# Siconos/numerics and FCLIB: a collection of solvers and benchmarks for solving frictional contact problems

CMIS, May 2024

Vincent Acary

Inria - Centre de l'Université Grenoble Alpes - Laboratoire Jean Kuntzmann







# Motivations

Beyond the numerical simulation of frictional contact problems (Signorini + friction)

- Few mathematical results: existence, uniqueness, convergence, rate of convergence.
- Need for comparisons on a fair basis: implementation (software) and benchmarks (data)
- Without convergence proof, test your new method on a large set of benchmarks shared by the community. (a common practice in numerical optimization).
- Open and reproducible science.

The 3D frictional contact problem

Numerical methods

siconos/numerics: a collection of solvers

FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

Conclusions & Perspectives

# Signorini's condition and Coulomb's friction



|      | • | gap function $g_N = (C_B - C_A)N$ .<br>reaction forces velocities                                                                                                                                                        |
|------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |   | $r = r_{\mathbb{N}}\mathbb{N} + r_{\mathbb{T}},  \text{with } r_{\mathbb{N}} \in \boldsymbol{R} \text{ and } r_{\mathbb{T}} \in \boldsymbol{R}^{2}.$                                                                     |
| I    |   | $u = u_{\mathrm{N}} \mathrm{N} + u_{\mathrm{T}},  \text{ with } u_{\mathrm{N}} \in {\pmb{R}} \text{ and } u_{\mathrm{T}} \in {\pmb{R}}^2.$                                                                               |
|      |   | Signorini conditions                                                                                                                                                                                                     |
|      |   | position level :0 $\leqslant$ $g_{ m N} \perp r_{ m N} \geqslant$ 0.                                                                                                                                                     |
|      |   |                                                                                                                                                                                                                          |
| dy A |   | $ \text{velocity level}: \left\{ \begin{array}{ll} 0 \leqslant u_{\mathbb{N}} \perp r_{\mathbb{N}} \geqslant 0 & \text{ if } g_{\mathbb{N}} \leqslant 0 \\ r_{\mathbb{N}} = 0 & \text{ otherwise.} \end{array} \right. $ |

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷</li>
 The 3D frictional contact problem - 4/30

# Signorini's condition and Coulomb's friction

### Modeling assumption

Let  $\mu$  be the coefficient of friction. Let us define the Coulomb friction cone K which is chosen as the isotropic second order cone

$$\mathcal{K} = \{ r \in \mathbf{R}^3 \mid ||r_{\mathsf{T}}|| \leqslant \mu r_n \}.$$
(1)

Coulomb friction postulates

for the sticking case that

$$u_{\rm T}=0, \quad r\in K, \tag{2}$$

and for the sliding case that

$$u_{\mathrm{T}} \neq 0, \quad r \in \partial K, \frac{r_{\mathrm{T}}}{\|r_{\mathrm{T}}\|} = -\frac{u_{\mathrm{T}}}{\|u_{\mathrm{T}}\|}.$$
 (3)

### Disjunctive formulation of the frictional contact behavior

$$\begin{cases} r = 0 & \text{if } g_{N} > 0 \quad (\text{no contact}) \\ r = 0, u_{N} \ge 0 & \text{if } g_{N} \leqslant 0 \quad (\text{take-off}) \\ r \in K, u = 0 & \text{if } g_{N} \leqslant 0 \quad (\text{sticking}) \quad (4) \\ r \in \partial K, u_{N} = 0, \frac{r_{T}}{\|r_{T}\|} = -\frac{u_{T}}{\|u_{T}\|} & \text{if } g_{N} \leqslant 0 \quad (\text{sliding}) \\ \text{The 3D frictional contact problem} = -\frac{5/30}{5/30} \end{cases}$$

