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Motivations

Beyond the numerical simulation of frictional contact problems (Signorini + friction)

▶ Few mathematical results: existence, uniqueness, convergence, rate of
convergence.

▶ Need for comparisons on a fair basis: implementation (software) and benchmarks
(data)

▶ Without convergence proof, test your new method on a large set of benchmarks
shared by the community. (a common practice in numerical optimization).

▶ Open and reproducible science.
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The 3D frictional contact problem

Signorini condition and Coulomb’s friction

Signorini’s condition and Coulomb’s friction

Body A

Body B

CA

N

T1

T2

CB

gN

▶ gap function gN = (CB − CA)N.

▶ reaction forces velocities

r = rNN+rT, with rN ∈ IR and rT ∈ IR2.

u = uNN+uT, with uN ∈ IR and uT ∈ IR2.

▶ Signorini conditions

position level :0 ⩽ gN ⊥ rN ⩾ 0.

velocity level :

{
0 ⩽ uN ⊥ rN ⩾ 0 if gN ⩽ 0
rN = 0 otherwise.

The 3D frictional contact problem – 4/30



Siconos/numerics and FCLIB

The 3D frictional contact problem

Signorini condition and Coulomb’s friction

Signorini’s condition and Coulomb’s friction

Modeling assumption
Let µ be the coefficient of friction. Let us define the Coulomb friction cone K which is
chosen as the isotropic second order cone

K = {r ∈ IR3 | ∥rT∥ ⩽ µrn}. (1)

Coulomb friction postulates

▶ for the sticking case that
uT = 0, r ∈ K , (2)

▶ and for the sliding case that

uT ̸= 0, r ∈ ∂K ,
rT

∥rT∥
= −

uT

∥uT∥
. (3)

Disjunctive formulation of the frictional contact behavior
r = 0 if gN > 0 (no contact)
r = 0, uN ⩾ 0 if gN ⩽ 0 (take–off)
r ∈ K , u = 0 if gN ⩽ 0 (sticking)

r ∈ ∂K , uN = 0,
rT

∥rT∥
= −

uT

∥uT∥
if gN ⩽ 0 (sliding)

(4)
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The 3D frictional contact problem

Signorini condition and Coulomb’s friction

Signorini’s condition and Coulomb’s friction

Second Order Cone Complementarity (SOCCP) formulation

▶ Modified relative velocity û ∈ IR3 defined by (De Saxcé, 1992)

û = u + µ∥uT∥N. (5)

▶ Second-Order Cone Complementarity Problem (SOCCP)

K⋆ ∋ û ⊥ r ∈ K (6)

if gN ⩽ 0 and r = 0 otherwise.
The set K⋆ is the dual convex cone to K defined by

K⋆ = {u ∈ IR3 | r⊤u ⩾ 0, for all r ∈ K}. (7)

(Acary and Brogliato, 2008; Acary et al., 2011)
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The 3D frictional contact problem

Signorini condition and Coulomb’s friction

Signorini’s condition and Coulomb’s friction
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Figure: Coulomb’s friction and the modified velocity û. The sliding case.
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The 3D frictional contact problem

3D frictional contact problems

3D frictional contact problems

Problem 1 (General discrete frictional contact problem)
Given

▶ a symmetric positive definite matrix M ∈ IRn×n,

▶ a vector f ∈ IRn,

▶ a matrix H ∈ IRn×m,

▶ a vector w ∈ IRm,

▶ a vector of coefficients of friction µ ∈ IRnc ,

find three vectors v ∈ IRn, u ∈ IRm and r ∈ IRm, denoted by FC/I(M,H, f ,w , µ) such
that 

Mv = Hr + f

u = H⊤v + w

û = u + g(u)

K⋆ ∋ û ⊥ r ∈ K

(8)

with g(u) = [[µα∥uαT ∥Nα]⊤, α = 1 . . . nc ]
⊤.
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The 3D frictional contact problem

3D frictional contact problems

3D frictional contact problems

Problem 2 (Reduced discrete frictional contact problem)
Given

▶ a symmetric positive semi–definite matrix W ∈ IRm×m,

▶ a vector q ∈ IRm,

▶ a vector µ ∈ IRnc of coefficients of friction,

find two vectors u ∈ IRm and r ∈ IRm, denoted by FC/II(W , q, µ) such that
u = Wr + q

û = u + g(u)

K⋆ ∋ û ⊥ r ∈ K

(9)

with g(u) = [[µα∥uαT ∥Nα]⊤, α = 1 . . . nc ]
⊤.

