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Scope

❈ Only Initial Value Problems (IVP).

❈ Two typical examples of Non Smooth Dynamical Systems (NSDS) :
• Linear Complementarity Systems
• Lagrangian Dynamical Systems with contact and friction

❈ Two major kinds of time integration scheme :
• Event–driven scheme. (the time–steps depend on the events)
• Time–stepping scheme (the time–step does not depend on the events)
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Linear Complementarity systems

❈ The Linear Complementarity System (LCS) may be defined by

8

>

<

>

:

ẋ = Ax + Bλ

y = Cx + Dλ

0 ≤ y ⊥ λ ≥ 0

(1)

with A ∈ IRn×n, B ∈ IRn×m, C ∈ IRm×n, D ∈ IRm×m, for m constraints.
In the sequel, we consider the scalar case (m = 1)
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Linear Complementarity systems

❈ The Linear Complementarity System (LCS) may be defined by

8

>

<

>

:

ẋ = Ax + Bλ

y = Cx + Dλ

0 ≤ y ⊥ λ ≥ 0

(1)

with A ∈ IRn×n, B ∈ IRn×m, C ∈ IRm×n, D ∈ IRm×m, for m constraints.
In the sequel, we consider the scalar case (m = 1)

❈ Notion of Relative degree ryλ

Defining the Markov Parameters as

(D, CB, CAB, CA
2
B, . . .)

the relative degree is the rank of the first non zero Markov Parameter.
“The number of differentiation of y to obtain explicitly y in function of λ.”
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Linear Complementarity systems (Continued ...)

❈ Relative degree ryλ = 0, D > 0, Trivial case

• The multiplier λ = max(0,−D−1Cx) is a Lipschitz continuous function of x

• The numerical integration may be performed with any standard ODE solvers.
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❈ Relative degree ryλ = 0, D > 0, Trivial case

• The multiplier λ = max(0,−D−1Cx) is a Lipschitz continuous function of x

• The numerical integration may be performed with any standard ODE solvers.

❈ Relative degree ryλ = 1, D=0, CB > 0

• The multiplier λ is a function of time t, not necessarily continuous, for instance,
of bounded variations (BV).

• The numerical integration have to be performed with specific solvers
(Event–Driven or Moreau’s Time–stepping)
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• The multiplier λ = max(0,−D−1Cx) is a Lipschitz continuous function of x

• The numerical integration may be performed with any standard ODE solvers.

❈ Relative degree ryλ = 1, D=0, CB > 0

• The multiplier λ is a function of time t, not necessarily continuous, for instance,
of bounded variations (BV).

• The numerical integration have to be performed with specific solvers
(Event–Driven or Moreau’s Time–stepping)

❈ Relative degree ryλ = 1, D=0, CB = 0, CAB>0

• The system is not self-consistent : Need a re-initialization mapping
• The multiplier λ is a real measure.
• Specific solvers (Event–Driven or Moreau’s Time–stepping) as for Lagrangian

dynamical system with constraints
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Linear Complementarity systems (Continued ...)

❈ Relative degree ryλ = 0, D > 0, Trivial case

• The multiplier λ = max(0,−D−1Cx) is a Lipschitz continuous function of x

• The numerical integration may be performed with any standard ODE solvers.

❈ Relative degree ryλ = 1, D=0, CB > 0

• The multiplier λ is a function of time t, not necessarily continuous, for instance,
of bounded variations (BV).

• The numerical integration have to be performed with specific solvers
(Event–Driven or Moreau’s Time–stepping)

❈ Relative degree ryλ = 1, D=0, CB = 0, CAB>0

• The system is not self-consistent : Need a re-initialization mapping
• The multiplier λ is a real measure.
• Specific solvers (Event–Driven or Moreau’s Time–stepping) as for Lagrangian

dynamical system with constraints

❈ Higher Relative degree
• The multiplier λ is a distribution of order ryλ − 1.

• Dedicated time-stepping integrators
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Linear Lagrangian systems with Contact and Friction

❈ Lagrangian dynamical system :

Mq̈ + Cq̇ + Kq = Fext(t) + r (2)

• q ∈ R
n : generalized coordinates vector.

