and the HHT scheme with retrieve the dissipation properties as
the smooth case. The term associated with impact is added is the balance.

I Open Problem: We get dissipation inequality for discrete with quadratic storage
function and plausible supply rate. The nest step is to conclude to the stability of
the scheme with this argument.
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The impacting beam benchmark

Impact in flexible structure

Example (The impacting bar)

v0

L
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Discussion and FEM applications

The impacting beam benchmark

Impact in flexible structure

Brief Literature

I (?) Impact of two elastic bars. Standard Newmark in position and specific release
and contact

I (??) Implicit treatment of contact reaction with a position level constraints

I (??) Implicit treatment of contact reaction with a pseudo velocity level
constraints (algorithmic gap rate)

I (?) Comparison of Moreau–Jean scheme and standard Newmark scheme

I (?) Central–difference scheme with

I (?) Contact stabilized Newmark scheme. Position level Newmark scheme with
pre-projection of the velocity.

I (?) Comparison of various position level schemes.

Although artifacts and oscillations are commonly observed, the question of
nonsmoothness of the solution, the velocity based formulation and then a possible
impact law in never addressed.
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Impact in flexible structure

Position based constraints
1000 nodes. v0 = −0.1. h = 5.10−5 Nonsmooth Newmark scheme γ = 0.6, β = γ/2
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index 3 DAE problem: oscillations at the velocity level.=⇒ reduce the index.
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Impact in flexible structure

Influence of high frequencies dissipation
1000 nodes. v0 = −0.1. h = 5.10−6 e = 0.0 Nonsmooth Newmark scheme
γ = 0.5, β = γ/2.
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Impact in flexible structure

Influence of high frequencies dissipation
1000 nodes. v0 = −0.1. h = 5.10−6 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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Impact in flexible structure

Influence of mesh discretization
1000 nodes. v0 = −0.1. h = 5.10−6 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of mesh discretization
100 nodes. v0 = −0.1. h = 5.10−6 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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Impact in flexible structure

Influence of mesh discretization
10 nodes. v0 = −0.1. h = 5.10−6 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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Impact in flexible structure

Influence of time–step
1000 nodes. v0 = −0.1. h = 5.10−6 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of time–step
1000 nodes. v0 = −0.1. h = 5.10−5 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of time–step
1000 nodes. v0 = −0.1. h = 5.10−4 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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Impact in flexible structure

Influence of the coefficient of restitution
1000 nodes. v0 = −0.1. h = 5.10−5 e = 0.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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Discussion and FEM applications

The impacting beam benchmark

Impact in flexible structure

Influence of the coefficient of restitution
1000 nodes. v0 = −0.1. h = 5.10−5 e = 0.5 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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Impact in flexible structure

Influence of the coefficient of restitution
1000 nodes. v0 = −0.1. h = 5.10−5 e = 1.0 Nonsmooth Newmark scheme
γ = 0.6, β = γ/2.
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Impact in flexible structure

Discussion

I Reduction of order needs to write the constraints at the velocity level. Even in
GGL approach.

I How to known if we need an impact law ? For a finite–freedom mechanical
systems, we have to precise one. At the limit, the concept of coefficient of
restitution can be a problem. Work of Michelle Schatzman.
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