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Nonsmooth Newton methods for frictional contact problems in flexible multi-body systems

Objectives

I Computation methods for discrete frictional contact problems.
I Rigid multi-body systems:

I high order of hyperstaticity
I under-determinancy in the contact forces
I Projection/splitting methods (Jacobi, Gauss–Seidel) are robust but very slow
I Nonsmooth Newton methods fail

I Flexible multi-body systems:
I low order of hyperstaticity
I Nonsmooth methods work efficiently.

General interest in introducing flexibility in the model for computational efficiency.
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The 3D frictional contact problem

Signorini condition and Coulomb’s friction

Signorini’s condition and Coulomb’s friction
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I gap function gN = (CB − CA)N.

I reaction forces

r = rNN+rT, with rN ∈ IR and rT ∈ IR2.

I Signorini condition at position level

0 6 gN ⊥ rN > 0.

I relative velocity

u = uNN+uT, with uN ∈ IR and uT ∈ IR2.

I Signorini condition at velocity level{
0 6 uN ⊥ rN > 0 if gN 6 0
rN = 0 otherwise.
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The 3D frictional contact problem

Signorini condition and Coulomb’s friction

Signorini’s condition and Coulomb’s friction

Modeling assumption
Let µ be the coefficient of friction. Let us define the Coulomb friction cone K which is
chosen as the isotropic second order cone

K = {r ∈ IR3 | ‖rT‖ 6 µrn}. (1)

The Coulomb friction states

I for the sticking case that
uT = 0, r ∈ K (2)

I and for the sliding case that

uT 6= 0, r ∈ ∂K ,∃α > 0, rT = −αuT. (3)

Disjunctive formulation of the frictional contact behavior
r = 0 if gN > 0 (no contact)
r = 0, uN > 0 if gN 6 0 (take–off)
r ∈ K , u = 0 if gN 6 0 (sticking)
r ∈ ∂K , uN = 0, ∃α > 0, uT = −αrT if gN 6 0 (sliding)

(4)
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The 3D frictional contact problem

Signorini condition and Coulomb’s friction

Signorini’s condition and Coulomb’s friction

Second Order Cone Complementarity (SOCCP) formulation [5]

I Modified relative velocity û ∈ IR3 defined by

û = u + µ‖uT‖N. (5)

I Second-Order Cone Complementarity Problem (SOCCP)

K? 3 û ⊥ r ∈ K (6)

if gN 6 0 and r = 0 otherwise. The set K? is the dual convex cone to K defined
by

K? = {u ∈ IR3 | r>u > 0, for all r ∈ K}. (7)

The 3D frictional contact problem – 5/21



Nonsmooth Newton methods for frictional contact problems in flexible multi-body systems

The 3D frictional contact problem

Signorini condition and Coulomb’s friction

Signorini’s condition and Coulomb’s friction
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Figure: Coulomb’s friction and the modified velocity û. The sliding case.
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The 3D frictional contact problem

3D frictional contact problems

3D frictional contact problem

Multiple contact notation
For each contact α ∈ {1, . . . nc}, we have

I the local velocity : uα ∈ IR3, and

u = [[uα]>, α = 1 . . . nc ]>

I the local reaction vector rα ∈ IR3

r = [[rα]>, α = 1 . . . nc ]>

I the local Coulomb cone

Kα = {rα, ‖rαT ‖ 6 µα|rαN |} ⊂ IR3

and the set K is the cartesian product of Coulomb’s friction cone at each
contact, that

K =
∏

α=1...nc

Kα (8)

and K? is dual.
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The 3D frictional contact problem

3D frictional contact problems

3D frictional contact problems

Problem 1 (General discrete frictional contact problem)
Given

I a symmetric positive definite matrix M ∈ IRn×n,

I a vector f ∈ IRn,

I a matrix H ∈ IRn×m,

I a vector w ∈ IRm,

I a vector of coefficients of friction µ ∈ IRnc ,

find three vectors v ∈ IRn, u ∈ IRm and r ∈ IRm, denoted by FC/I(M,H, f ,w , µ) such
that 

Mv = Hr + f

u = H>v + w

û = u + g(u)

K? 3 û ⊥ r ∈ K

(9)

with g(u) = [[µα‖uαT ‖Nα]>, α = 1 . . . nc ]>.
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The 3D frictional contact problem

3D frictional contact problems

3D frictional contact problems

Problem 2 (Reduced discrete frictional contact problem)
Given

I a symmetric positive semi–definite matrix W ∈ IRm×m,

I a vector q ∈ IRm,

I a vector µ ∈ IRnc of coefficients of friction,

find two vectors u ∈ IRm and r ∈ IRm, denoted by FC/II(W , q, µ) such that
u = Wr + q

û = u + g(u)

K? 3 û ⊥ r ∈ K

(10)

with g(u) = [[µα‖uαT ‖Nα]>, α = 1 . . . nc ]>.

Relation with the general problem
W = H>M−1H and q = H>M−1f + w .
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The 3D frictional contact problem

3D frictional contact problems

3D frictional contact problems

Rank of the H matrix and hyperstaticity
The rank of the H matrix (ratio number of contacts unknows/number of d.o.f) plays
an important role.

I Rigid multibody systems (high degree of hyperstaticity): Generically : 3nc ≫ n.
H is NOT full column rank and W is rank deficient.

I Flexible multibody systems. Generically : 3nc < n. H may be full column rank
and W is full rank.

Effect on convergence of numerical methods

I First order iterative methods solves all the problems but very slowly

I Nonsmooth Newton methods are inefficient.
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Numerical solution procedure.