Relation with the general problem
W = H⊤M−1H and q = H⊤M−1f + w .
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Numerical methods

VI based methods

VI based methods

Variational Inequality (VI) reformulation

(9)⇐⇒ −F (r) := −(Wr + q + g(Wr + q)) ∈ NK (r) (10)

Standard methods
▶ Basic fixed point iterations with projection [FP-VI]

rk+1 ← PK(rk − ρk F(rk))

▶ Extragradient method [EG-VI]

rk+1 ← PK(rk − ρk F(PK(rk − ρkF(rk))))

▶ with fixed ρk = ρ, we get the Uzawa Algorithm of De Saxcé-Feng [FP-DS]

Self-adaptive procedure for ρk
[UPK]

Armijo-like : mk ∈ IN such that

{
ρk = ρ2mk ,

ρk∥F (rk )− F (r̄k )∥ ⩽ ∥rk − r̄k∥
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Numerical methods

Nonsmooth Equations based methods

Nonsmooth Equations based methods

Nonsmooth Newton on G (z) = 0

zk+1 = zk − Φ−1(zk )(G(zk )), Φ(zk ) ∈ ∂G(zk )

▶ Alart–Curnier Formulation (Alart and Curnier, 1991) [NSN-AC]{
rN − PIRnc

+
(rN − ρNuN) = 0,

rT − PD(µ,rN,++ρuN)
(rT − ρTuT) = 0,

▶ Jean–Moreau Formulation [NSN-MJ]{
rN − PIRnc

+
(rN − ρNuN) = 0,

rT − PD(µ,rN,+)(rT − ρTuT) = 0,

▶ Direct normal map reformulation [NSN-NM]

r − PK (r − ρ(u + g(u))) = 0

▶ Extension of Fischer-Burmeister function to SOCCP [NSN-FB]

ϕFB(x , y) = x + y − (x2 + y2)1/2

with Jordan product and square root

line-search procedures

▶ Goldstein–Price line search [NSN-*-GP]

▶ Armijo line search [NSN-*-A]

Estimation of ρ, ρN, ρT parameters
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Numerical methods

Matrix block–splitting and projection based algorithms

Matrix block-splitting and projection based algorithms (Jean and Touzot,
1988; Moreau, 1994)

Block splitting algorithm with W αα ∈ IR3 [NSGS-*]

uαi+1 −WααPα
i+1 = qα +

∑
β<α

Wαβrβi+1 +
∑
β>α

Wαβrβi

ûαi+1 =
[
uαN,i+1 + µα ||uαT,i+1||, u

α
T,i+1

]T
Kα,∗ ∋ ûαi+1 ⊥ rαi+1 ∈ Kα

(11)

for all α ∈ {1 . . .m}.

Over-Relaxation [PSOR-*]

One contact point problem

▶ closed form solutions

▶ Any solver listed before.
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Numerical methods

Optimization based approach

Optimization based methods

▶ Alternating optimization problems (Panagiotopoulos et al.) [PANA-*]

▶ Successive approximation with Tresca friction (Haslinger et al.) [TRESCA-*]
θ = h(rN)

min
1

2
r⊤Wr + r⊤q

s.t. r ∈ C(µ, θ)

(12)

where C(µ, θ) is the cylinder of radius µθ.

▶ Fixed point on the norm of the tangential velocity [A., Cadoux, Lemaréchal,
Malick(2011)] [ACLM-*].

s = ∥uT∥

min
1

2
r⊤Wr + r⊤(q + αs)

s.t. r ∈ K

(13)

Fixed point or Newton Method on F (s) = s
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Numerical methods

Interior point methods

Interior Point Methods

Presentation of Hoang Minh Nguyen.
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siconos/numerics: a collection of solvers

siconos/numerics

Siconos
Open source software for modelling and simulation of nonsmooth systems

Siconos/numerics
Collection of C routines to solve FC3D problems in dense, sparse or block sparse
versions:

▶ VI solvers: Fixed point, Extra-Gradient, Uzawa

▶ VI based projection/splitting algorithm: NSGS, PSOR

▶ Semismooth Newton methods

▶ Optimization based solvers. Panagiotopoulos, Tresca, SOCQP, ADMM

▶ Interior point methods, . . .

