
Higher order schemes for
nonsmooth mechanical

systems.

Vincent Acary

vincent.acary@inrialpes.fr
INRIA Rhône–Alpes
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NonSmooth Multibody Systems (NSMBS)

General definition
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:

M(q)v̇ = F (t, q, v) + G(t, q)λ (1a)

q̇ = v (1b)

w = g(t, q, v) (1c)

0 ∈ S(w , λ, t) + T (w , λ, t) (1d)

v+ = F(v−, q, t) (1e)

◮ S : IR
m×m × IR 7→ IR

m×m continuously differentiable mapping

◮ T : IR
m×m × IR IR

m×m multivalued mapping with a closed graph.

Various modelling
The definition includes the modelling of Mechanical systems with bilateral
constraints, Coulomb’s friction, impacts, cohesion, . . .
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NonSmooth Multibody Systems (NSMBS)

Particular case: Scleronomous holonomic perfect unilateral
constraints

8
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>

>

>

:

M(q)v̇ = F (t, q, v) + G(q) λ

q̇ = v

y = g(q)

0 6 y ⊥ λ > 0

v̇+ = −eẏ−

(2)

where G(q) = ∇g(q)

Unilateral constraints (unilateral contact)

0 y

λ
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Mathematical aspects (in a nutshell).

Velocity level formulation. Index reduction

0 6 y ⊥ λ > 0
m

−λ ∈ NR+ (y)
m

−λ ∈ NT
R+ (ẏ)

m
if y 6 0 then 0 6 ẏ ⊥ λ > 0

(3)
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Mathematical aspects (in a nutshell)

Standard assumptions

◮ The proper mathematical formulation is a Measure Differential
inclusion (MDI)

◮ The position q(t) is absolutely continuous function of time t

◮ The velocity v(t) is a function of Bounded Variations (BV) of time t

◮ The acceleration is defined as a differential measure dv associated
with the BV function v

◮ The multiplier is also differential measure denoted by dλ

More details in (Glocker, 2001 ; A. and Brogliato, 2008).

Compact MDI formulation (Moreau, 1988)

M(q)dv = F (t, q, v+)dt + G(q)dλ (4)

y = q(q), ẏ = G(q)v (5)

−dλ ∈ NT
R+ (ẏ+ + eẏ−) (6)
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Mathematical aspects

Comments

◮ The inclusion concerns measures. Therefore, it is necessary to define
what is the inclusion of a measure into a cone.

◮ The inclusion in terms of velocity v+ rather than of the coordinates q.

Interpretation

◮ Inclusion of measure, −dλ ∈ K
◮ Case dλ = λ

′dt = fdt.
−f ∈ K (7)

◮ Case dλ = piδi .
−pi ∈ K (8)

◮ Inclusion in terms of the velocity. Viability Lemma
If q(t0) ∈ C(t0), then

v+ ∈ TC (q), t > t0 ⇒ q(t) ∈ C(t), t > t0

➜ The unilateral constraints on q are satisfied. The equivalence
needs at least an impact inelastic rule.
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Applications

Mechanical systems with contact, impact and friction
Simulation of Circuit breakers (INRIA/Schneider Electric)

•
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Applications

Mechanical systems with contact, impact and friction

Bipedal Robot INRIA BIPOP
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State–of–the–art

Numerical time–integration methods for Nonsmooth Multibody systems
(NSMBS):

Nonsmooth event capturing methods (Time–stepping methods)

� robust, stable and proof of convergence

� low kinematic level for the constraints

� able to deal with finite accumulation

� very low order of accuracy even in free flight motions

Nonsmooth event tracking methods (Event–driven methods)

� high level integration of free flight motions

� no proof of convergence

� sensibility to numerical thresholds

� reformulation of constraints at higher kinematic levels.

� unable to deal with finite accumulation
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Objectives & means

Objectives
Design nonsmooth event capturing methods with

◮ same properties as standard methods (robustness, accumulation, . . . )

◮ Higher resolution (ratio error/computational cost)

◮ Higher order of accuracy

Means

1. Adaptive time–step size and order strategies for standard methods

2. Mixed integrators with rough pre-detection of events

3. Splitting strategies

4. Ad hoc detection of discontinuity and order of discontinuity methods.
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NonSmooth Multibody Systems (NSMBS)

Academic examples I

g

q

m

f (t)