# Signorini's condition and Coulomb's friction

### Second Order Cone Complementarity (SOCCP) formulation

▶ Modified relative velocity  $\hat{u} \in \mathbb{R}^3$  defined by (De Saxcé, 1992)

$$\hat{u} = u + \mu \| u_\mathsf{T} \| \mathsf{N}. \tag{5}$$

Second-Order Cone Complementarity Problem (SOCCP)

$$K^* \ni \hat{u} \perp r \in K \tag{6}$$

化口下 化固下 化医下不足下

The 3D frictional contact problem - 6/30

if  $g_N \leq 0$  and r = 0 otherwise. The set  $K^*$  is the dual convex cone to K defined by

$$K^{\star} = \{ u \in \mathbf{R}^3 \mid r^{\top} u \ge 0, \text{ for all } r \in K \}.$$
(7)

(Acary and Brogliato, 2008; Acary et al., 2011)

Siconos/numerics and FCLIB

- The 3D frictional contact problem

Signorini condition and Coulomb's friction

### Signorini's condition and Coulomb's friction



Figure: Coulomb's friction and the modified velocity  $\hat{u}$ . The sliding case.

The 3D frictional contact problem - 7/30

イロト 不得 トイヨト イヨト

# 3D frictional contact problems

### Problem 1 (General discrete frictional contact problem)

Given

- ▶ a symmetric positive definite matrix  $M \in \mathbb{R}^{n \times n}$ ,
- a vector  $f \in \mathbb{R}^n$ ,
- ▶ a matrix  $H \in \mathbb{R}^{n \times m}$ ,
- $\blacktriangleright$  a vector  $w \in \mathbb{R}^m$ ,
- ▶ a vector of coefficients of friction  $\mu \in \mathbf{R}^{n_c}$ ,

find three vectors  $v \in \mathbb{R}^n$ ,  $u \in \mathbb{R}^m$  and  $r \in \mathbb{R}^m$ , denoted by  $FC/I(M, H, f, w, \mu)$  such that

$$\begin{cases} Mv = Hr + f \\ u = H^{\top}v + w \\ \hat{u} = u + g(u) \\ K^{\star} \ni \hat{u} \perp r \in K \end{cases}$$

$$(8)$$
with  $g(u) = [[\mu^{\alpha} || u_{T}^{\alpha} || \mathbf{N}^{\alpha}]^{\top}, \alpha = 1 \dots n_{c}]^{\top}.$ 

イロト 不得 トイヨト イヨト 三日

The 3D frictional contact problem - 8/30

# 3D frictional contact problems

Problem 2 (Reduced discrete frictional contact problem) Given

- ▶ a symmetric positive semi-definite matrix  $W \in \mathbb{R}^{m \times m}$ ,
- a vector  $q \in \mathbb{R}^m$ ,
- ▶ a vector  $\mu \in \mathbf{R}^{n_c}$  of coefficients of friction,

find two vectors  $u \in \mathbf{R}^m$  and  $r \in \mathbf{R}^m$ , denoted by  $FC/II(W, q, \mu)$  such that

$$\begin{cases}
u = Wr + q \\
\hat{u} = u + g(u) \\
K^* \ni \hat{u} \perp r \in K
\end{cases}$$
(9)

イロト イポト イラト イラト

The 3D frictional contact problem - 9/30

with  $g(u) = [[\mu^{\alpha} || u_{\tau}^{\alpha} || \mathbb{N}^{\alpha}]^{\top}, \alpha = 1 \dots n_{c}]^{\top}.$ 

Relation with the general problem  $W = H^{\top}M^{-1}H$  and  $q = H^{\top}M^{-1}f + w$ .

The 3D frictional contact problem

Numerical methods

siconos/numerics: a collection of solvers

FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

Conclusions & Perspectives



# VI based methods

# Variational Inequality (VI) reformulation

$$(9) \Longleftrightarrow -F(r) := -(Wr + q + g(Wr + q)) \in N_{\mathcal{K}}(r)$$

$$(10)$$

### Standard methods

Basic fixed point iterations with projection [FP-VI]

$$\mathsf{r}_{\mathsf{k}+1} \gets \mathsf{P}_{\mathsf{K}}(\mathsf{r}_{\mathsf{k}} - \rho_{\mathsf{k}}\,\mathsf{F}(\mathsf{r}_{\mathsf{k}}))$$

$$\mathsf{r}_{\mathsf{k}+1} \leftarrow \mathsf{P}_{\mathsf{K}}(\mathsf{r}_{\mathsf{k}} - \rho_{\mathsf{k}} \,\mathsf{F}(\mathsf{P}_{\mathsf{K}}(\mathsf{r}_{\mathsf{k}} - \rho_{\mathsf{k}} \mathsf{F}(\mathsf{r}_{\mathsf{k}}))))$$

