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Mechanical systems with contact, impact and friction

Simulation of Circuit breakers (INRIA/Schneider Electric)

Flexible multibody systems.
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Mechanical systems with contact, impact and friction

Simulation of the ExoMars Rover (INRIA/Trasys Space/ESA)

Dac
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Mechanical systems with contact, impact and friction

Simulation of wind turbines (DYNAWIND project)
Joint work with O. Briils, Q.Z. Chen and G. Virlez (Université de Ligge)

Flexible multibody systems.
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Mechanical systems with contact, impact and friction

Simulation of Tilt rotor. (Politechnico di Milano, Masarati, P.)

Tianium Forged ik |

‘ Elastomeric Hub

Spring Bearing Set

>
Elastomeric
Drive Link

Static Ground

Flexible multibody systems.
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Objectives & Motivations

Objectives & Motivations

Outline

» Basic facts on nonsmooth dynamics and its time integration

> Measure differential inclusion
> Time—stepping schemes (Moreau—Jean and Schatzman—Paoli)

» Newmark based schemes for nonsmooth dynamics
> Splitting impulsive and non impulsive forces
> Velocity level constraints and impact law

» Simple Energy Analysis

> Impact in flexible structures

> jump in velocity or standard impact ?
> coefficient of restitution in flexible structure.

Objectives & Motivations
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Objectives & Motivations

Objectives & Motivations
Problem setting
Measures Decomposition

The Moreau's sweeping process
State—of—the-art

Background
Newmark's scheme.
HHT scheme
Generalized a-methods

Newmark's scheme and the a—methods family

Nonsmooth Newmark's scheme
Time—continuous energy balance equations
Energy analysis for Moreau—Jean scheme
Energy Analysis for the Newmark scheme

Energy Analysis
The impacting beam benchmark

Discussion and FEM applications
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Background
Problem setting

NonSmooth Multibody Systems

Scleronomous holonomic perfect unilateral constraints

M(q(t))v = F(t, q(t), v()) + G(a(t)) A(t), ae
4(t) = v(1),

g(t) = g(a(t), &(t)=GT(a(t)v(t), (1)
0<g(t) L A(t) >0,
g4 (t) = —eg™ (1),

where G(q) = Vg(q) and e is the coefficient of restitution.
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Background

L Problem setting

Unilateral constraints as an inclusion

Definition (Perfect unilateral constraints on the smooth dynamics)
g=v
dv
M(q)ﬁ + F(t’ q, V) =r (2)

—r € Negy(q(t))

where r it the generalized force or generalized reaction due to the constraints.

Remark

> The unilateral constraints are said to be perfect due to the normality condition.

> Notion of normal cones can be extended to more general sets. see (Clarke, 1975,
1983 ; Mordukhovich, 1994)

> When C(t) = {g € R",ga(q,t) > 0,a € {1...v}}, the multipliers A € R™ such
that r = Vng(q7 t) A
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Background

L Problem setting

Nonsmooth Lagrangian Dynamics

Fundamental assumptions.

» The velocity v = § is of Bounded Variations (B.V)
=» The equation are written in terms of a right continuous B.V. (R.C.B.V.)
function, vt such that

vt =gt 6)
> q is related to this velocity by
t
a(t) = a(t) + [ v (D)t @)
to

> The acceleration, ( § in the usual sense) is hence a differential measure dv
associated with v such that

dv(]a,b]):/ dv=v(B) = (a) (5)

a,

Background — 8/72
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Background

L Problem setting

Nonsmooth Lagrangian Dynamics

Definition (Nonsmooth Lagrangian Dynamics)

M(q)dv + F(t, q,v")dt = di
(6)
vt = q-%—

where di is the reaction measure and dt is the Lebesgue measure.

Remarks

> The nonsmooth Dynamics contains the impact equations and the smooth
evolution in a single equation.

> The formulation allows one to take into account very complex behaviors,
especially, finite accumulation (Zeno-state).

> This formulation is sound from a mathematical Analysis point of view.

References
(Schatzman, 1973, 1978 ; Moreau, 1983, 1988)
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Background

L Measures Decomposition

Nonsmooth Lagrangian Dynamics

Measures Decomposition (for dummies)

dv= ~dt+ (vt —v7)dv+ dvs @)
di= fdt+ pdvt+  di.

where
> ~ = g is the acceleration defined in the usual sense.
> f is the Lebesgue measurable force,

» vt — v is the difference between the right continuous and the left continuous
functions associated with the B.V. function v = g,

> dv is a purely atomic measure concentrated at the time t; of discontinuities of v,
i.e. where (vt —v7) #0,ie. dv =36y

> p is the purely atomic impact percussions such that pdv = 3=, p;dy;

v

dvs and dis are singular measures with the respect to dt + dn.
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Background

Measures Decomposition

Impact equations and Smooth Lagrangian dynamics

Substituting the decomposition of measures into the nonsmooth Lagrangian
Dynamics, one obtains