0

(a) Bouncing ball example

q

0

m

(b) Linear Oscillator example

Figure: Academic test examples with analytical solutions
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NonSmooth Multibody Systems (NSMBS)
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Figure: Analytical solutions. Bouncing ball example]
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NonSmooth Multibody Systems (NSMBS)
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Figure: Analytical solutions. Linear Oscillator
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NonSmooth Multibody Systems (NSMBS)

Academic examples II

g

0

(a) N Bouncing balls example

Figure: Academic test examples
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Moreau’s Time stepping scheme (Moreau, 1988)

Principle

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

M(qk+θ)(vk+1 − vk) − hF̃k+θ = G(qk+θ)Pk+1, (9a)

qk+1 = qk + hvk+θ, (9b)

Uk+1 = GT (qk+θ) vk+1 (9c)

−Pk+1 ∈ NT
IR

m
+

(ỹk+γ )(Uk+1 + eUk ), (9d)

ỹk+γ = yk + hγUk , γ ∈ [0, 1]. (9e)

with θ ∈ [0, 1], γ > 0 and xk+α = (1 − α)xk+1 + αxk and ỹk+γ is a
prediction of the constraints.
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Schatzman’s Time stepping scheme (Paoli and Schatzman,
2002)

Principle

8
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>

>

>

>

>

>

>

:

M(qk + 1)(qk+1 − 2qk + qk−1) − h2F (tk+θ , qk+θ, vk+θ) = pk+1,(10a)

vk+1 =
qk+1 − qk−1

2h
, (10b)

−pk+1 ∈ NK

„

qk+1 + eqk−1

1 + e

«

, (10c)

where NK defined the normal cone to K .
For K = {q ∈ IR

n, y = g(q) > 0}

0 6 g

„

qk+1 + eqk−1

1 + e

«

⊥ ∇g

„

qk+1 + eqk−1

1 + e

«

Pk+1 > 0 (11)
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Comparison

Shared mathematical properties

◮ Convergence results for one constraints

◮ Convergence results for multiple constraints problems with acute
kinetic angles

◮ No theoretical proof of order

Mechanical properties

◮ Position vs. velocity constraints

◮ Respect of the impact in one step (Moreau) vs.
Two-steps(Schatzman)

◮ Linearized constraints rather than nonlinear.
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Measuring error and convergence

Convergence in the sense of filled-in graph (Moreau (1978))

gr⋆(f ) = {(t, x) ∈ [0,T ] × IR
n, 0 6 t 6 T and x ∈ [f (t−), f (t+)])}.

(12)

Such graphs are closed bounded subsets of [0,T ] × IR
n, hence, we can use

the Hausdorff distance between two such sets with a suitable metric:

d((t, x), (s, y)) = max{|t − s|, ‖x − y‖}. (13)

Defining the excess of separation between two graphs by

e(gr⋆(f ), gr⋆(g)) = sup
(t,x)∈gr⋆(f )

inf
(s,y)∈gr⋆(g)

d((t, x), (s, y)), (14)

the Hausdorff distance between two filled-in graphs h⋆ is defined by

h⋆(gr⋆(f ), gr⋆(g)) = max{e(gr⋆(f ), gr⋆(g)), e(gr⋆(g), gr⋆(f ))}. (15)
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Measuring error and convergence

An equivalent grid-function norm to the function norm in L1

‖e‖1 = h
N
X

i=0

|fi − f (ti )| (16)

In the same way, the p − norm can be defined by

‖e‖p =

 

h
N
X

i=0

|fi − f (ti )|
p

!1/p

(17)

The computation of this two last norm is easier to implement for
piecewise continuous analytical function than the Hausdorff distance.

Global order of convergence.

Definition
A one-step time–integration scheme is of order q for a given norm ‖ · ‖ if
there exists a constant C such that

‖e‖ = Chq + O(hq+1) (18)
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Empirical order of convergence. Moreau’s time–stepping
scheme
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(a) The bouncing ball example

Figure: Empirical order of convergence of the Moreau’s time-stepping scheme.
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Empirical order of convergence. Moreau’s time–stepping
scheme
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Figure: Empirical order of convergence of the Moreau’s time-stepping scheme.
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Empirical order of convergence. Schatzman–Paoli’s
time–stepping scheme
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Figure: Empirical order of convergence of the Schatzman-Paoli’s time-stepping
scheme.
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Empirical order of convergence. Schatzman–Paoli’s
time–stepping scheme
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Figure: Empirical order of convergence of the Schatzman-Paoli’s time-stepping
scheme.
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Local error estimates for the Moreau’s time–stepping