• M ∈ IRn×n : the inertia matrix
• K ∈ IRn×n and C ∈ IRn×n : the stiffness and damping matrices,
• Fext(t) : R 7→ R

n : given external force,
• r ∈ R

n is the force due the nonsmooth law.
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Linear Lagrangian systems with Contact and Friction

❈ Lagrangian dynamical system :

Mq̈ + Cq̇ + Kq = Fext(t) + r (2)

• q ∈ R
n : generalized coordinates vector.

• M ∈ IRn×n : the inertia matrix
• K ∈ IRn×n and C ∈ IRn×n : the stiffness and damping matrices,
• Fext(t) : R 7→ R

n : given external force,
• r ∈ R

n is the force due the nonsmooth law.

❈ Linear relations.
• Kinematical laws from the generalized coordinates to the local coordinates at

contact.
y = H

T
q + b, ẏ = H

T
q̇

Mapping H : change of frame
• By duality,

r = Hλ
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Linear Lagrangian systems with Contact and Friction

❈ Local frame at contact : (n, t)

y = ynn + yt, ẏ = ẏnn + ẏt

λ = λnn + λt,
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Linear Lagrangian systems with Contact and Friction

❈ Local frame at contact : (n, t)

y = ynn + yt, ẏ = ẏnn + ẏt

λ = λnn + λt,

❈ Unilateral contact :

0 ≤ yn ⊥ λn ≥ 0 ⇐⇒ −λn ∈ ∂ΦIR+(yn)
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y = ynn + yt, ẏ = ẏnn + ẏt

λ = λnn + λt,

❈ Unilateral contact :

0 ≤ yn ⊥ λn ≥ 0 ⇐⇒ −λn ∈ ∂ΦIR+(yn)

❈ Coulomb’s Friction, µ Coefficient of friction

(

ẏt = 0, ‖λt‖ ≤ µλn

ẏt 6= 0, λt = −µλnsign(ẏt)
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Linear Lagrangian systems with Contact and Friction

❈ Local frame at contact : (n, t)

y = ynn + yt, ẏ = ẏnn + ẏt

λ = λnn + λt,

❈ Unilateral contact :

0 ≤ yn ⊥ λn ≥ 0 ⇐⇒ −λn ∈ ∂ΦIR+(yn)

❈ Coulomb’s Friction, µ Coefficient of friction

(

ẏt = 0, ‖λt‖ ≤ µλn

ẏt 6= 0, λt = −µλnsign(ẏt)

❈ (Newton) Impact law, if necessary, e coefficient of restitution

ẏn(t+) = −eẏn(t−)
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Principle

❈ For a set of unilateral constraints :

yα = hα(x) ≥ 0, α = 1 . . . ν

we define the index set of active constraints as :

I = {α, yα = 0}

❈ Event = change in the index set of active constraints

❈ Stages in the time integration scheme:
• With the assumption that there is no event in the time interval, (unilateral =

bilateral), a standard time integration is done with any standard ODE solver.
• At the end of the time step, one check the constraints with a relevant algorithm

(e.g LCP solvers to avoid Delassus problem)
• If the constraints are not satisfied, the switching time is found by an interpolation

and a root finding procedure. At this switching time, both initial conditions and
index set are updated (e.g. LCP solvers at various levels).
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Pseudo-Algorithm
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Comments

❈ For NSDS with relative degree ≥ 2, you need to solve an LCP problem in terms of
the higher derivative of y.
For instance, for Lagrangian systems, the unilateral constraints on displacement
must be expressed in terms of the acceleration.

❈ The ODE integration solver must include a relevant treatment of bilateral constraints
(DAE solvers) and an accurate root finding procedure.

Basics on Numerical algorithms – Third SICONOS General Meeting. – p.11/32



INRIA Rhône–Alpes

Introduction Event–Driven Time–stepping Comparison Illustrations Conclusion

Outline

✔ 1 – Introdution

✔ 2 – Event–Driven

➜ 3 – Time–stepping

3.1 – Principle

3.2 – Reformulation of the Dynamics as a measure differential equation.

