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INRIA Tripop Team

INRIA
French national institute for computer sciences, applied mathematics and
automatic control.

TRIPOP team-project

▶ Research object:
Modeling, Simulation and Control of Nonsmooth Dynamics.

▶ Current main application: natural gravitational risks in mountains :
▶ rockfall, rock slope stability, rock avalanche, landslides and debris flows
▶ design of protection structures
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nonsmooth = lack of continuity/differentiability
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Where is nonsmoothness?
▶ nonsmooth solutions in time and space:

• continuous, functions of bounded variations, measures and distributions.
▶ nonsmooth modeling of constitutive laws:

• set–valued mapping, inequality constraints, complementarity, impact laws,
• ODE with discontinuous r.h.s, differential inclusion, measure equation.
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Application fields.

▶ Mechanical systems with unilateral contact, Coulomb friction and impacts :
multi-body systems, robotic systems, frictional contact oscillators, granular
materials, plasticity, fracture.

▶ Switched electrical circuits (diodes, transistors, switchs).
▶ Fluid Mechanics: cavitation, gas appearance multi-phasic fluid, permeability
▶ Hybrid and Cyber–physical systems
▶ Biology : gene regulatory networks
▶ Transportation networks with queues.

Nonsmooth approach is crucial for a correct modeling and an efficient simulation
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Modeling and simulation in natural gravitational hazards

Fracture processes in gravitational hazards

▶ Rock fall trajectory simulation and rock mass flows
▶ fracture of rocks in trajectory simulation
▶ from instability to flow: understanding the emergence of large boulders,

likely to have a long and dangerous trajectory from the collapse of the
rock mass

▶ Stability of permafrost rock mass with global warning
▶ Concrete protection structures

Fracture under impact of boulders
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Modeling and simulation of fracture mechanics

▶ Linear Elastic Fracture Mechanics (LEFM) and Elasto-Plastic Fracture
Mechanics (EPFM)
▶ stress intensity factor, fracture toughness, Griffith and Irwin theory, . . .

▶ Phase-Field Models for Fracture
▶ diffuse representation of the cracks without explicit crack tracking,

handle complex crack patterns (branching, merging)
▶ Extended Finite Element Method (XFEM)

▶ Incorporating discontinuities in the displacement field to avoid
remeshing

▶ Cohesive Zone Models (CZM)
▶ Introduces traction-separation laws to represent fracture
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Cohesive zone models

cohesive zone

cohesive traction

crack tip

Loads

Why we chose CZM modeling?

▶ relatively “easy” to implement
▶ well suited for crack nucleation, branching and merging
▶ possible coarse-grain simulation for heterogeneous materials with

uncertainties
▶ unilateral contact and Coulomb friction with impact as residual behavior of

the interface
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Extrinsic and intrinsic cohesive zone models

An intrinsic (a) and an extrinsic (b) cohesive zone model

uN

σ

uN

σ

δc

σc
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δh δc

σc

(b)

▶ Intrinsic models : initial stiffness in the interface.
▶ σ is a function of uN

▶ difficulty to give a value to the initial stiffness
▶ modify the elasticity of the material prior to the crack
▶ the effect is worse with a lot of interfaces (FEM applications)
▶ need to use high initial stiffness value that implies numerical difficulties

(stiff ODE systems)
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Extrinsic and intrinsic cohesive zone models

An intrinsic (a) and an extrinsic (b) cohesive zone model

uN

σ

uN

σ

δc
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δh δc

σc

(b)

▶ Extrinsic models : initially rigid, perfect bond, bilateral constraint.
▶ the model is set-valued (like unilateral contact)
▶ keep the original elasticity of the material.
▶ bilateral constraints rather penalty (no stiff ODE)
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Extrinsic and intrinsic cohesive zone models

Standard extrinsic and shifted intrinsic models

uN

σc

δc

σc

uN

σc

δc

σc

δh = 0

Standard extrinsic models Shitfed intrinsic models
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Motivations