Collection of routines for optimization and complementarity problems

▶ LCP solvers (iterative and pivoting (Lemke))

▶ Standard QP solvers (Projected Gradient (Calamai & Moré), Projected CG (Moré
& Toraldo), active set technique)

▶ linear and nonlinear programming solvers.
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siconos/numerics: a collection of solvers

Siconos/Numerics

Implementation details
▶ Matrix format.

▶ dense (column-major)
▶ sparse matrices (triplet, CSR, CSC)
▶ sparse block matrices

▶ Linear algebra libraries and solvers.
▶ BLAS/LAPACK, MKL
▶ MUMPS, SUPERLU, UMFPACK,
▶ PETSc (in progress)

▶ Python interface (swig (pybind11 coming soon))

▶ Generic structure for problem, driver and options

int fc3d_driver(FrictionContactProblem* problem,
double* reaction,
double* velocity,
SolverOptions* numerics_solver_options);
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siconos/numerics: a collection of solvers

C structure to encode the problem

Reduced discrete frictional contact problem

struct FrictionContactProblem {
/** dimension of the contact space (3D or 2D ) */
int dimension;
/** the number of contacts \f£ n_c \f£ */
int numberOfContacts;
/** \f£ {M} \in {{\mathrm{I\!R}}}^{n \times n} \f£,
a matrix with \f£ n = d n_c \f£ stored in NumericsMatrix structure */
NumericsMatrix *M;
/** \f£ {q} \in {{\mathrm{I\!R}}}^{n} \f£ */
double *q;
/** \f£ {\mu} \in {{\mathrm{I\!R}}}^{n_c} \f£, vector of friction coefficients
(\f£ n_c = \f£ numberOfContacts) */
double *mu;

};
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siconos/numerics: a collection of solvers

C structure to encode the problem

Global discrete frictional contact problem

struct GlobalFrictionContactProblem {
/** dimension \f£ d=2 \f£ or \f£ d=3 \f£ of the contact space (3D or 2D ) */
int dimension;
/** the number of contacts \f£ n_c \f£ */
int numberOfContacts;
/** \f£ M \in {\mathrm{I\!R}}^{n \times n} \f£,
a matrix with \f£ n\f£ stored in NumericsMatrix structure */
NumericsMatrix *M;
/** \f£ {H} \in {{\mathrm{I\!R}}}^{n \times m} \f£,
a matrix with \f£ m = d n_c\f£ stored in NumericsMatrix structure */
NumericsMatrix *H;
/** \f£ {q} \in {{\mathrm{I\!R}}}^{n} \f£ */
double *q;
/** \f£ {b} \in {{\mathrm{I\!R}}}^{m} \f£ */
double *b;
/** \f£ {\mu} \in {{\mathrm{I\!R}}}^{n_c} \f£, vector of friction
coefficients
(\f£ n_c = \f£ numberOfContacts) */
double *mu;

};
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siconos/numerics: a collection of solvers

A basic example in C

// Problem Definition
int NC = 3;//Number of contacts
double M[81] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1};
double q[9] = { -1, 1, 3, -1, 1, 3, -1, 1, 3};
double mu[3] = {0.1, 0.1, 0.1};

FrictionContactProblem NumericsProblem;
NumericsProblem.numberOfContacts = NC;
NumericsProblem.dimension = 3;
NumericsProblem.mu = mu;
NumericsProblem.q = q;

NumericsMatrix *MM = (NumericsMatrix*)malloc(sizeof(NumericsMatrix));
MM->storageType = NM_DENSE;
MM->matrix0 = M;
MM->size0 = 3 * NC;
MM->size1 = 3 * NC;
NumericsProblem.M = MM;
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siconos/numerics: a collection of solvers

A basic example in C

// Variable declaration
double *reaction = (double*)calloc(3 * NC, sizeof(double));
double *velocity = (double*)calloc(3 * NC, sizeof(double));

// Numerics and Solver Options
SolverOptions *numerics_solver_options = solver_options_create(SICONOS_FRICTION_3D_NSGS);
numerics_solver_options->iparam[SICONOS_IPARAM_MAX_ITER] = 1000;
numerics_solver_options->dparam[SICONOS_DPARAM_TOL] = 100*DBL_EPSILON;
// numerics_set_verbose(2);

// Driver call
fc3d_driver(&NumericsProblem,

reaction, velocity,
numerics_solver_options);
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siconos/numerics: a collection of solvers

