Modification of Moreau-Jean's Scheme for Energy Conservation in Inelastic Impact Dynamics

Carlos Yoong ¹ Vincent Acary ² Mathias Legrand ¹

¹ Structural Dynamics and Vibration Laboratory McGill University

> ²Team Bipop Inria Rhone-Alpes

June 27th, 2017

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	00	00000000000	0

Vibro-impact system Mechanical model Purely inelastic impact law

3 Moreau-Jean's scheme with energy correction

4 Results

Vibro-impact responses with sticking contact phases Families of periodic solutions

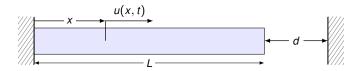
5 Conclusions and Future Work

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	00	00000000000	0

Vibro-impact system Mechanical model Purely inelastic impact law

3 Moreau-Jean's scheme with energy correction

4 Results


Vibro-impact responses with sticking contact phases Families of periodic solutions

5 Conclusions and Future Work

Motivation •	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results 00000000000	Conclusions and Future Work O
Motiva	ation			

General Motivations

- Find periodic solutions for continuous systems with sticking contact phases
- > Perform nonsmooth modal analysis (frequencies of vibration and mode shapes)

Issues with standard space discretization (FEM or FD)

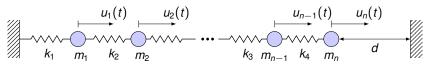
- Finite dimensional systems require impact laws.
- ► Sticking phases implies inelastic impacts → dissipative system.
- Develop a scheme that conserves energy for inelastic impact dynamics

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	00	00000000000	0

Vibro-impact system Mechanical model Purely inelastic impact law

3 Moreau-Jean's scheme with energy correction

4 Results


Vibro-impact responses with sticking contact phases Families of periodic solutions

5 Conclusions and Future Work

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	•0	00	00000000000	0

Vibro-impact system

Mechanical model

Dynamics of the system

Equations of motion

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{K}\mathbf{u} = \mathbf{r} \tag{1a}$$

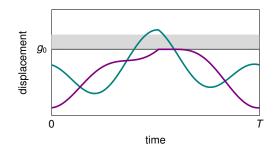
$$\mathbf{u}(0) = \mathbf{u}_0, \quad \dot{\mathbf{u}}(0) = \dot{\mathbf{u}}_0 \tag{1b}$$

$$u_n(t) \leq d, \quad R(t) \leq 0, \quad (u_n(t) - d)R(t) = 0, \quad \forall t$$
 (1c)

Newton's impact law

$$\dot{u}_n(t^+) = -e\dot{u}_n(t^-)$$
 if $u_n(t) = d$ and $\dot{u}_n(t^-) \ge 0.$ (2)

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	0	00	00000000000	0


Vibro-impact system

Purely inelastic impact law

- Coefficient of restitution: e = 0
- Dissipation of energy
- System undergoes "sticking" contact phases

Illustration of sticking contact phases for 2 DOF system

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	00	00000000000	0

Vibro-impact system Mechanical model Purely inelastic impact law

3 Moreau-Jean's scheme with energy correction

4 Results

Vibro-impact responses with sticking contact phases Families of periodic solutions

5 Conclusions and Future Work

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	• •	00000000000	0

Moreau-Jean's Scheme

Numerical time integration

▶ Within interval $(t^i, t^{i+1}]$ of length *h* and using $\theta \in [0, 1]$

$$\mathbf{M}(\dot{\mathbf{u}}^{i+1} - \dot{\mathbf{u}}^{i}) + h\mathbf{K}\mathbf{u}^{i+\theta} = \mathbf{p}^{i+1},$$
(3a)

$$\mathbf{u}^{i+1} = \mathbf{u}^i + h \dot{\mathbf{u}}^{i+\theta},\tag{3b}$$

if
$$u_n^i \ge d$$
, $0 \le \dot{u}_n^{i+1} + e\dot{u}_n^i \perp P^{i+1} \le 0$ (3c)