▶ Design of an extrinsic set-valued CZM model:
▶ with a residual behavior given by unilateral contact, Coulomb friction

and an impact law
▶ that satisfies thermodynamic principles (manly positive dissipation) in

discrete time.
▶ A framework for nonsmooth fracture dynamics with an implicit time-stepping

scheme for stability
▶ A time-stepping scheme that also satisfies thermodynamic principles (energy

conservation and dissipation)
▶ A CZM model that can be solved completely implicitly using efficient tools

from optimisation.
▶ Well-posed results for the one-step discrete problem (linear complementarity

problem)
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Signorini’s condition and Coulomb’s friction

Body A

Body B

CA

N

T1
T2

CB

uN

▶ gap function (displacement jump)
uN = (CB − CA)N.

▶ reaction forces and velocities

r = rNN+rT, with rN ∈ IR and rT ∈ IR2.

v = vNN+vT, with vN ∈ IR and vT ∈ IR2.

▶ Signorini conditions

position level : 0 ⩽ uN ⊥ rN ⩾ 0.

velocity level :

{
0 ⩽ vN ⊥ rN ⩾ 0 if uN ⩽ 0
rN = 0 otherwise.
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Signorini’s condition and Coulomb’s friction

Modeling assumption
Let µ be the coefficient of friction. Let us define the Coulomb friction cone K
which is chosen as the isotropic second order cone

K = {r ∈ IR3 | ∥rT∥ ⩽ µrn}.

Coulomb friction postulates
▶ for the sticking case that

vT = 0, r ∈ K ,

▶ and for the sliding case that

vT ̸= 0, r ∈ ∂K ,
rT

∥rT∥
= − vT

∥vT∥
.

Disjunctive formulation of the frictional contact behavior
r = 0 if uN > 0 (no contact)
r = 0, vN ⩾ 0 if uN ⩽ 0 (take–off)
r ∈ K , v = 0 if uN ⩽ 0 (sticking)
r ∈ ∂K , vN = 0,

rT

∥rT∥
= − vT

∥vT∥
if uN ⩽ 0 (sliding)

(1)
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Thermodynamic framework

Unilateral contact (reversible process)
A nonsmooth free surface energy is postulated:

ΨS(uN, uT) = IIR+
(uN),

where IC is the indicatrix function of a convex set C

IC(x) =

{
0, x ∈ C

+∞, x ̸∈ C

The reversible reaction forces derives from this potential

−r r
N ∈ ∂uNIIR+

(uN) ⇐⇒ 0 ⩽ r r
N ⊥ uN ⩾ 0 (Signorini condition),

where ∂ is the subdifferential of convex analysis.

−r r
T ∈ ∂uTΨS(uN, uT) = 0
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Thermodynamic framework of contact laws

Coulomb friction (irreversible process)
A nonsmooth pseudo-potential of dissipation is postulated

Φ(vN, vT) = µrN|vT| (2D case).

The irreversible reaction forces derives from this pseudo-potential

−r ir
N ∈ ∂vNΦ(vN, vT) = 0,

−r ir
T ∈ ∂vTΦ(vN, vT) = µrnsgn(vT),

where sgn is the multivalued signum function.

Remark
The pseudo-potential Φ contains a dependence on rN, due to the non associated
character of Coulomb friction. The de Saxcé bi-potential framework would be more
appropriate.
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An extrinsic cohesive zone model

Frémond’s approach is followed to develop a cohesive interface model that satisfies
thermodynamic principles.