Definition (Impact equations)

M(a)(v* — v™)dv = pdv, (®)

or

M(q(t:))(v* (t;) — v (t:)) = pis (9)
Definition (Smooth Dynamics between impacts)

M(q)~dt + F(t,q,v)dt = fdt (10)
or

M(qy* + F(t,q,vT) = fF [dt—ael] (11)

Background - 11/72



Time-integration of flexible multi-body systems with contact. Newmark based schemes and the coefficient of restitution

The Moreau's sweeping process

The Moreau's sweeping process of second order

Definition (Moreau (1983, 1988))
A key stone of this formulation is the inclusion in terms of velocity. Indeed, the
inclusion (2) is “replaced” by the following inclusion

M(q)dv + F(t,q,v)dt = di

vt =gt (12)

—di € NTC(q)(V+)

Comments
This formulation provides a common framework for the nonsmooth dynamics

containing inelastic impacts without decomposition.
=» Foundation for the Moreau—Jean time—stepping approach.

The Moreau’s sweeping process — 12/72
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The Moreau's sweeping process

The Moreau's sweeping process of second order

Comments
> The inclusion concerns measures. Therefore, it is necessary to define what is the
inclusion of a measure into a cone.

» The inclusion in terms of velocity vt rather than of the coordinates q.

Interpretation

» Inclusion of measure, —di € K
> Case di = r'dt = fdt.
—feK (13)

> Case di = p;d;.
—-pi €K (14)

> Inclusion in terms of the velocity. Viability Lemma
If g(to) € C(to), then

v € Te(q),t = to = q(t) € C(t),t > to

=» The unilateral constraints on g are satisfied. The equivalence needs at least an
impact inelastic rule.

The Moreau’s sweeping process — 13/72
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The Moreau's sweeping process

The Moreau's sweeping process of second order
The Newton-Moreau impact rule

—di € NTC(q(t))(V+(t) + ev™(t))
where e is a coefficient of restitution.

(15)
Velocity level formulation. Index reduction
o<y lAx>o0
f . (16)
“AENTL (1Y)

ify<OthenO<y Ll A>0

=] = - = DA

PN Ge

The Moreau’s sweeping process — 14/72
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The Moreau's sweeping process

The Moreau's sweeping process of second order

The case of C is finitely represented

C={q€M(t),ga(q) > 0,a € {1...1}}. (17)
Decomposition of di and vT onto the tangent and the normal cone.
di = > Viga(q)dia (18)
«@
Ui = Vegalg)v'ac{l...v} (19)

Complementarity formulation (under constraints qualification condition)

—d\y € Nrm(g&)(ug) < ifga(q) <0, then 0K UL Ldra >0  (20)

The case of C is Ry

—dieNc(q) ©0<qgldi>0 (21)
is replaced by

—di € Ny (q)(vT) & ifg<0, then 0< v Ldi>0 (22)

The Moreau’s sweeping process — 15/72
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The Moreau's sweeping process
L Stateof-the-art

Principle of nonsmooth event capturing methods (Time—stepping schemes)

1. A unique formulation of the dynamics is considered. For instance, a dynamics in
terms of measures.
—mdu = dr

g=ut (23)
0<drlLit>0ifg<o0

2. The time-integration is based on a consistent approximation of the equations in
terms of measures. For instance,

/ du = / du = (V+(tk+1) — V+(tk)) ~ (uk+1 — uk) (24)
Itic, tiera] Tt tiey1]

3. Consistent approximation of measure inclusion.

Pk+1 & dr

—dr € NK(t)(u+(t)) (25) - Ttistiral (26)

Prr1 € Niqey(uky1)

The Moreau’s sweeping process — 16/72
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The Moreau's sweeping process
L Stateof-the-art

State—of-the—art

Numerical time—integration methods for Nonsmooth Multibody systems (NSMBS):
Nonsmooth event capturing methods (Time-stepping methods)

@ robust, stable and proof of convergence
@ low kinematic level for the constraints
@ able to deal with finite accumulation

© very low order of accuracy even in free flight motions

Two main implementations

> Moreau—Jean time—stepping scheme

> Schatzman—Paoli time—stepping scheme

The Moreau’s sweeping process — 17/72
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The Moreau's sweeping process
State-of-the-art

Moreau’s Time stepping scheme (Moreau, 1988 ; Jean, 1999)

Principle
M(qr10)(Vir1 — i) — hFiro = piy1 = G(Gkre)Pri1s (272)
Gr41 = Gk + hvito, (27b)
Ukt = G (Gi+0) Vi1 (27¢)
0< ug+1 teUp LR >0 i g, <0 (o1a)
PE‘H = otherwise
with
» 0 €[0,1]

> Xero = (1 — 0)xk41 + Oxk
> Firo = F(tko, arro, Viro)
8k,y = 8k +vhUk,,y > 0 is a prediction of the constraints.