3.3 – Reformulation of the constraints as a measure inclusion

3.4 – Discretization of the Dynamics

3.5 – Discretization of the constraints

3.6 – Summary

3.7 – Linear complementarity system

• 4 – Comparison

• 5 – Illustrations

• 6 – Conclusion

Basics on Numerical algorithms – Third SICONOS General Meeting. – p.12/32



INRIA Rhône–Alpes

Introduction Event–Driven Time–stepping Comparison Illustrations Conclusion

Principle

❈ The time-step does not depend on the events.
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Principle

❈ The time-step does not depend on the events.

❈ The NSDS is reformulated in a consistent way with the respect to the non smooth
character of the evolution :
• relative degree 0 or 1: ODE with possibly not continuous RHS,
• relative degree 2: Measure differential equation (Lagrangian dynamical systems)
• Higher Order : Higher Order Sweeping Process
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character of the evolution :
• relative degree 0 or 1: ODE with possibly not continuous RHS,
• relative degree 2: Measure differential equation (Lagrangian dynamical systems)
• Higher Order : Higher Order Sweeping Process

❈ The unknowns are chosen such that only real finite values are approximate:
• continuous function f : evaluation at point f(t)

• real measure µ: measure of finite time interval µ((ti, tf ))
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Principle

❈ The time-step does not depend on the events.

❈ The NSDS is reformulated in a consistent way with the respect to the non smooth
character of the evolution :
• relative degree 0 or 1: ODE with possibly not continuous RHS,
• relative degree 2: Measure differential equation (Lagrangian dynamical systems)
• Higher Order : Higher Order Sweeping Process

❈ The unknowns are chosen such that only real finite values are approximate:
• continuous function f : evaluation at point f(t)

• real measure µ: measure of finite time interval µ((ti, tf ))

❈ The constraints are derived with respect to the time and treated at various levels to
ensure the numerical stability.
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Reformulation of the Dynamics

❈ Lagrangian dynamical system as a measure differential equation.

Mdv + (Kq(t) + Cv(t)) dt = Fext(t) dt + R

where
• dt is the Lebesgue measure on IR

• dv is the Stieltjes measure (Differential measure) associated with the right
continuous function v(t) of bounded variations, such that :

dv((a, b]) =

Z

(a,b]
dv = v(b+) − v(a+)

• R is a measure due to the non smooth law
• q(t) is the absolutely continuous displacement given by :

q(t) = q(t0) +

Z t

t0

v(s) ds
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Reformulation of the unilateral constraints

❈ Reformulation of the unilateral constraints in terms of derivatives :

If y(t) = 0, then 0 ≤ ẏ ⊥ λ ≥ 0 (2)

which can be stated equivalently as

−λ ∈ ∂ΨV (q)(ẏ)

where V (q) is the tangent cone of IR+ at q and Ψ the indicator function.
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Reformulation of the unilateral constraints

❈ Reformulation of the unilateral constraints in terms of derivatives :

If y(t) = 0, then 0 ≤ ẏ ⊥ λ ≥ 0 (2)

which can be stated equivalently as

−λ ∈ ∂ΨV (q)(ẏ)

where V (q) is the tangent cone of IR+ at q and Ψ the indicator function.

❈ If λ is a measure, the inclusion is extended considering the Radon-Nykodym
derivative

λ
′(t) =

dλ

dν
∈ ΨV (q)(ẏ)

where dν is a nonnegative measure and λ is absolutely continuous with respect to
dν
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Discretization of the Dynamics

❈ Given a subdivision of a time interval, {t0, t1, . . . , ti, . . . , tN}, we evaluate of the
measure differential equation on a time interval (ti, ti+1] of length h :

Mdv((ti, ti+1]) =

Z

(ti,ti+1]
M dv = M(v(t+i+1) − v(t+i ))

M(v(t+i+1) − v(t+i )) = −

Z ti+1

ti

Kq(t) + Cv(t) dt +

Z ti+1

ti

Fext(t) dt +

Z

(ti,ti+1]
R

❈ Evaluation of the displacement

q(ti+1) = q(ti) +

Z ti+1

ti

v(s) ds
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Discretization of the Dynamics Continued