State variables of the interface
▶ uN, uT displacement jumps
▶ β ∈ [0, 1] cohesion state (damage-like variable)

β = 1, completely intact interface
β = 0, completely fractured interface

Interface potentials
Constitutive laws derives from potentials to ensure thermodynamical principles
(Clausius-Duhem inequality)
▶ ΨS(uN, uT, β) free energy
▶ Φ(vN, vT, β̇) pseudo potential of dissipation
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An extrinsic cohesive zone model

Free energy potential

Ψs(uN, uT, β) = βσcuN + βγσc|uT|︸ ︷︷ ︸
potential energy

+ wf (β)︸ ︷︷ ︸
fracture energy

+ I[0,1](β)︸ ︷︷ ︸
constraints on β

+ IIR+(uN)︸ ︷︷ ︸
unilateral contact

▶ w is the free energy released by the decohesion
▶ f (β) is a function that describes the “shape” of the cohesive law,
▶ γ is the ratio of critical traction in mode II to mode I

Remarks
▶ unilateral contact is contained in the model
▶ β is constrained to be [0, 1]
▶ the potential energy related to uN and uT is piece linear to avoid the

introduction of elasticity
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An extrinsic cohesive zone model

State laws, constitutive laws for reversible processes


−r r

N ∈ ∂uNΨs(uN, uT, β) = βσc + ∂IIR+(uN),

−r r
T ∈ ∂uTΨs(uN, uT, β) = βγσcsgn(uT),

−Ar ∈ ∂βΨs(uN, uT, β) = σc
(
uN + γ|uT|

)
+ wf ′(β) + ∂I[0,1](β),

where A is the thermodynamic driving force associated with the cohesion state β.

▶ unilateral contact with cohesion

−(r r
N + βσc) ∈ ∂IIR+(uN) ⇐⇒ 0 ⩽ r r

N + βσc ⊥ uN ⩾ 0

▶ set-valued tangential cohesion

−r r
T ∈ βγσcsgn(uT)

▶ cohesion state law

−(Ar + σc
(
uN + γ|uT|

)
+ wf ′(β)) ∈ ∂I[0,1](β)
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An extrinsic cohesive zone model

A simple triangle law as state cohesion law

f (β) = (β2 − 1), w =
σcδc

2

uN

βσc

δc

σc

w area under the curve, free energy earns by the system.
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An extrinsic cohesive zone model

uN

r r
N

−βσc

δc uT

r r
T

δc,T

−δc,T

βγσc

−βγσc
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An extrinsic cohesive zone model

Irreversible process (2D)

Φ(vN, vT, β̇) = IIR−(β̇)︸ ︷︷ ︸
fracture irreversibility

+µ(rN + βσc)|vT|︸ ︷︷ ︸
dissipation by friction

(2)

Comments
▶ the decohesion process is irreversible (β̇ ⩽ 0) but not dissipative and

rate-independent.
▶ the friction threshold accounts for the cohesion force,
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An extrinsic cohesive zone model

Irreversible process (2D). Constitutive laws

−r ir
N = ∂vNΦ(vN, vT, β̇) = 0,

−r ir
T ∈ ∂vTΦ(vN, vT, β̇) = µ(rN + βσc)sgn(vT),

−Air ∈ ∂β̇Φ(vN, vT, β̇) = ∂IIR−(β̇).

vT

r ir
T

−µ(rN + βσc)

µ(rN + βσc)
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An extrinsic cohesive zone model

The net tangential behaviour assuming uT = ±vTt

uT

rT

−µ(rN + σc)

−µrN

µ(rN + σc)

µrN

Comments
The tangential depends on two separated terms: a cohesion forces that depends on
displacement and a frictional forces that depends on the velocity.
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An extrinsic cohesive zone model

From the principle of virtual power with no external power on β (pure internal
variable), we have

Θ = Ar + Air = 0, rN = r r
N, rT = r r

T + r ir
T .