v
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The Moreau's sweeping process
State-of-the-art

Schatzman'’s Time stepping scheme (Paoli and Schatzman, 2002)

Principle

M(qi1)(Gk+1 — 2qk + qe—1) — h*Fivo = Piis (28a)
9k+1 — Gk—1
T S 28b
Vk+1 h ( )
Cpre1 € N (M) 7 (28¢)
1+e

where Ny defined the normal cone to K.
For K={q € R",y = g(q) > 0}

Gk+1 + eqr—1 Gk+1 + eqr—1
0< — | 1LV — | P >0 29
g ( Tre > g ( Tre ) ki1 > (29)

The Moreau’s sweeping process — 19/72
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The Moreau's sweeping process
L Stateof-the-art

Comparison

Shared mathematical properties

» Convergence results for one constraints
» Convergence results for multiple constraints problems with acute kinetic angles

> No theoretical proof of order

Mechanical properties

> Position vs. velocity constraints
> Respect of the impact law in one step (Moreau) vs. Two-steps(Schatzman)

» Linearized constraints rather than nonlinear.

But
Both schemes do not are quite inaccurate and “dissipate” a lot of energy of vibrations.
This is a consequence of the first order approximation of the smooth forces term F

The Moreau’s sweeping process — 20/72
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The Moreau's sweeping process
State—of-the-art

Objectives & Motivations
Problem setting
Measures Decomposition

The Moreau's sweeping process
State—of—the-art

Background
Newmark's scheme.
HHT scheme
Generalized a-methods

Newmark's scheme and the a—methods family

Nonsmooth Newmark's scheme
Time—continuous energy balance equations
Energy analysis for Moreau—Jean scheme
Energy Analysis for the Newmark scheme

Energy Analysis
The impacting beam benchmark

Discussion and FEM applications
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Newmark’s scheme.
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The Newmark scheme

Linear Time “Invariant” Dynamics without contact
Mv(t) + Kq(t) + Cv(t) = f(t)
4(t) = v(1)

(30)

] 5 =

= DAl
Newmark’s scheme and the ce—methods family — 22/72
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Newmark's scheme and the ae—methods family

Newmark’s scheme.

:

The Newmark scheme (Newmark, 1959)

Principle

Given two parameters v and 3

May i1 = fier1 — Kqry1 — Cviqa
Vkr1l = Vk + hagy
h2

Qk+1 = Gk + hvk + 5 28
Notations

(31)

f(ter1) = feyt,

Xpe1 = X(tet1),
Xty = (1 = ¥)xk + YXk41

(32)

[m]

=

Newmark's scheme and the cv—methods family —
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Newmark's scheme and the ae—methods family

L Newmark's scheme

The Newmark scheme

Implementation
Let us consider the following explicit prediction

v = vk + h(1 —7)ax (33)
q; = qi + hvi + 3(1 — 2B8) A2,
The Newmark scheme may be written as
a1 = MY (—=Kg} — Cvf + fit)
Vi1 = v + hyags (34)
Qi1 = q; + h?Baji
with the iteration matrix ~
M= M + h?BK +vhC (35)

Newmark’s scheme and the ce—methods family — 24/72
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Newmark's scheme and the ae—methods family

L Newmark's scheme

The Newmark scheme
Properties

> One-step method in state. (Two steps in position)

» Second order accuracy if and only if v = %

> Unconditional stability for 28 > v > %

Average acceleration

i ici 1 1
(Trapezoidal rule) implicit | v =3 and =3

central difference explicit v = % and 3 =0
linear acceleration implicit v = % and 3 = %

Fox—Goodwin . 1 1
(Royal Road) implicit | v=3 and 8= 35

Table: Standard value for Newmark scheme ((Hughes, 1987, p 493)Géradin and Rixen (1993))

Newmark’s scheme and the ce—methods family — 25/72
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Newmark's scheme and the ae—methods family

L Newmark's scheme

The Newmark scheme

High frequencies dissipation

> In flexible multibody Dynamics or in standard structural dynamics discretized by
FEM, high frequency oscillations are artifacts of the semi-discrete structures.

> In Newmark's scheme, maximum high frequency damping is obtained with

1 1 1,
S, B=-(v+= 36
v>3, B=700+3) (36)

example for v = 0.9, 8 = 0.49

Newmark’s scheme and the ce—methods family — 26/72
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Newmark's scheme and the cc—methods family

L Newmark's scheme

The Newmark scheme
From (Hughes, 1987) :

1.1

0.9+

06—

Newmark methods

08 (y=09)

03 1 ) ] |
1073 1072 10! 1 10 10?
Aar/T

Figure 9.1.3 Spectral radii for Newmark methods for varying B8 [9].

Newmark’s scheme and the ce—methods family — 27/72
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Newmark's scheme and the ae—methods family
L~ HHT scheme

The Hilber—-Hughes—Taylor scheme. Hilber et al. (1977)
Objectives
> to introduce numerical damping without dropping the order to one.