• with fixed  $\rho_k = \rho$ , we get the Uzawa Algorithm of De Saxcé-Feng

### Self-adaptive procedure for $\rho_k$

Armijo-like : 
$$m_k \in \mathbb{N}$$
 such that 
$$\begin{cases} \rho_k = \rho 2^{m_k}, \\ \rho_k \|F(r_k) - F(\bar{r}_k)\| \leq \|r_k - \bar{r}_k\| \\ < \square > < \overline{\mathcal{O}} > < < \overline{\mathcal{O}} > < \overline{\mathcal{O}} > < \overline{\mathcal{O}} > < \overline{\mathcal{O}} > < < \overline{\mathcal{O}} > < < \overline{\mathcal{O}} > < \overline{\mathcal{O}} > < \overline{\mathcal{O}} > < \overline{\mathcal{O}} > < < \overline{\mathcal{O} > < < \overline{\mathcal{O}} > < < \overline{\mathcal{O}} >$$

Numerical methods - 11/30

[EG-VI]

[FP-DS]

[UPK]

# Nonsmooth Equations based methods Nonsmooth Newton on G(z) = 0

$$z_{k+1} = z_k - \Phi^{-1}(z_k)(G(z_k)), \qquad \Phi(z_k) \in \partial G(z_k)$$

Alart-Curnier Formulation (Alart and Curnier, 1991) [NSN-AC]

$$\begin{cases} r_{N} - P_{\mathbf{R}_{+}^{n_{c}}}(r_{N} - \rho_{N}u_{N}) = 0, \\ r_{T} - P_{D(\mu, r_{N,+} + \rho u_{N})}(r_{T} - \rho_{T}u_{T}) = 0, \end{cases}$$

Jean–Moreau Formulation

$$\begin{cases} r_{\rm N} - P_{\mathbf{R}_{+}^{n_c}}(r_{\rm N} - \rho_{\rm N} u_{\rm N}) = 0, \\ r_{\rm T} - P_{D(\mu, r_{\rm N, +})}(r_{\rm T} - \rho_{\rm T} u_{\rm T}) = 0, \end{cases}$$

Direct normal map reformulation

$$r-P_{K}\left(r-\rho(u+g(u))\right)=0$$

Extension of Fischer-Burmeister function to SOCCP

$$\phi_{\mathsf{FB}}(x,y) = x + y - (x^2 + y^2)^{1 \neq 2} + (z^2 + y^2)^{1 \neq 2}$$
Numerical methods - 12/30

[NSN-MJ]

[NSN-NM]

[NSN-FB]

Numerical methods

Matrix block-splitting and projection based algorithms

Matrix block-splitting and projection based algorithms (Jean and Touzot, 1988; Moreau, 1994)

Block splitting algorithm with  $W^{\alpha\alpha} \in \mathbb{R}^3$  [NSGS-\*]

$$\begin{cases} u_{i+1}^{\alpha} - W^{\alpha\alpha} P_{i+1}^{\alpha} = q^{\alpha} + \sum_{\beta < \alpha} W^{\alpha\beta} r_{i+1}^{\beta} + \sum_{\beta > \alpha} W^{\alpha\beta} r_{i}^{\beta} \\ \hat{u}_{i+1}^{\alpha} = \left[ u_{N,i+1}^{\alpha} + \mu^{\alpha} || u_{T,i+1}^{\alpha} ||, u_{T,i+1}^{\alpha} \right]^{T} \\ \mathbf{K}^{\alpha,*} \ni \hat{u}_{i+1}^{\alpha} \perp r_{i+1}^{\alpha} \in \mathbf{K}^{\alpha} \end{cases}$$
(11)

for all  $\alpha \in \{1 \dots m\}$ .