Introducing the contact force,

rcon
N = rN + βσc ⩾ 0

the extrinsic CZM can be written as

β̇ = −λ,
Ar + σcuN + σcγ|uT|+ wf ′(β) = ξ,
rcon

N = rN + βσc,
0 ⩽ rcon

N ⊥ uN ⩾ 0,
0 ⩽ ξ ⊥ β ⩾ 0,
0 ⩽ λ ⊥ Ar ⩾ 0,
−r r

T ∈ βσcsgn(uT)
−r ir

T ∈ µrcon
N sgn(uT)

(3)

where ξ and λ are slack variables (Lagrange multiplier) to enforce the constraint on
β and β̇.
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An extrinsic cohesive zone model

Analytical solution for a simple shear test
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An extrinsic cohesive zone model

▶ Other shape of the state law are possible
▶ Introduction of rate-dependent behavior is also possible,
▶ Other type of unloading behavior (see Curnier Talon for instance (vertical

unloading))
▶ Direct elastic unloading is not directly possible due to the singularity for
β = 1
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Time-stepping schemes

Finite dimensional linear elasto-dynamics (after FEM for instance){
Mv̇ + Ku = F + H⊤

N SrN + H⊤
T SrT,

u̇ = v, uN = HNu + bN, HTu + bT,
(4)

where S is the matrix of cohesive area for each CZM points

Finite dimensional systems with unilateral constraints
=⇒ velocity jumps and percussions

Nonsmooth dynamics{
M dv + Ku dt = F dt + H⊤

N diN + H⊤
T diT,

u̇ = v,
(5)

where dv is the differential measure associated with v of bounded variations
and di is the interface impulses.
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Time-stepping schemes

dt Lebesgue measure, dν discrete measure (a sum of Dirac atoms
∑

i δti )

Measure decomposition w.r.t dt

diN
dt

= −Sβσc +
dicon

N

dt
, and

diT
dt

= Sr r
T +

dicon
T

dt
, dt–almost everywhere. (6)

with
dicon

N

dt
= Srcon

N , and
dicon

T

dt
= Sr ir

T , dt–almost everywhere. (7)

Measure decomposition w.r.t dν

pN =
dicon

N

dν
=

diN
dν
, and pT =

dicon
T

dν
=

diT
dν
, dν–almost everywhere. (8)

Remarks
▶ Cohesive forces −Sβσc and Sr ir

T have no Dirac atom
▶ New variables pN and pT =⇒ additional constitutive laws (impact laws).
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Time-stepping schemes

Additional constitutive laws (impact laws)

▶ Newton impact laws

0 ⩽ pN ⊥ v+N + ev−N ⩾ 0 if uN ⩽ 0, else pN = 0, (9)

where e is a coefficient of restitution (e = 0 in FEM applications)
▶ Coulomb’s friction at impact (Frémond impact with friction)

− pT ∈ µpNsgn(
1
2
(v+T + v−T )). (10)

Measure formulation

0 ⩽ dicon
N ⊥ v+N + ev−N ⩾ 0 if uN ⩽ 0, else dicon

N = 0. (11)

− dicon
T ∈ µ dicon

N sgn(1
2
(v+T + v−T )). (12)
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Time-stepping schemes

Nonsmooth dynamics to discretize in time



M dv + Ku dt = F dt + H̄⊤
N dpN + H̄⊤

T dpT − H⊤
N Sβσc dt + H⊤

T Sr r
T dt,

u̇ = v, uN = HNu + bN, uT = HTu + bT, vN = H̄Nv, vT = H̄Tv,

β̇ = −λ,
Ar + σcuN + σcγ|uT|+ σcδc,N(β − 1) = ξ,

0 ⩽ ξ ⊥ β ⩾ 0,

0 ⩽ λ ⊥ Ar ⩾ 0,

−r r
T = βγσcsgn(uT)

0 ⩽ dicon
N ⊥ v+N + ev−N ⩾ 0

− dicon
T ∈ µ dicon

N sgn( 1
2 (v

+
T + v−T )).