Principle
Given three parameters v, 8 and « and the notation

M1 = —(Kqiq1 + Cvi1) + Fig (37)
Mayi1 = Maki11a = —(Kaki14a + Cviyiva) + Frilta
Vel = Vk + hagy (38)
h2
k+1 = gk + hv + ?3k+2[3

Standard parameters (Hughes, 1987, p532) are

a €[-1/3,0],y = (1 —2a/2) and 8 = (1 — a)?/4 (39)

Warning
The notation are abusive. ayy; is not the approximation of the acceleration at )

Newmark’s scheme and the ce—methods family — 28/72
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Newmark's scheme and the ae—methods family
= HHT scheme

The HHT scheme

Properties

> Two-step method in state. (Three—steps method in position)
> Unconditional stability and second order accuracy with the previous rule. (39)

» For a = 0, we get the trapezoidal rule and the numerical dissipation increases
with |«

Newmark’s scheme and the ce—methods family — 29/72



Time-integration of flexible multi-body systems with contact. Newmark based schemes and the coefficient of restitution

Newmark's scheme and the a—methods family

L HHT scheme

The HHT scheme

From (Hughes, 1987) :

1.0

0.8 [—

07—

06—

03—

0.2

>~ Trapezoidal rule

a method (« = —0.05)

Newmark (8 = 0.3025, y = 0.6)

= Wikson (§=1,6 = 1.4}

Collocation method
{=0.18, 6 = 1.287301)

a method (e = -0.3)

Collocation method
(8=0.16, 6 = 1.514951).

10-2

Figure 9.3.1 Spectral radii for a-methods, optimal collocation schemes, and Hou-
bolt, Newmark, Park, and Wilson methods [22].

Newmark's scheme and the c«—methods family
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Newmark's scheme and the ae—methods family

L Generalized a-methods

Generalized a-methods (Chung and Hulbert, 1993)
Principle

Given three parameters v, 3, am and af and the notation
May 1 = —(Kaks1 + Cviyr) + Fiyr (40)

Mayi1—a, = Mari1—a;

Vk+1 = Vk + hakiy (41)
K2
Gk+1 = qk + hvic + 5 +28

Standard parameters (Chung and Hulbert, 1993) are chosen as

2p0 —1 Poo

am = , Of = ———,
" peot+1 poc + 1

1 1 1
v=5+ar—amand f= (7 + 5)2 (42)

where poo € [0, 1] is the spectral radius of the algorithm at infinity.

Properties

» Two-step method in state.
> Unconditional stability and second order accuracy.

» Optimal combination of accuracy at low-frequency and numerical damping at
high-frequency. Newmark’s scheme and the c—methods family — 31/72
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Newmark's scheme and the ae—methods family

Generalized a-methods

Objectives & Motivations
Problem setting
Measures Decomposition

The Moreau's sweeping process
State—of—the-art

Background
Newmark's scheme.
HHT scheme
Generalized a-methods

Newmark's scheme and the a—methods family

Nonsmooth Newmark's scheme
Time—continuous energy balance equations
Energy analysis for Moreau—Jean scheme
Energy Analysis for the Newmark scheme

Energy Analysis
The impacting beam benchmark

Discussion and FEM applications
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LNonsmooth Newmark's scheme

A first naive approach

Direct Application of the HHT scheme to Linear Time
“Invariant” Dynamics with contact

Mv(t) + Kq(t) + Cv(t) = f(t) + r(t),a.e

a(t) = v(t)
r(t) = G(q) A(t) a3)
g(t) = gla(t)), &(t) = GT(a(H)v(e),

0 < g(t) LA(t) =0,
results in

MGyi1 = —(Kaks1 + Cvisr) + Frgr + i1
k41 = Grp1Akt1

(44)
May 11 = MGri14a
Vi1 = Vk + hagyy
Qk+1 = qk + hvi + 5 28

0<gks1 L A1 20,

Nonsmooth Newmark's scheme — 33/72
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Nonsmooth Newmark's scheme

A first naive approach

Direct Application of the HHT scheme to Linear Time
“Invariant” Dynamics with contact

The scheme is not consistent for mainly two reasons:

> If an impact occur between rigid bodies, or if a restitution law is needed which is
mandatory between semidiscrete structure, the impact law is not taken into
account by the discrete constraint at position level

» Even if the constraint is discretized at the velocity level, i.e.

if Bkt1, then 0 < gry1 + egk L Ak1 20 (46)

the scheme is consistent only for v = 1 and o = 0 (first order approximation.)