A basic example in Python

import numpy as np
import siconos.numerics as sn

NC = 1
M = np.eye(3 * NC)
q = np.array([-1.0, 1.0, 3.0])
mu = np.array([0.1])
FCP = sn.FrictionContactProblem(3, M, q, mu)

reactions = np.array([0.0, 0.0, 0.0])
velocities = np.array([0.0, 0.0, 0.0])
sn.numerics_set_verbose(1)
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siconos/numerics: a collection of solvers

A basic example in Python
def solve(problem, solver, options):

"""Solve problem for a given solver"""
reactions[...] = 0.0
velocities[...] = 0.0
r = solver(problem, reactions, velocities, options)
assert options.dparam[sn.SICONOS_DPARAM_RESIDU] < options.dparam[sn.SICONOS_DPARAM_TOL]
assert not r

def test_fc3dnsgs():
"""Non-smooth Gauss Seidel, default"""
SO = sn.SolverOptions(sn.SICONOS_FRICTION_3D_NSGS)
solve(FCP, sn.fc3d_nsgs, SO)

def test_fc3dlocalac():
"""Non-smooth Gauss Seidel, Alart-Curnier as local solver."""
SO = sn.SolverOptions(sn.SICONOS_FRICTION_3D_NSN_AC)
solve(FCP, sn.fc3d_nonsmooth_Newton_AlartCurnier, SO)

def test_fc3dfischer():
"""Non-smooth Newton, Fischer-Burmeister."""
SO = sn.SolverOptions(sn.SICONOS_FRICTION_3D_NSN_FB)
solve(FCP, sn.fc3d_nonsmooth_Newton_FischerBurmeister, SO)

if __name__ == "__main__":
test_fc3dnsgs()
test_fc3dlocalac()
test_fc3dfischer()
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FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

▶ Few mathematical results: existence, uniqueness, convergence, rate of
convergence.

▶ Our inspiration: MCPLIB or CUTEst in Optimization.

▶ Without convergence proof, test your method on a large set of benchmarks
shared by the community.

What is FCLIB ?
▶ A open source collection of Frictional Contact (FC) problems stored in a specific

HDF5 format

▶ A open source light implementation of Input/Output functions in C Language to
read and write problems (Python and Matlab coming soon)

Goals of the project

▶ Provide a standard framework for testing available and new algorithms for solving
discrete frictional contact problems

▶ Share common formulations of problems in order to exchange data in a
reproducible manner.
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FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

(a) Cubes H8 (b) LowWall FEM (c) Aqueduct PR (d) Bridge PR

(e) 100 PR Periobox (f) 945 SP Box PL (g) Capsules (h) Chain

(i) KaplasTower (j) BoxesStack (k) Chute 1000, Chute 4000,
Chute local problems

Figure: Illustrations of the FClib test problems from Siconos and LMGC90
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Conclusions & Perspectives

Conclusions & Perspectives

Conclusions
▶ Siconos/Numerics. A open source collection of solvers.

https://github.com/siconos/siconos

▶ FCLIB: a open collection of discrete 3D Frictional Contact (FC) problems
https://github.com/FrictionalContactLibrary contribute ...

Use and contribute ...

Perspectives

▶ Nonlinear discretized equations (dynamics or quasi-statics)
finite strains, finite rotations, hyperelastic models, . . .

▶ Plasticity and damage, cohesive zone element coupled with contact and friction
formulation as a monolithic variational inequality
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Conclusions & Perspectives

Thank you for your attention.

Thanks to the collaborators for stimulating discussions and developments:

Pierre Alart, Paul Armand, Florent Cadoux, Frédéric Dubois,
Claude Lémaréchal, Jérôme Malick and Mathieu Renouf
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Journal of Theoretical Computational and Applied Mechanics

The only overlay Diamond Open Access journal in Mechanics

▶ Diamond Open Access: free for readers and authors

▶ Overlay: based on open archives (arXiv, Hal, ...)

▶ Broad domain of solid mechanics

▶ Publications of the highest scientific calibre with open reviews

▶ A community–supported journal with ethical and FAIR principles

▶ Promotion of reproducible and open science

Get involved. Join us now.

Contributions are welcome!
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applications aux lois constitutives”. In: Comptes Rendus de l’Académie des
Sciences t 314,série II, pp. 125–129.

Jean, M. and G. Touzot (1988). “Implementation of unilateral contact and dry
friction in computer codes dealing with large deformations problems”. In: J. Méc.
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