(13)
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Time-stepping schemes

Principles of Moreau–Jean scheme

Measure of interval (k, k + 1] as primary unknown

pN,k,k+1 ≈ dicon
N ((k, k + 1]) =

∫
(k,k+1] di

con
N

pT,k,k+1 ≈ dicon
T ((k, k + 1]) =

∫
(k,k+1] di

con
T

(14)

Approximation of Lebesgue integrable terms with a θ-method (θ ∈ (0, 1])∫ tk+1

tk

x(t) dt ≈ hxk+θ

For instance for the cohesion impulses.∫
(k,k+1]

diN =

∫
(k,k+1]

dicon
N − Sσc

∫ tk+1

tk

β dt ≈ pN,k,k+1 − hSσcβk+θ, (15)

and ∫
(k,k+1]

diT =
∫
(k,k+1]

dicon
T + S

∫ tk+1

tk

r r
T dt ≈ pT,k,k+1 + hSr r

T,k+θ, (16)
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Time-stepping schemes

Time-stepping scheme for the full elasto-dynamic cohesive-frictional-contact
problem

M(vk+1 − vk) + hKuk+θ = hFk+θ − hσcH⊤
N Sβk+θ + hH⊤

T r r
T,k+θ + H̄⊤

N pN,k,k+1 + H̄⊤
T pT,k,k+1,

uk+1 = uk + hvk+θ,

uN,k+θ = HNuk+θ + bN,k+θ, uT,k+θ = HTuk+θ + bT,k+θ,

vN,k+θ = H̄Nvk+θ, vT,k+θ = H̄Tvk+θ,

βk+1 = βk − hλk+θ,

σcδc,N(βk+θ − 1) + σcuN,k+θ + σcγ|uT,k+θ|+ Ar
k+1 = ξk+θ,

0 ⩽ Ar
k+θ ⊥ λk+θ ⩾ 0,

0 ⩽ βk+θ ⊥ ξk+θ ⩾ 0,

−r r
T,k+θ = βk+θγσcsgn(uT,k+θ)

0 ⩽ pN,k,k+1 ⊥ θvN,k+θ + (θ(1 + e)− 1)vN,k ⩾ 0

−pT,k,k+1 ∈ µpN,k,k+1sgn(vk+θ).

(17)
This problem is a finite-dimensional variational inequality.
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Discrete energy balance

Continuous space and time energy Balance

∆K+∆U +∆G +∆F =

∫ t2

t1

Pext dt, and ∆E = ∆U +∆G

▶ Kinetic Energy K =
∫
Ω
ρv · v dx

▶ Elastic potential energy U =
∫
Ω
ε : E : ε dx

▶ Fracture energy

G =

∫ ∫
Γ

βσcvN − vTr
r
T dx dt =

∫ ∫
Γ

ψ̇ dx dt

▶ Dissipation energy by friction

F =

∫ ∫
Γ

−vTr
ir
T dx dt
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Discrete energy balance

Time continuous space discretized energy Balance

dK + dU + dG = v⊤F dt +
1
2

(
v+N + v−N

)⊤
dpN +

1
2

(
v+T + v−T

)⊤
dpT.

▶ Kinetic energy K = 1
2 v

⊤Mv

▶ Elastic potential energy U = 1
2u

⊤Ku
▶ Fracture Energy

G =

∫
σcSβvN − vTSr

r
T dt,
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Discrete energy balance

Integrated form

∆(K + U + G) = ∆T = T+(t2)− T−(t1) = ∆Wext +∆Wimpact +∆Wfriction,

∆Wext =

∫ t2

t1

v⊤F dt,

∆Wimpact =

∫
(t1,t2]

1
2

(
v+N + v−N

)⊤
dpN,

∆Wfriction =

∫
(t1,t2]

1
2

(
v+T + v−T

)⊤
dpT.
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Discrete energy balance

Discrete time energy balance
The scheme is dissipative

∆Kk,k+1 +∆Uk,k+1 +∆Gk,k+1 −∆Wext,k,k+1 ⩽ ∆Wimpact,k,k+1 +∆Wfriction,k,k+1 ⩽ 0

provided that
1
2
⩽ θ ⩽

1
1 + e

⩽ 1.