Nonsmooth Newmark's scheme
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Nonsmooth Newmark's scheme

A first naive approach

1.0

0.6
0.4

-0.2,

Velocity based constraints with standard Newmark scheme (o = 0.0)
Bouncing ball example. m=1, g =9.81, xp = 1.0 vp = 0.0, e = 0.9

position

(WA

AWA
\/
\/

[VERVARVAY
v VoV V. VYW

velocity 8

AN

Pratlti
e

®

reaction

h=0.001, y=1.0, 8 =v/2

position

velocity

iy

4 reaction

h =0.001,

v=1/2, 8=~/2

Nonsmooth Newmark's scheme
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Nonsmooth Newmark's scheme

A first naive approach

Position based constraints with standard Newmark scheme (a = 0.0)
Bouncing ball example. m=1, g =9.81, vp = 0.0, e =0.9, h=0.001, v = 1.0,

B=n/2

position

velocity

reaction

xo =1.0

12 position
10
08
0.6 \\
0.4 \
ook Vo
-0.2,
K 4 velocity b
i
N
SR\
20\
-3
]
5006 reaction 1
4000
3000
2000 |
1000
°ClL
T 1
xp = 1.01

Nonsmooth Newmark's scheme
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The Nonsmooth Newmark and HHT scheme

Dynamics with contact and (possibly) impact

Mdv = F(t,q,v)dt + G(q) di

g(t) = vt (e),
g(t) = g(q(t)),

if g(t) <0,

&(t) = GT(a(t)v(1),

0< g™ (t)+eg (t) L di >0,

(47)

=

N G4

— 37/72
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The Nonsmooth Newmark and HHT scheme

Splitting the dynamics between smooth and nonsmooth part

M dv = Ma(t) dt + M dv<>"
with

(48)
{Ma dt = F(t,q,v)dt

M dve®" = G(q) di

(49)

Different choices for the discrete approximation of the term Madt and M dv

con

=

Nonsmooth Newmark's scheme
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Nonsmooth Newmark's scheme

The Nonsmooth Newmark and HHT scheme

Principles

> As usual is the Newmark scheme, the smooth part of the dynamics
Madt = F(t, q,v) dt is collocated, i.e.

Mayi1 = Fry1 (50)
> the impulsive part a first order approximation is done over the time—step

MAVY = Giyr A (51)

Nonsmooth Newmark's scheme — 39/72
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The Nonsmooth Newmark and HHT scheme

Principles

Mayi1 = Fri1ta

MAVEY = Gry1 Ay

Vil = Vi + hagpy + AV

(52)
’ 1
qk+1 = 9k + th + ?ak+2,8 + EhAVcon

k+1

=

z 9ac
Nonsmooth Newmark’s scheme
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The Nonsmooth Newmark and HHT scheme

q2

q1

Example (Two balls oscillator with impact)

k =10°N/m

=

= = z 9ac
Nonsmooth Newmark's scheme
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Nonsmooth Newmark's scheme

The Nonsmooth Newmark and HHT scheme

time—step : h = 2e — 3. Moreau (6 = 1.0). Newmark (y =1.0,3 = 0.5). HHT

(a=0.1)

. : 1AW I

o \ . \\ v \\/ A\ | M \\ Ail / J
) - : Y2 W TARRVAL VI
- —_ : \ V| R

n : YA
) . |
Position of the first ball Velocity of the first ball
o = S = z 9ac
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:
The Nonsmooth Newmark and HHT scheme
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Nonsmooth Newmark's scheme

The Nonsmooth Newmark and HHT scheme

35 T T :
Nonsmooth generalized-o
— — - Moreau-Jean
30 -—-— Fully implicit Newmark
""""" Exact solution
)
~.25F 4
[l
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C
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o
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Figure 7. Numerical results for the total energy of the bouncing oscillator.
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Nonsmooth Newmark's scheme

The Nonsmooth Newmark and HHT scheme

9 ho g l

(a) (b)

m

4 Impact

Impact

(d)

Figure 2. Examples: (a) bouncing ball; (b) linear vertical oscillator; (c) bouncing of an elastic bar;
(d) bouncing of a nonlinear beam pendulum; (e)bouncing of a rigid pendulum
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Nonsmooth Newmark's scheme

The Nonsmooth Newmark and HHT scheme

0.31 T T T T T T T
o)
>
3
g
@
= . Nonsmooth generalized-o (h=2-1 0'35)
2 027t ~ T -3
. g — — = Moreau-Jean (h=2.10""s)
S~ ~ === Fully implicit Newmark (h=2-1 0‘35)
0.261 ==
- —=-~4 Moreau-Jean (h=2-10"%s)
Moreau-Jean (h=2-1 0’55)
0.25

0 0.2 0.4 0.6 0.8 1 12 1.4 1.6
time (s)

Figure 9. Numerical results for the total energy of the bouncing elastic bar
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The Nonsmooth Newmark and HHT scheme

Fully implicit Newmark (h=5-10"%s) Moreau-Jean (h=10"s

0.95
B 0.9 g
So0s8s5 z
= 5]
2 S
2 o8 E
0.75 \
07 A
"o 05 1 15 0.4 0.5 0.6 0.7 0.8
time (s) time (s)
(a) (b)

Figure 10. Numerical results for the impact of a flexible rotating beam: (a) position, (b) velocity.
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Nonsmooth Newmark's scheme

The Nonsmooth Newmark and HHT scheme

Observed properties on examples

> the scheme is consistent and globally of order one.
> the scheme seems to share the stability property as the original HHT

> the scheme dissipates energy only in high-frequency oscillations (w.r.t the
time—step.)
Conclusions & perspectives

> Extension to any multi—step schemes can be done in the same way.
> Improvements of the order by splitting.