❈ The measure R((ti, ti+1]) of the time-interval (ti, ti+1] is kept as primary unknown :

Ri+1 = R((ti, ti+1])
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Discretization of the Dynamics Continued

❈ The measure R((ti, ti+1]) of the time-interval (ti, ti+1] is kept as primary unknown :

Ri+1 = R((ti, ti+1])

❈ Interpretation : The measure R may be decomposed as follows :

R = Ra dt + Rs

where Ra dt is the abs. continuous part of the measure R and Rs the singular part.
• Impulse : If Ra = 0 and Rs = Pδti+1

then Ri+1 = P

• Continuous multiplier : If Ra(t) = f(t) and Rs = 0 then Ri+1 =
R ti+1

ti

f(t) dt
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Discretization of the Dynamics

❈ Notations :
vi ≈ v(t+i ), qi ≈ q(ti)

❈ Approximation of the integral of functions : θ-method

Z ti+1

ti

Kq(t) + Cv(t) dt ≈ h [θ(Kqi+1 + Cvi+1) + (1 − θ)(Kqi + Cvi)]

Z ti+1

ti

Fext(t) dt ≈ h [θFext(ti+1) + (1 − θ)Fext(ti)]

❈ Evaluation of the displacement: θ-method

qi+1 = qi + h [θvi+1 + (1 − θ)vi]
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Discretization of the Dynamics Continued

❈ Complete set of discrete equations:

8

>

<

>

:

M(vi+1 − vi) = h [θ(Kqi+1 + Cvi+1) + (1 − θ)(Kqi + Cvi)]

+h [θFext(ti+1) + (1 − θ)(Fext(ti)] + Ri+1

qi+1 = qi + h [θvi+1 + (1 − θ)vi]
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Discretization of the Dynamics Continued

❈ Complete set of discrete equations:

8

>

<

>

:

M(vi+1 − vi) = h [θ(Kqi+1 + Cvi+1) + (1 − θ)(Kqi + Cvi)]

+h [θFext(ti+1) + (1 − θ)(Fext(ti)] + Ri+1

qi+1 = qi + h [θvi+1 + (1 − θ)vi]

❈ One step linear system :
vi+1 = vfree + hWRi+1

with

W =
h

M + hθC + h
2
θ
2
K

i

−1

vfree = vi + W
h

−hCvi − hKqi − h
2
θKvi + h [θFext(ti+1) + (1 − θ)Fext(ti)]

i
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Discretization of the constraints

❈ Discretization of the relations :

yi+1 = H
T

qi+1 + b

ẏi+1 = H
T

vi+1

Ri+1 = Hλi+1

Basics on Numerical algorithms – Third SICONOS General Meeting. – p.20/32



INRIA Rhône–Alpes

Introduction Event–Driven Time–stepping Comparison Illustrations Conclusion

Discretization of the constraints

❈ Discretization of the relations :

yi+1 = H
T

qi+1 + b

ẏi+1 = H
T

vi+1

Ri+1 = Hλi+1

❈ Discretization of an unilateral constraint :
A natural way :

0 ≤ yi+1 ⊥ λi+1 ≥ 0

in terms of velocity
If y

p ≤ 0, then 0 ≤ ẏi+1 ⊥ λi+1 ≥ 0

where yp is a prediction of the position at time ti+1, for instance, yp = yi +
h

2
ẏi.
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Discretization of the constraints

❈ Discretization of the relations :

yi+1 = H
T

qi+1 + b

ẏi+1 = H
T

vi+1

Ri+1 = Hλi+1

❈ Discretization of an unilateral constraint :
A natural way :

0 ≤ yi+1 ⊥ λi+1 ≥ 0

in terms of velocity
If y

p ≤ 0, then 0 ≤ ẏi+1 ⊥ λi+1 ≥ 0

where yp is a prediction of the position at time ti+1, for instance, yp = yi +
h

2
ẏi.