### **Over-Relaxation**

### One contact point problem

- closed form solutions
- Any solver listed before.

イロト 不得 トイヨト イヨト

[PSOR-\*]

# Optimization based methods

- Alternating optimization problems (Panagiotopoulos et al.) [PANA-\*]
- Successive approximation with Tresca friction (Haslinger et al.)

$$\begin{cases} \theta = h(r_{N}) \\ \min \frac{1}{2} r^{\top} Wr + r^{\top} q \\ \text{s.t.} \quad r \in C(\mu, \theta) \end{cases}$$
(12)

where  $C(\mu, \theta)$  is the cylinder of radius  $\mu\theta$ .

 Fixed point on the norm of the tangential velocity [A., Cadoux, Lemaréchal, Malick(2011)] [ACLM-\*].

$$\begin{cases} s = \|u_{\mathsf{T}}\|\\ \min \frac{1}{2}r^{\top}Wr + r^{\top}(q + \alpha s)\\ \text{s.t.} \quad r \in \mathsf{K} \end{cases}$$
(13)

Fixed point or Newton Method on F(s) = s

◆□ > ◆問 > ◆臣 > ◆臣 > ─ 臣

[TRESCA-\*]

# Interior Point Methods

Presentation of Hoang Minh Nguyen.



The 3D frictional contact problem

Numerical methods

siconos/numerics: a collection of solvers

FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

**Conclusions & Perspectives** 



# siconos/numerics

### Siconos

Open source software for modelling and simulation of nonsmooth systems

# Siconos/numerics

Collection of C routines to solve FC3D problems in dense, sparse or block sparse versions:

- VI solvers: Fixed point, Extra-Gradient, Uzawa
- VI based projection/splitting algorithm: NSGS, PSOR
- Semismooth Newton methods
- Optimization based solvers. Panagiotopoulos, Tresca, SOCQP, ADMM
- Interior point methods, ...

# Collection of routines for optimization and complementarity problems

- LCP solvers (iterative and pivoting (Lemke))
- Standard QP solvers (Projected Gradient (Calamai & Moré), Projected CG (Moré & Toraldo), active set technique)
- linear and nonlinear programming solvers.

# Siconos/Numerics

### Implementation details

- Matrix format.
  - dense (column-major)
  - sparse matrices (triplet, CSR, CSC)
  - sparse block matrices
- Linear algebra libraries and solvers.
  - BLAS/LAPACK, MKL
  - MUMPS, SUPERLU, UMFPACK,
  - PETSc (in progress)
- Python interface (swig (pybind11 coming soon))
- Generic structure for problem, driver and options

### C structure to encode the problem

### Reduced discrete frictional contact problem

```
struct FrictionContactProblem {
    /** dimension of the contact space (3D or 2D ) */
    int dimension;
    /** the number of contacts \ff n_c \ff */
    int numberOfContacts;
    /** \ff {M} \in {{\mathrm{I}\!R}}^{n} \ times n} \ff,
    a matrix with \ff n = d n_c \ff stored in NumericsMatrix structure */
    NumericsMatrix *M;
    /** \ff {q} \in {{\mathrm{I}\!R}}^{n} \ff */
    double *q;
    /** \ff {\mathrm{I}\!R}}^{n} \ff, n_c \ff, vector of friction coefficients
    (\ff n_c = \ff numberOfContacts) */
    double *mu;
};
```