» Recast into time—discontinuous Galerkin formulation.
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Thank you for your attention.
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Nonsmooth Newmark's scheme

Objectives & Motivations
Problem setting
Measures Decomposition

The Moreau's sweeping process
State—of—the-art

Background
Newmark's scheme.
HHT scheme
Generalized a-methods

Newmark's scheme and the a—methods family

Nonsmooth Newmark's scheme
Time—continuous energy balance equations
Energy analysis for Moreau—Jean scheme
Energy Analysis for the Newmark scheme

Energy Analysis
The impacting beam benchmark

Discussion and FEM applications
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Energy Analysis

Time—continuous energy balance equations

Energy analysis

Time—continuous energy balance equations
Let us start with the “LTI" Dynamics

Mdv + (Kg+ Cv)dt = F dt + di
n (53)
dg = v=dt
we get for the Energy Balance
dvTMv)+ (v +v ) (Kg+ Cv)dt = (vt+vo)Fdt+ (vt +vT)di (54)
that is
2d€ = d(vTMv)+2qTKdg = 2vTFdt—2vTCvdt+ (vt +v)Tdi
(55)
with 1 1
£:=v Mv+ ZqTKg. (56)

2 2
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L Time-continuous energy balance equations

Energy analysis

Time—continuous energy balance equations

If we split the differential measure in di = A dt + >, p;jd¢;, we get
2déE= = 2vI(F+A)dt—2vTCvdt+ (v +v™)Tpidy (57)

By integration over a time interval [to, to] such that t; € [to, t1], we obtain an energy
balance equation as

AE = &(t) —E(t)
t T t T t T 1 T
- / v thf/ v Cvdt+/ vIXde+ = > (vi(E) + v (8) e
to to to 2 i
wext VW damping weon Wimpact

(58)
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Energy Analysis

L Time-continuous energy balance equations

Energy analysis
Work performed by the reaction impulse d/

> The term .
1
ween :/ v A dt (59)
to
is the work done by the contact forces within the time—step. If we consider
perfect unilateral constraints, we have W<" = 0.
> The term

pimpact _ % Z(v+(ti) +v(t:) " pi (60)

represents the work done by the contact impulse p; at the time of impact t;.
Since p; = G(t;)P; and if we consider the Newton impact law, we have

wimeset = L5 () + v (6))T G (1) P
=S UT )+ U () TR (61)

gzi((l —e)U () TP <0for0<ex1

with the local relative velocity defines as U(t) = G (t)v(t)
Energy Analysis — 53/72
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Energy Analysis

Energy analysis for Moreau-Jean scheme

Energy analysis for Moreau—Jean scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the
discrete approximation of the work done by the external forces within the step (supply

rate) by
tht1

Ve = hvl oFiyo ~ : Fvdt (62)
k

Then the variation of energy over a time—step performed by the Moreau—Jean is

. 1
AE -ty = (5 = 0) [vier = willRy + (g — alli] + Ui Prsr - (63)
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Energy analysis for Moreau—Jean scheme

Energy analysis for Moreau—Jean scheme

Proposition
Let us assume that the dynamics is a LTI dynamics. The Moreau—Jean scheme
dissipates energy in the sense that

E(trsr) — E(tk) — W <0 (64)
if 1 1
- <6< <1 (65)
2 1+ e

1 1
In particular, for e = 0, we get 5 <0 <1andfore=1, wegeth = 3

Energy Analysis — 55/72



Time-integration of flexible multi-body systems with contact. Newmark based schemes and the coefficient of restitution
Energy Analysis

Energy analysis for Moreau—Jean scheme

Energy analysis for Moreau—Jean scheme

Variant of the Moreau scheme that always dissipates energy
Let us consider the variant of the Moreau scheme

M(vir1 — vi) + hKaryo — hFiro = pry1 = GPry1, (66a)
qkr1 = Gk + hviy o, (66b)
Uk+1 = G—r Vik+1 (66C)

if g, <Othen0< U, +eUy L Py, >0,

H [e3 j—
otherwise Pk+1 =0.