Notation

e = x(tk + h) − xk+1 =

»

ev

eq

–

=

»

v+(tk + h) − vk+1

q(tk + h) − qk+1

–

(19)
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One impact at time t∗ ∈ (tk , tk+1]

Assumption

di = pδt∗ , or equivalently dI = Pδt∗ ,with P = G(t∗)p. (20)

Notation

I = {α, α ∈ {1..m}} (21)

I∗ = {α ∈ I,Pα > 0, Uα,+(t∗) − Uα,−(t∗) = −(1 + e)Uα,−(t∗)} (22)

Ip = {α ∈ I,Pα
k+1 > 0, Uα

k+1 − Uα
k = −(1 + e)Uα

k } (23)

Lemma
Let us assume that we have only one elastic impact at time t∗ ∈ (tk , tk+1]
without persistent contact, i.e. , di = pδt∗ .

1. If I∗ = Ip, then the local order of consistency of the scheme is given
by

ev = Kvh + O(h2)
eq = Kqh + O(h2)

(24)

2. If I∗ 6= Ip, then the local order of consistency of the scheme is given
by

ev = Kv + O(h)
eq = Kqh + O(h2)

(25)
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Local error estimates for the Moreau’s time–stepping

Other cases are treated in the same way

◮ One impact and smooth Lagrange multiplier The same result holds
as in the first Lemma.

◮ losing contact event (take–off) without impact The order of the
time–integration scheme depends on the regularity of the contact
forces (at least continuous).

◮ Finite accumulation The order of the time–integration should be at
least 0. Idea of the proof : use the fact that the velocity vanishes and
is of bounded variations
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Practical error estimates for the Moreau’s time–stepping

Order “0” case
Standard error estimates do not apply for Order 0.
We propose to extend it to the order 0 of consistency by assuming that
the the local error estimate is given by

e1/2 = 2(x1/2 − x1) + O(h2) (26)

where x1 is the result of the time integration with one time–step of length
h and x1/2 with two time-steps of length h/2.
The adaptive time–step control used for smooth ODE is then apply
directlyHairer et al. (1993).
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Order “0” time–step adjustment for the Moreau’s
time–stepping
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Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 0
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Order “0” time–step adjustment for the Moreau’s
time–stepping
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(a) The linear oscillator example

Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 0
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Background
Work of Mannshardt (1978) on time–integration schemes of any order for
ODE/DAEs with discontinuities (with tranversality assumption)

Principle

◮ Let us assume only one event per time–step at instants t∗.

◮ Choose any ODE/DAE solvers of order p

◮ Perform a rough location of the event inside the time step of length h
Find an interval [ta, tb ] such that

t∗ ∈ [ta, tb] and |tb − ta| = Chp+1 + O(hp+2) (27)

Dichotomy, Newton, Local Interpolants, Dense output,. . .

◮ Perform an integration on [tk , ta] with the ODE solver of order p

◮ Perform an integration on [ta, tb] with Moreau’s time–stepping
scheme

◮ Perform an integration on [tb , tk+1] with the ODE solver of order p
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Results on the linear oscillator
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(a) The linear oscillator example

Figure: Precision Work diagram for the Moreau’s time-stepping scheme.
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INRIA Rhône–Alpes

Introduction & Motivations

Outline

Numerical time–integration
schemes

Adaptive schemes

Higher Order Schemes

Principle

Conclusions & Perspectives

References

Higher Order Time–stepping schemes

Finite accumulation

◮ Repeat the whole process on the remaining part of the interval [tb, tk ]

◮ By induction, repeat this process up to the end of the original time
step.
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Results on the Bouncing Ball
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(a) The Bouncing Ball example

Figure: Precision Work diagram for the Moreau’s time-stepping scheme.
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Conclusions

Adaptive time–step strategies

◮ Higher resolution schemes

◮ Work with finite accumulation of events

Higher order schemes

◮ Schemes of any orders

◮ Work with finite accumulation of events



Higher order schemes for
nonsmooth mechanical

systems.

Vincent Acary

vincent.acary@inrialpes.fr
INRIA Rhône–Alpes
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Perspectives

◮ Theoretical works on orders and practical error estimations
Collaborations with people the ODE/DAE communities are welcome.

◮ Adaptive time–step strategies on the higher order time–stepping
schemes.

◮ Improve the pre–detection process of the event and the order of
discontinuity

◮ Test on nonlinear mechanical systems.

◮ Other types of time–stepping schemes (Splitting and time
discontinuous Galerkin methods )
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