Numerical energy dissipation

Discrete time dissipation equality [Acary, ZAMM, 2015]

$$\Delta \mathcal{E} = \left(\frac{1}{2} - \theta\right) \left[||\dot{\mathbf{u}}^{i+1} - \dot{\mathbf{u}}^{i}||_{M}^{2} + ||\mathbf{u}^{i+1} - \mathbf{u}^{i}||_{K}^{2} \right] + \dot{u}_{n}^{i+1/2} \boldsymbol{P}^{i+1}$$
(4)

• Most conservative case when $\theta = 1/2$, the total energy balance reads:

$$\Delta \mathcal{E} = \mathcal{E}^{i+1} - \mathcal{E}^i = \dot{u}_n^{i+1/2} P^{i+1} \tag{5}$$

Motivation Vibro-impact system Moreau-Jea	n's scheme with energy correction Results	Conclusions and Future Work
0 00 00	0000000000	0

Correction for energy conservation

Proposition

- Contact closes \Rightarrow Add scalar correction β^{i+1} to velocity of non-contacting masses.
- β^{i+1} is not know a priori and is calculated for each time contact closes.
- The correction is calculated from:

$$\frac{1}{2} (\mathbf{I}\beta^{i+1})^{\top} \mathbf{M} (\mathbf{I}\beta^{i+1}) + (\mathbf{I}\beta^{i+1})^{\top} \mathbf{M} \dot{\mathbf{u}}^{i+1} + \frac{h^2}{8} (\mathbf{I}\beta^{i+1})^{\top} \mathbf{K} (\mathbf{I}\beta^{i+1}) + \frac{h}{2} (\mathbf{I}\beta^{i+1})^{\top} \mathbf{K} \mathbf{u}^{i+1} + \dot{u}_2^{i+1/2} P^{i+1} = 0.$$
(6)

► For min |βⁱ⁺¹|, the system does not present infinite sticking phases nor a behavior involving purely elastic impacts.

Motivation Vibro-impact system Moreau-Jea	n's scheme with energy correction Results	Conclusions and Future Work
0 00 00	0000000000	0

Correction for energy conservation

Proposition

- Contact closes \Rightarrow Add scalar correction β^{i+1} to velocity of non-contacting masses.
- β^{i+1} is not know a priori and is calculated for each time contact closes.
- The correction is calculated from:

$$\frac{1}{2} (\mathbf{I}\beta^{i+1})^{\top} \mathbf{M} (\mathbf{I}\beta^{i+1}) + (\mathbf{I}\beta^{i+1})^{\top} \mathbf{M} \dot{\mathbf{u}}^{i+1} + \frac{h^2}{8} (\mathbf{I}\beta^{i+1})^{\top} \mathbf{K} (\mathbf{I}\beta^{i+1}) + \frac{h}{2} (\mathbf{I}\beta^{i+1})^{\top} \mathbf{K} \mathbf{u}^{i+1} + \dot{u}_2^{i+1/2} \mathbf{P}^{i+1} = 0.$$
(6)

► For min |βⁱ⁺¹|, the system does not present infinite sticking phases nor a behavior involving purely elastic impacts.

Drawbacks

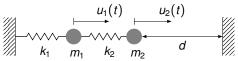
- ► No rigorous procedure to chose the correct β^{i+1}
- Numerical dispersion errors are not corrected

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	00	00000000000	0

Vibro-impact system Mechanical model Purely inelastic impact

3 Moreau-Jean's scheme with energy correction

4 Results


Vibro-impact responses with sticking contact phases Families of periodic solutions

5 Conclusions and Future Work

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	00	● 00 00000000	0

Vibro-impact system

System of interest

Mechanical properties

- Mechanical properties: $k_1 = k_2 = 1$ and $m_1 = m_2 = 1$.
- Natural frequencies: $\omega_1 = 0.6180$ and $\omega_2 = 1.6180$
- Natural periods: $T_1 = 10.1670$ and $T_2 = 3.8833$
- Initial conditions: $\mathbf{u}_0 = (0 \ 0)^{\top}$ and $\dot{\mathbf{u}}_0 = (10 \ 10)^{\top}$
- lnitial gap: d = 0.1