€T (66d)
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Energy analysis for Moreau—Jean scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Then the variation of
energy performed by the variant scheme over a time—step is

- 1
AE - W2 = (5 —O)l(arr1 — a)ll% + U;<T+1/2Pk+1 (67)
The scheme dissipates energy in the sense that

E(trr1) — E(tk) — WS <0 (68)

(69)

N =
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Energy Analysis
Energy Analysis for the Newmark scheme

Energy analysis for Newmark's scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the
discrete approximation of the work done by the external forces within the step by

t,

7 rext T - k+1
Wt = (Gks1 — qk)  Frpy = Fvdt (70)
ti

Then the variation of energy over a time—step performed by the scheme is
- 1
AE — Wkefl = (5 =N qk+1 — CIk)”%(
h
+ 5(2/3 =) [(qrs1 — a) T K (Vis1 — vi) — (Vierr — vie) T [Fir — Fi]]

1 h
+§PE+1(Uk+1 + Uk) + 5(25 — M (aks1 — ak) " GPrpa
(711)
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Energy analysis for Newmark's scheme
Define an discrete “algorithmic energy” (discrete storage function) of the form
W2
}C(q7 v, 3) = g(q’ V) + Z(zﬁ - ’Y)aT Ma. (72)
The following result can be given
Proposition

Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the
discrete approximation of the work done by the external forces within the step by

7A/ext T fiet1
Wit = (Gk+1 — k) Fiepny = / Fvdt (73)
t
Then the variation of energy over a time—step performed by the nonsmooth Newmark
scheme is
AKX — Wt = L 2 4 Mg 21+ UL, ,P
-Wgy = —(v— 5) llak+1 — awlli + 5( =M (akr1 — a)llyy | + k12 Pk+1
(74)
Moreover, the nonsmooth Newmark scheme is stable in the following sense
AK — Wt <0 (75)
for
1
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Energy Analysis

Energy Analysis for the Newmark scheme

Energy analysis for HHT scheme

Augmented dynamics
Let us introduce the modified dynamics

Ma(t) + Cu(t) + Ka(t) = F(t) + = [Kw(1) + Cx(2) - ¥ (1))

and the following auxiliary dynamics that filter the previous one

vhw(t) + w(t)
vhx(t) + x(t)
vhy(t) +y(t)

vhi(t)
vhv(t)
vhF(t)

(77)

(78)
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L Energy Analysis for the Newmark scheme

Energy analysis for HHT scheme

Discretized Augmented dynamics
The equation (78) are discretized as follows

V(W1 — wi) + %(Wkﬂ +wi) = v(Grr1 — )
v(Xkr1 — xk) + 1(Xk+1 +xk) = (Vi — v) (79)
v =y + 5k ty) = v(Fn = Fi)
or rearranging the terms
(% + VWi + (1 —v)wi = v(Gk+1 — qk)
(1 + )1+ (= —v)xk = v(Vkger — k) (80)
(5 + V)Ykt1 + (5 —Vyk = v(Fkp1— Fx)

1
With the special choice v = 5 we obtain the HHT scheme collocation that is
Mayi1 + (1 — a)[Kqrs1 + Cvis] + ofKagx + Cvi] = (1 — @) Fky1 + aF - (81)
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Energy Analysis for the Newmark scheme

Energy analysis for HHT scheme

Discretized storage function

With ,
h
H(q,v,a,w) = E(q,v) + (26— 7)a’ Ma+2a(1 - 7)w' Kw. (82)
we get
20 = 2U], 5Puit

1
- h(y- 5)(2/3 — (k1 — a)ll3,
1 2
- 2y- 5~ a)llgrs+1 — qillk
1
- 2a(1-2(y- 5))||Wk+1 — wi|%

+  2(Fipy—a) T (Gs1 — k) +2a(1 — 2(y — %))(qk+1 = ak) T (Y1 — vk)

u]
8]
I
il
it
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Energy Analysis for the Newmark scheme

Energy analysis for HHT scheme

Discretized storage function
With

h2
H(q7 v,a, W) = 8(q7 V) + T(zﬁ - ’Y)aT Ma + 2a(1 - ’Y)WTKW (82)
. 1 .
and with o =y — > we obtain

— T
201 = 2U[, ,Puia

= ()28 = Ml(ak+1 — a1y
= 201 —2a)||wir1 — will

+ 2(Figy—a) T (Grs1 — ) + 20(1 — 20)(ques1 — ) T (Vi1 — vk)

(83)

u]
8]
I

il
it
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Energy Analysis
L Energy Analysis for the Newmark scheme

Energy analysis for HHT scheme

Conclusions

> For the Moreau—Jean, a simple variant allows us to obtain a scheme which always
dissipates energy.

» For the Newmark and the HHT scheme with retrieve the dissipation properties as
the smooth case. The term associated with impact is added is the balance.

> Open Problem: We get dissipation inequality for discrete with quadratic storage
function and plausible supply rate. The nest step is to conclude to the stability of
the scheme with this argument.