C structure to encode the problem

### Global discrete frictional contact problem

```
struct GlobalFrictionContactProblem {
                /** dimension \int f d=2 \int f or \int f d=3 \int f of the contact space (3D or 2D) */
                int dimension;
                /** the number of contacts ff n_c ff */
                int numberOfContacts:
                /** \ M \ in {\mathrm{I}!R}^{n} \ in {\mathrm{I}!R}^
                a matrix with \ff n\ff stored in NumericsMatrix structure */
                NumericsMatrix *M:
                /** \{H\} \in \{H\} \in \{\{mathrm{I}!R\}\}\ n \in m\} \in \mathcal{I}
                a matrix with ff m = d n c/ff stored in NumericsMatrix structure */
                NumericsMatrix *H:
                /** \ff {q} \in {{\mathrm{I\!R}}}^{n} \ff */
                double *a:
                /** \f£ {b} \in {{\mathrm{I\!R}}}^{m} \f£ */
                double *b:
                /** f_{ \{\mu\}} \in \{ \mu\} \in \{ 
                coefficients
                (\fl n c = \fl numberOfContacts) */
                double *mu;
}:
```

・ロト ・ 日 ト ・ 目 ト ・ 目 ト ・ 目 ・ つ へ (~ siconos/numerics: a collection of solvers - 20/30

# A basic example in C

```
// Problem Definition
int NC = 3://Number of contacts
double q[9] = { -1, 1, 3, -1, 1, 3, -1, 1, 3};
double mu[3] = \{0, 1, 0, 1, 0, 1\};
FrictionContactProblem NumericsProblem:
NumericsProblem.numberOfContacts = NC;
NumericsProblem.dimension = 3;
NumericsProblem.mu = mu:
NumericsProblem.q = q;
NumericsMatrix *MM = (NumericsMatrix*)malloc(sizeof(NumericsMatrix)):
MM->storageType = NM_DENSE;
MM \rightarrow matrix0 = M;
MM->size0 = 3 * NC:
MM \rightarrow size1 = 3 * NC;
NumericsProblem.M = MM:
```

ID → A ID → A ID → A ID → ID → A ID

# A basic example in C

```
// Variable declaration
```

```
double *reaction = (double*)calloc(3 * NC, sizeof(double));
double *velocity = (double*)calloc(3 * NC, sizeof(double));
```

### // Numerics and Solver Options

```
SolverOptions *numerics_solver_options = solver_options_create(SICONOS_FRICTION_3D_NSGS);
numerics_solver_options->iparam[SICONOS_IPARAM_MAX_ITER] = 1000;
numerics_solver_options->dparam[SICONOS_DPARAM_TOL] = 100*DBL_EPSILON;
// numerics_set_verbose(2);
```

// Driver call
fc3d\_driver(&NumericsProblem,
 reaction, velocity,
 numerics\_solver\_options);



### A basic example in Python

```
import numpy as np
import siconos.numerics as sn
```

```
NC = 1
M = np.eye(3 * NC)
q = np.array([-1.0, 1.0, 3.0])
mu = np.array([0.1])
FCP = sn.FrictionContactProblem(3, M, q, mu)
```

```
reactions = np.array([0.0, 0.0, 0.0])
velocities = np.array([0.0, 0.0, 0.0])
sn.numerics_set_verbose(1)
```



# A basic example in Python

```
def solve(problem, solver, options):
    """Solve problem for a given solver"""
    reactions[...] = 0.0
    velocities[...] = 0.0
    r = solver(problem, reactions, velocities, options)
    assert options.dparam[sn.SICONOS_DPARAM_RESIDU] < options.dparam[sn.SICONOS_DPARAM_TOL
    assert not r</pre>
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

siconos/numerics: a collection of solvers - 24/30

```
def test_fc3dnsgs():
    """Non-smooth Gauss Seidel, default"""
    S0 = sn.SolverOptions(sn.SICONOS_FRICTION_3D_NSGS)
    solve(FCP, sn.fc3d_nsgs, S0)
```

```
def test_fc3dlocalac():
    """Non-smooth Gauss Seidel, Alart-Curnier as local solver."""
    S0 = sn.SolverOptions(sn.SICONOS_FRICTION_3D_NSN_AC)
    solve(FCP, sn.fc3d_nonsmooth_Newton_AlartCurnier, S0)
```