❈ Newton Impact law ẏe
i+1 = ẏi+1 + eẏi

If y
p ≤ 0, then 0 ≤ ẏ

e
i+1 ⊥ λi+1 ≥ 0
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Summary

One step linear problem

(

vi+1 = vfree + hWRi+1

qi+1 = qi + h [θvi+1 + (1 − θ)vi]

Relations

(

ẏi+1 = HT vi+1

Ri+1 = Hλi+1

Non Smooth Law

8

<

:

If yp = yi +
h

2
ẏi

then 0 ≤ ẏe
i+1 ⊥ λi+1 ≥ 0
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Summary

One step linear problem

(

vi+1 = vfree + hWRi+1

qi+1 = qi + h [θvi+1 + (1 − θ)vi]

Relations

(

ẏi+1 = HT vi+1

Ri+1 = Hλi+1

Non Smooth Law

8

<

:

If yp = yi +
h

2
ẏi

then 0 ≤ ẏe
i+1 ⊥ λi+1 ≥ 0

➜ One step LCP in terms of ẏe
i+1 and λi+1 :

ẏ
e
i+1 = H

T
q̇free + hH

T
WHλi+1 + eẏi

y
p = yi +

h

2
ẏi

If yp ≤ 0, then 0 ≤ ẏ
e
i+1 ⊥ λi+1 ≥ 0
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Summary
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Linear complementarity system

❈ Direct application of a Backward Euler Scheme :

8

>

>

<

>

>

:

xk+1 − xk

h
= Axk+1 + Bλk+1

yk+1 = Cxk+1 + Dλk+1

0 ≤ λk+1 ⊥ yk+1 ≥ 0
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Linear complementarity system

❈ Direct application of a Backward Euler Scheme :

8

>

>

<

>

>

:

xk+1 − xk

h
= Axk+1 + Bλk+1

yk+1 = Cxk+1 + Dλk+1

0 ≤ λk+1 ⊥ yk+1 ≥ 0

• Relative degree 0 and 1
➜ Direct equivalence with the Moreau’s Time-stepping scheme

• Relative degree 2

➜ inconsistency of the variable λk+1 which tends toward +∞ when h −→ 0
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Linear complementarity system

❈ Direct application of a Backward Euler Scheme :

8

>

>

<

>

>

:

xk+1 − xk

h
= Axk+1 + Bλk+1

yk+1 = Cxk+1 + Dλk+1

0 ≤ λk+1 ⊥ yk+1 ≥ 0

• Relative degree 0 and 1
➜ Direct equivalence with the Moreau’s Time-stepping scheme

• Relative degree 2

➜ inconsistency of the variable λk+1 which tends toward +∞ when h −→ 0

❈ Moreau’s Time–stepping scheme for a relative degree 2:
• The primary unknown is Ri+1 = hλk+1,

• The unilateral constraint is set on ẏk+1

➜ See the illustration on the LCS
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Outline

✔ 1 – Introdution

✔ 2 – Event–Driven

✔ 3 – Time–stepping

➜ 4 – Comparison

4.1 – Event–Driven - Advantages and disadvantages

4.2 – Time–stepping - Advantages and disadvantages

4.3 – Time–stepping vs. Event–Driven

• 5 – Illustrations

• 6 – Conclusion
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Event–Driven - Advantages and disadvantages

❈ Advantages :
• Low cost implementation (re-use of existing ODE solvers).
• Higher-order accuracy on free motion.
• Pseudo-localisation of the time of events with finite time-step.
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Event–Driven - Advantages and disadvantages

❈ Advantages :
• Low cost implementation (re-use of existing ODE solvers).
• Higher-order accuracy on free motion.
• Pseudo-localisation of the time of events with finite time-step.

❈ Weaknesses
• Numerous events in short time.
• Accumulation of impacts.
• No convergence proof
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Time–stepping - Advantages and disadvantages

❈ Advantages :
• No root finding procedure,
• Accumulation of impacts & Numerous events in short time.
• Convergence proofs (stability and consistency) ➜ Existence and uniqueness

results
• Extensible to higher relative degree system
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Time–stepping - Advantages and disadvantages

❈ Advantages :
• No root finding procedure,
• Accumulation of impacts & Numerous events in short time.
• Convergence proofs (stability and consistency) ➜ Existence and uniqueness

results
• Extensible to higher relative degree system

❈ Weaknesses
• low-order accuracy on free motion.
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Time–stepping vs. Event–Driven