with

▶ ∆Gk,k+1 = h
(
v⊤N,k+θσcSβk+θ − Sv⊤T,k+θr

r
T,k+θ

)
≈

∫
σcSβvN − SvTr

r
T dt

▶ ∆Wext,k,k+1 = hv⊤k+θFk+θ ≈
∫ tk+1

tk

v⊤F dt

▶ ∆Wimpact,k,k+1 = v⊤N,k+θpN,k,k+1

▶ ∆Wfriction,k,k+1 = v⊤T,k+θpT,k,k+1,

Discrete time energy balance for θ = 1/2

∆Kk,k+1+∆Uk,k+1+∆Gk,k+1−∆Wext,k,k+1 = ∆Wimpact,k,k+1+∆Wfriction,k,k+1 ⩽ 0.
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Linear complementarity formulation and solving

We chose to formulate our model in the form of a Linear Complementarity
Problem(LCP)

Linear Complementarity Problem (LCP)
The Linear Complementarity Problem denoted by LCP(L, q) is to find w and z such
that {

w = Lz + q

0 ⩽ w ⊥ z ⩾ 0

Other formulation of the variational inequality are possible depending on the
numerical solution procedure (projected fixed point, semi–smooth Newton
method)
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Linear complementarity formulation and solving

Lemma
The solution yN, yT, xN, xT of the following inclusion{

0 ⩽ yN ⊥ xN ⩾ 0,

−yT ∈ yNsgn(xT) = yN∂|xT|,
(18)

is given by solving the following complementarity system
0 ⩽ yN ⊥ xN ⩾ 0,

0 ⩽ ŷT ⊥ 1λ+ D⊤xT ⩾ 0,

0 ⩽ λ ⊥ yN − 1⊤ŷT ⩾ 0,

(19)

with yT = DŷT and D = [1,−1]. Furthermore, we have yN|xT| = yNλ.
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Linear complementarity formulation and solving

Using Lemma 1, the system
0 ⩽ βk+θ ⊥ ξk+θ ⩾ 0,

−r r
T,k+θ = γσcβk+θsgn(uT,k+θ),

0 ⩽ pN,k,k+1 ⊥ θvN,k+θ + (θ(1 + e)− 1)vN,k ⩾ 0,

−pT,k,k+1 ∈ µpN,k,k+1sgn(vk+θ).,

(20)

can be rewritten as

r r
T,k+θ = Dr̂ r

T,k+θ,

0 ⩽ Sβk+θ ⊥ ξk+θ ⩾ 0,

0 ⩽ r̂ r
T,k+θ ⊥ 1χk+1 + D⊤uT,k+θ ⩾ 0,

0 ⩽ χk+θ ⊥ σcγSβk+θ − 1⊤ r̂ r
T,k+θ ⩾ 0,

pr
T,k+θ = Dp̂T,k+θ,

0 ⩽ pN,k,k+1 ⊥ vN,k+θ + (θ(1 + e)− 1)vN,k ⩾ 0,

0 ⩽ p̂T,k,k+1 ⊥ 1ζk+θ + D⊤vT,k+θ ⩾ 0,

0 ⩽ ζk+θ ⊥ µpN,k,k+1 − 1⊤p̂T,k,k+1 ⩾ 0.