Nonsmooth Equations based methods

Nonsmooth Equations based methods

Nonsmooth Newton on F (r) = 0

rk+1 = rk − Φ−1(rk )(F (rk )), Φ(rk ) ∈ ∂F (rk )

I Alart–Curnier Formulation [1]

Fac(r) :=

[
rN − PIRnc

+
(rN − ρN(Wr + q)N),

rT − PD(µ,(rN−ρ(Wr+q)N)+)(rT − ρT(Wr + q)T)

]
, ρN > 0, ρT > 0,

(11)

I Jean – Moreau formulation [7, 4]

Fmj(r) :=

[
rN − PIRnc

+
(rN − ρN(Wr + q)N)

rT − PD(µ,(rN)+)(rT − ρT(Wr + q)T)

]
, ρN > 0, ρT > 0. (12)

I Direct natural map reformulation

Fnat(r) :=
[

r − PK (r − ρ(Wr + q + g(Wr + q)))
]
, ρ > 0 (13)

MUMPS [3, 2] is used for solving linear systems.

Numerical solution procedure. – 11/21



Nonsmooth Newton methods for frictional contact problems in flexible multi-body systems

Numerical solution procedure.

Matrix block–splitting and projection based algorithms

Matrix block-splitting and projection based algorithms [9, 8]

Block splitting algorithm with W αα ∈ IR3 (Gauss-Seidel)

uαi+1 −WααPαi+1 = qα +
∑
β<α

Wαβrβi+1 +
∑
β>α

Wαβrβi

ûαi+1 =
[
uα

N,i+1 + µα ||uα
T,i+1||, u

α
T,i+1

]T
Kα,∗ 3 ûαi+1 ⊥ rαi+1 ∈ Kα

(14)

for all α ∈ {1 . . .m}.

One contact point problem

I closed form solutions

I Any solver listed before.
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Numerical solution procedure.

Matrix block–splitting and projection based algorithms

Naming convention

NSN-AC-NLS Nonsmooth Newton Method using (11) without line-search
NSN-JM-NLS Nonsmooth Newton Method using (12) without line-search
NSN-NM-NLS Nonsmooth Newton Method using (13) without line-search
NSN-AC-NLS-HYBRID Method NSN-AC-NLS with preconditioning with 100 iterations

of NSGS-AC

NSGS-AC Gauss–Seidel method with NSN-AC-NLS as local solver
NSGS-FP-VI-UPK Gauss–Seidel method with fixed point iterations of Fnat(r)− r

Table: Naming convention

Error evaluation

‖Fnat(r)‖
‖q‖

< ε, (15)
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Numerical solution procedure.

Siconos/Numerics

Siconos/Numerics

Siconos
Open source software for modelling and simulation of nonsmooth systems

Siconos/Numerics
Collection of C routines to solve FC3D problem

I NonSmoothGaussSeidel : VI based projection/splitting algorithm

I TrescaFixedPoint : fixed point algorithm on Tresca fixed point

I LocalAlartCurnier : semi–smooth newton method of Alart–Curnier formulation

I ProximalFixedPoint : proximal point algorithm

I VIFixedPointProjection : VI based fixed-point projection

I VIExtragradient : VI based extra-gradient method

I . . .

http://siconos.gforge.inria.fr

use and contribute ...
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Preliminary Comparisons

Performance profiles

Performance profiles [6]

I Given a set of problems P
I Given a set of solvers S
I A performance measure for each problem with a solver tp,s (cpu time, flops, ...)

I Compute the performance ratio

τp,s =
tp,s

min
s∈S

tp,s
> 1 (16)

I Compute the performance profile ρs(τ) : [1,+∞]→ [0, 1] for each solver s ∈ S

ρs(τ) =
1

|P|
∣∣{p ∈ P | τp,s 6 τ}

∣∣ (17)

The value of ρs(1) is the probability that the solver s will win over the rest of the
solvers.
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Preliminary Comparisons

Performance profiles

LMGC90 sheared low wall example

Figure: A low wall meshes with H8

I H8 FE with Linear elastic behavior : ρ = 2000kg m−3,E = 2.2× 109Pa, ν = 0.2

I µ = 0.83 between block and µ = 0.53 between blocks and supports

I Vertical compression force : 30000N horizontal shear velocity 1× 10−3m s−1.

I Sampling of 50 problems collected in the FCLib with graded difficulty
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Preliminary Comparisons

Performance profiles

Results
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Figure: Comparison for two different required accuracies
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Preliminary Comparisons

Performance profiles

Results
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Figure: Comparison for two different required accuracies
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Conclusions & Perspectives

Conclusions & Perspectives

Conclusions

1. For relatively tight accuracy, nonsmooth Newton methods outperform first order
iterative method.

2. NSN-AC-NLS-HYBRID is the most efficient method

3. First order iterative methods are interesting for low accuracy, but are not able to
reach tight accuracy,

Perspectives

1. Evaluate the interest to transform rigid model into flexible ones.

2. Study the possibility to take into account the possible nonlinear bulk behavior in
the Newton loop

3. HPC and scalability of nonsmooth Newton techniques using MUMPS

4. Continue to set up a collection of benchmarks Ü FCLIB
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Conclusions & Perspectives

FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

Our inspiration: MCPLIB or CUTEst

What is FCLIB ?

I A open source collection of Frictional Contact (FC) problems stored in a specific
HDF5 format

I A open source light implementation of Input/Output functions in C Language to
read and write problems (Python and Matlab coming soon)

Goals of the project
Provide a standard framework for testing available and new algorithms for solving
discrete frictional contact problems share common formulations of problems in order
to exchange data

Call for contribution
http://fclib.gforge.inria.fr
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Conclusions & Perspectives

FCLIB : a collection of discrete 3D Frictional Contact (FC) problems

Thank you for your attention.
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FCLIB : a collection of discrete 3D Frictional Contact (FC) problems
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