```
def test_fc3dfischer():
    """Non-smooth Newton, Fischer-Burmeister."""
    S0 = sn.SolverOptions(sn.SICONOS_FRICTION_3D_NSN_FB)
    solve(FCP, sn.fc3d_nonsmooth_Newton_FischerBurmeister, S0)
```

```
if __name__ == "__main__":
    test_fc3dnsgs()
    test_fc3dlocalac()
    test_fc3dfischer()
```

The 3D frictional contact problem

Numerical methods

siconos/numerics: a collection of solvers

FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

Conclusions & Perspectives



# FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

- Few mathematical results: existence, uniqueness, convergence, rate of convergence.
- Our inspiration: MCPLIB or CUTEst in Optimization.
- Without convergence proof, test your method on a large set of benchmarks shared by the community.

### What is FCLIB ?

- A open source collection of Frictional Contact (FC) problems stored in a specific HDF5 format
- A open source light implementation of Input/Output functions in C Language to read and write problems (Python and Matlab coming soon)

### Goals of the project

- Provide a standard framework for testing available and new algorithms for solving discrete frictional contact problems
- Share common formulations of problems in order to exchange data in a reproducible manner.



Figure: Illustrations of the FClib test problems from Siconos and LMGC90

イロト イポト イヨト イヨト 一日

# Conclusions & Perspectives

# Conclusions

- Siconos/Numerics. A open source collection of solvers. https://github.com/siconos/siconos
- FCLIB: a open collection of discrete 3D Frictional Contact (FC) problems https://github.com/FrictionalContactLibrary contribute ...

Use and contribute ...

### Perspectives

- Nonlinear discretized equations (dynamics or quasi-statics) finite strains, finite rotations, hyperelastic models, ...
- Plasticity and damage, cohesive zone element coupled with contact and friction formulation as a monolithic variational inequality

イロト イポト イヨト イヨト 二日

Conclusions & Perspectives - 28/30

Thank you for your attention.

Thanks to the collaborators for stimulating discussions and developments:

Pierre Alart, Paul Armand, Florent Cadoux, Frédéric Dubois, Claude Lémaréchal, Jérôme Malick and Mathieu Renouf



# Journal of Theoretical Computational and Applied Mechanics

The only overlay Diamond Open Access journal in Mechanics

- Diamond Open Access: free for readers and authors
- Overlay: based on open archives (arXiv, Hal, ...)
- Broad domain of solid mechanics
- Publications of the highest scientific calibre with open reviews
- A community-supported journal with ethical and FAIR principles
- Promotion of reproducible and open science



Get involved. Join us now.

Contributions are welcome!

# Siconos/numerics and FCLIB

- Acary, V. and B. Brogliato (2008). Numerical methods for nonsmooth dynamical systems. Applications in mechanics and electronics. English. Lecture Notes in Applied and Computational Mechanics 35. Berlin: Springer. xxi, 525 p.
- Acary, V. et al. (2011). "A formulation of the linear discrete Coulomb friction problem via convex optimization". In: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 91.2, pp. 155–175. ISSN: 1521-4001. DOI: 10.1002/zamm.201000073. URL: http://dx.doi.org/10.1002/zamm.201000073.
- Alart, P. and A. Curnier (1991). "A mixed formulation for frictional contact problems prone to Newton like solution method". In: Computer Methods in Applied Mechanics and Engineering 92.3, pp. 353–375.
  - De Saxcé, G. (1992). "Une généralisation de l'inégalité de Fenchel et ses applications aux lois constitutives". In: *Comptes Rendus de l'Académie des Sciences* t 314,série II, pp. 125–129.
  - Jean, M. and G. Touzot (1988). "Implementation of unilateral contact and dry friction in computer codes dealing with large deformations problems". In: *J. Méc. Théor. Appl.* 7.1, pp. 145–160.
  - Moreau, J.J. (1994). "Some numerical methods in multibody dynamics: Application to granular materials". In: *European Journal of Mechanics - A/Solids* supp.4, pp. 93–114.