❈ Event–driven schemes are suitable for simulations with :
• strong accuracy requirements on the free motion
• sparse events
• low number of constraints
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Time–stepping vs. Event–Driven

❈ Event–driven schemes are suitable for simulations with :
• strong accuracy requirements on the free motion
• sparse events
• low number of constraints

❈ Time–stepping schemes are suitable for simulations with :
• dense events and accumulation
• high number of constraints
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Outline

✔ 1 – Introdution

✔ 2 – Event–Driven

✔ 3 – Time–stepping

✔ 4 – Comparison

➜ 5 – Illustrations

5.1 – Linear complementarity system

5.2 – The Boucing ball example with time–stepping

5.3 – A friction oscillator

• 6 – Conclusion
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Linear Complementarity system

Consider the following LCS of relative degree 2:

8

>

>

>

<

>

>

>

:

ẋ1 = x2

ẋ2 = λ

y = x1

0 ≤ y ⊥ λ ≥ 0

with inelastic reinitialization mapping (if y(t) = 0, ẏ(t+) = 0)
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Linear Complementarity system

Consider the following LCS of relative degree 2:

8

>

>

>

<

>

>

>

:

ẋ1 = x2

ẋ2 = λ

y = x1

0 ≤ y ⊥ λ ≥ 0

with inelastic reinitialization mapping (if y(t) = 0, ẏ(t+) = 0)

❈ Initial condition x(0−) = (0,−1)T

Backward Euler scheme: xk = (0, 0), ∀k, λ1 =
1

h
, λk = 0

Moreau’s time stepping: xk = (0, 0), ∀k, λ1 = 1, λk = 0
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Linear Complementarity system

Consider the following LCS of relative degree 2:

8

>

>

>

<

>

>

>

:

ẋ1 = x2

ẋ2 = λ

y = x1

0 ≤ y ⊥ λ ≥ 0

with inelastic reinitialization mapping (if y(t) = 0, ẏ(t+) = 0)

❈ Initial condition x(0−) = (0,−1)T

Backward Euler scheme: xk = (0, 0), ∀k, λ1 =
1

h
, λk = 0

Moreau’s time stepping: xk = (0, 0), ∀k, λ1 = 1, λk = 0

❈ Initial condition x(0−) = (−1,−1)T

Backward Euler scheme: xk = (k, 1
h ), ∀k, λ1 =

1

h
2
, λk = 0

Moreau’s time stepping: xk = (−1, 0), ∀k, λ1 = 1, λk = 0

Extended Moreau’s time stepping: xk = (0, 0), ∀k, µ1 = 1, λ1 = 1, λk = 0, µk = 0
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The Boucing ball example with time–stepping

8

>

>

>

>

>

<

>

>

>

>

>

:

mq̈ = −mg + λ

y = q

0 ≤ y ⊥ λ ≥ 0

if y(t) = 0,

ẏ(t+) = −ey(t−)
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A friction oscillator

8

>

>

>

<

>

>

>

:

q̈ + q = sin(ωt) + r

y = q, r = λ
(

ẏ = 0, ‖λ‖ ≤ µ

ẏ 6= 0, λt = −µsign(ẏ)
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Position and velocity of the oscillator vs. Time
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Outline

Further reading:

❈ Event–Driven
• F. Pfeiffer & C. Glocker. Multibody Dynamics with Unilateral Contact, John Wiley & Sons, 1996

• M. Abadie, Dynamic Simulation of Rigid bodies: Modelling of Frictional contact, Impact in Mechanical

Systems, analysis and modelling, B. Brogliato ed., LNP 551 Springer Verlag

❈ Time-stepping
• J.J. Moreau, Evolution Problem Associated with a Moving Convex Set in a Hilbert Space, Journal of

Differential Equations, pp 347-374 1977

• J.J. Moreau, Unilateral contact and dry friction in finite freedom dynamics, CISM 302, Springer Verlag,

pp 1-82, 1988

• J.J. Moreau, Some numerical methods in multibody dynamics: Application to granular materials,

European Journal of Machanics-A/Solids, pp 93-114, 1994.
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