Energy Analysis — 63/72



Time-integration of flexible multi-body systems with contact. Newmark based schemes and the coefficient of restitution
Energy Analysis

Energy Analysis for the Newmark scheme

Objectives & Motivations
Problem setting
Measures Decomposition
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HHT scheme
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Newmark's scheme and the a—methods family
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L The impacting beam benchmark

Impact in flexible structure

Example (The impacting bar)

Vo

Y

Discussion and FEM applications — 65/72



Time-integration of flexible multi-body systems with contact. Newmark based schemes and the coefficient of restitution
Discussion and FEM applications

L The impacting beam benchmark

Impact in flexible structure

Brief Literature

> (?) Impact of two elastic bars. Standard Newmark in position and specific release
and contact

v

(??) Implicit treatment of contact reaction with a position level constraints

v

(??) Implicit treatment of contact reaction with a pseudo velocity level
constraints (algorithmic gap rate)

v

(?) Comparison of Moreau—Jean scheme and standard Newmark scheme

v

(?) Central—difference scheme with

v

(?) Contact stabilized Newmark scheme. Position level Newmark scheme with
pre-projection of the velocity.

> (?) Comparison of various position level schemes.

Although artifacts and oscillations are commonly observed, the question of
nonsmoothness of the solution, the velocity based formulation and then a possible
impact law in never addressed.
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The impacting beam benchmark

Impact in flexible structure

Position based constraints
1000 nodes. vg = —0.1. h=5.10"3 Nonsmooth Newmark scheme v = 0.6, 3 = /2

0.003 T T
0.0025 |- bar contact point position —
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0
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|

bar contact point Velocity ———
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-0.05 |-

Reaction force ———

Ns
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T |

T
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index 3 DAE problem: oscillations at the velocity level.—> reduce the index.
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The impacting beam benchmark

Impact in flexible structure

Influence of high frequencies dissipation
1000 nodes. vg = —0.1. h =5.107°% e = 0.0 Nonsmooth Newmark scheme
v=05,8=7/2.

0.003 T T T T T T T T 1T 1T T T T T T 17T
0.0025 | bar contact point position ——|
0.002 - i
0.0015 [ i
0.001 |~ il
0.0005 il
0
-0.0008

bar contact point Velocity

0.15 - =
01| =
@

g 005 =

Reaction force ———
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N
S
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I
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The impacting beam benchmark

Impact in flexible structure

Influence of high frequencies dissipation
1000 nodes. vg = —0.1. h =5.107°% e = 0.0 Nonsmooth Newmark scheme
v=06,8="~/2.

0.003 T T T T T T T T T 1T T T T T T 17T
0.0025 bar contact point position —
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0.0015 [ i
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The impacting beam benchmark

Impact in flexible structure

Influence of mesh discretization
1000 nodes. vg = —0.1. h =5.107°% e = 0.0 Nonsmooth Newmark scheme
v=0.6,8=~/2.

0.003 T T T T T T T T T 1T 7T T T T T 17T
0.0025 |- bar contact point position ———1
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The impacting beam benchmark

Impact in flexible structure

Influence of mesh discretization
100 nodes. v = —0.1. h =5.107% e = 0.0 Nonsmooth Newmark scheme
v=0.6,8=~/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of mesh discretization
10 nodes. vg = —0.1. h=5.10"% e = 0.0 Nonsmooth Newmark scheme
¥ =0.6,8="7/2
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Discussion and FEM applications

The impacting beam benchmark

Impact in flexible structure

Influence of time—step
1000 nodes. vg = —0.1. h =5.107°% e = 0.0 Nonsmooth Newmark scheme
¥=06,8=7/2
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Discussion and FEM applications

The impacting beam benchmark

Impact in flexible structure

Influence of time—step

1000 nodes. vg = —0.1. h =5.10"% e = 0.0 Nonsmooth Newmark scheme
¥=06,8=7/2
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The impacting beam benchmark

Impact in flexible structure

Influence of time—step
1000 nodes. vg = —0.1. h =5.10~* e = 0.0 Nonsmooth Newmark scheme
¥=06,8=7/2
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The impacting beam benchmark

Impact in flexible structure

Influence of the coefficient of restitution
1000 nodes. vg = —0.1. h =5.10"% e = 0.0 Nonsmooth Newmark scheme
v =06,8=7/2.
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The impacting beam benchmark

Impact in flexible structure

Influence of the coefficient of restitution
1000 nodes. vg = —0.1. h =5.10"% e = 0.5 Nonsmooth Newmark scheme
v =06,8=7/2.
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Discussion and FEM applications

The impacting beam benchmark

Impact in flexible structure

Influence of the coefficient of restitution
1000 nodes. vg = —0.1. h =5.10"% e = 1.0 Nonsmooth Newmark scheme
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L The impacting beam benchmark

Impact in flexible structure

Discussion
> Reduction of order needs to write the constraints at the velocity level. Even in
GGL approach.

> How to known if we need an impact law ? For a finite—freedom mechanical
systems, we have to precise one. At the limit, the concept of coefficient of
restitution can be a problem. Work of Michelle Schatzman.
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