(21)
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Linear complementarity formulation and solving

The complementarity variable vectors w and z are given by:

w =



hθλk+θ

ξk+θ

θvN,k+θ + θ(θ(1 + e)− 1)vN,k

1θζk+θ + θD⊤vT,k+θ

µpN,k,k+1 − 1⊤p̂T,k,k+1

1χk+θ + D⊤uT,k+θ

σcγSβk+θ − 1⊤ r̂ r
T,k+θ


, z =



SAr
k+θ

Sβk+θ

pN,k,k+1

p̂T,k,k+1

θζk+θ

r̂ r
T,k+θ

χk+θ


, (22)
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Linear complementarity formulation and solving

After some simple (admittedly somewhat cumbersome) operations to substitute
variables in linear equations, we obtain

L =



0m×m −S−1 0m×m 0m×2m 0m×m 0m×2m 0m×m

S−1 σc(δc,NS−1 − h2θ2σcUNN) hθ2σcV
⊤
NN hθ2σcV

⊤
TND 0m×m h2θ2σcUNTD σcγI

0m×m −hθ2σcVNN θ2WNN θ2WNTD 0m×m hθ2VNTD 0m×m

02m×m −hθ2σcD
⊤VTN θ2D⊤WTN θ2D⊤WTTD 1 hθ2D⊤VTTD 02m×m

0m×m 0m×m µI −1⊤ 0m×m 0m×2m 0m×m

02m×m −h2θ2σcD
⊤UTN hθ2D⊤V⊤

NT hθ2D⊤V⊤
TT D 02m×m h2θ2D⊤UTTD 1

0m×m σcγI 0m×m 0m×2m 0m×m −1⊤ 0m×m


(23)

and

q =



βk

σc

(
quN − δc,N1

)
θH̄NM̂−1 îk,k+1 + θ(θ(1 + e) − 1)H̄Nvk

θD⊤H̄TM̂
−1 îk,k+1

0m

D⊤quT
0m


. (24)
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Linear complementarity formulation and solving

Assumption (1)
The time-step h is chosen small enough that σc(δc,NS−1 − h2θ2σcUNN) is positive
definite.

Lemma
Under Assumption 1, L is copositive on the positive orthant, i.e, x⊤Lx ⩾ 0, ∀x ⩾ 0.

Assumption (2)
The matrix HT is surjective, i.e, ∀b ∈ IRm, ∃a ∈ IRn such that b = HTa.

Proposition
If Assumption (1) and (2) hold then the LCP(L, q) has a solution. Furthermore, the
LEMKE algorithm with lexicographic ordering is able to compute a solution.

Comments
▶ Existence result for any value of µ
▶ Uniqueness is not ensured due to Coulomb’s friction
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Linear complementarity formulation and solving

In the frictionless case, we obtain better results.

Lemma
Under Assumption 1, L is positive semi-definite and the solution is unique.

In the frictionless case, the system can be further formulated a convex quadratic
programming problem with unique solution.
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Linear complementarity formulation and solving

Discussion
▶ The system we model contains non convex free energy and leads to softening

behavior in the interface.
A constitutive softening model with a well-defined solution, without any kind
of regularization (viscosity, internal length, second gradient).

▶ A priori, no issue with mesh convergence and energetic behavior (this remains
to be proved formally)

▶ Dynamics renders the system well posed and there is no snap-trough as in the
quasi-static case

▶ What can be extended in the plasticity with softening? micro-inertia ?
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Numerical illustrations

The edge-cracked block
Coupling with Akantu (special thanks to Guillaume Anciaux and Nicolas Richart)

(a)

(b)

(c)
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Numerical illustrations
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Numerical illustrations

(a)

(b)

(c)
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Branching is possible with extrinsic (initially rigid) model
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Perspectives

▶ LEMKE algorithm is a pivoting algorithm : robust, solution at machine
accuracy but slow for large systems (number of contact points > 5000)
▶ Semi–smooth Newton method (à la Alart–Curnier)
▶ Interior point methods

▶ Python prototyping is slow and prone to bug.
Coding in serious HPC framework, C++ Petsc.

▶ Simpler implementation with explicit integration of β for faster simulations.
▶ PhD in progress (Chloé Gergely) on adding heat equations and temperature

coupling for stability for the rock permafrost in high mountains.

Rockfall at Mel de la Niva. Evolène, Switzerland 18 October 2015. video on YouTube
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https://www.youtube.com/watch?v=mSLVhNl4YxY
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