Simulation parameters

▶ Time step: *h* = 1/500

Deeree				文 書文
0	00	00	0000000000	0
Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work

Responses with sticking contact phases

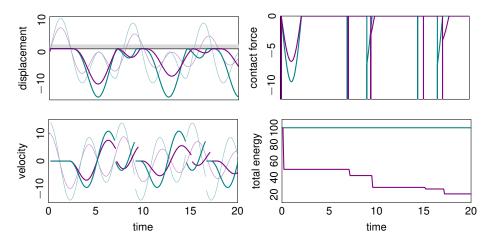
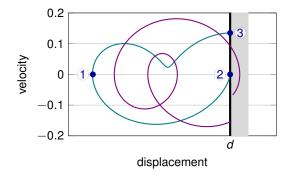


Figure: Vibro-impact dynamics with e = 0. Green color: modified scheme. Purple color: standard scheme. For displacement and velocity plots: light colors depict mass 1 and dark colors depict mass 2.

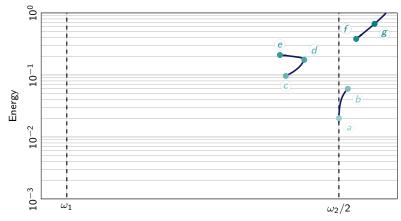
Motivation	Vibro-impact system
0	00

Moreau-Jean's scheme with energy correction


Results

Conclusions and Future Work

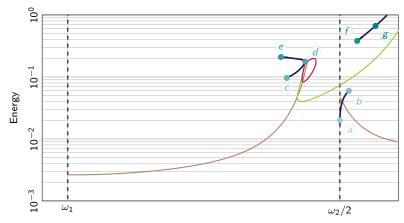
Computation of periodic solutions


Shooting method with continuation

- Newton's method with finite difference Jacobian matrix
- $\blacktriangleright\,$ Sensitive to numerical errors \rightarrow Difficult to converge
- Continuation along energy by taking point 1 as reference
- Points 2 and 3 never converge due to penetration

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	00	000000000000000000000000000000000000000	0

Families of periodic solutions



Frequency of vibration

Figure: Frequency-Energy plot for families of periodic solutions with sticking contact phases.

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	00	000000000000000000000000000000000000000	0

Families of periodic solutions

Frequency of vibration

Figure: Blue: periodic solutions with sticking contact phases. Orange: periodic solutions with purely elastic impact law (e = 1) for one impact per period. Light green: two impacts per period (e = 1). Red: three impacts per period (e = 1).

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	00	00000000000	0
Period				

Motivation O	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results ○○○○○●○○○○○	Conclusions and Future Work O
Period	dic Solution	b		

Motivation O	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results ○○○○○○●○○○○	Conclusions and Future Work O
Period	dic Solution			

Motivation O	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results ○○○○○○●○○○	Conclusions and Future Work O
Perio	Periodic Solution d			

Phase diagram

Solution also found in an analytical study by Le Thi et al.

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	00	00000000000	0
Period	€ <mark>6</mark>			

Motivation O	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results ○○○○○○○○○●○	Conclusions and Future Work O
Period	dic Solution	l f		€. E

Phase diagram

Motivation O	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results ○○○○○○○○○○●	Conclusions and Future Work O
Periodic Solution g				€

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	00	00000000000	0

Vibro-impact system Mechanical model

Purely inelastic impact law

3 Moreau-Jean's scheme with energy correction

4 Results

Vibro-impact responses with sticking contact phases Families of periodic solutions

(5) Conclusions and Future Work

Motivation	Vibro-impact system	Moreau-Jean's scheme with energy correction	Results	Conclusions and Future Work
0	00	00	00000000000	•

Conclusions and Future Work

Conclusions

- Inclusion of the correction yields an energy conserving framework
- Results converge to periodic solutions with sticking contact phases
- More than 2 DOF are highly affected by numerical dispersion

Future Work

- Include a correction in displacement and/or velocity
- Eliminate numerical dispersion
- Find periodic solutions in multidimensional continuous systems