Computational methods for the simulation of nonsmooth cable dynamics in ropeways transportation systems

Vincent Acary.

Ínaía -

Charlélie Bertrand, Claude Henri Lamarque, Alireza Ture Savadkoohi, Mathieu Weiss

Symposium on High Performance Multibody System Simulation. University of Innsbruck. Austria. 07 October 2022

3

<ロ> (四) (四) (三) (三) (三)

Context

Dynamics of a translating cable subjected to unilateral constraints, friction and punctual loads

Engineering applications

- Aerial ropeways as an alternative for public transportation with increasing velocities
- maintenance and support of existing infrastructures

Scientific issues and open questions

- Need for efficient numerical tools for highly stiff and nonlinear systems
- A design tool based on constrained dynamics with contact and friction
- Understand sudden large amplitudes observed in practice
- Comparison of models (thin beams or cable?).

Context and scope of the work - 2/27

Outline

Context and scope of the work

Modeling the cable

Finite element method for cables

Cable dynamics with contact, impact and friction

Numerical scheme for non-smooth dynamics

Conclusion and perspectives

Assumptions

The cable is assumed to be

- linear elastic
- a curvilinear domain
- bending and torsion moments vanish
- ▶ a tension-only material ($T \ge 0$)

As a consequence,

- only one space variable S, curvilinear abscissa is needed
- each tangent has a left and right limit, but kinks are possible

Unilateral elasticity

イロト イヨト イヨト イ

Kinematics

Curvilinear domain \longrightarrow domain assimilated to a curve.

Two main mechanisms:

Dilatation:
$$\varepsilon(S) = \|\mathbf{q}'(S)\| - 1$$

Flexure: $\kappa(S) = \omega'(S) = \alpha'(S) - \alpha'_0(S)$

Lagrangian with unilateral constraints

$$\mathcal{L}\left(\dot{\mathbf{q}},\mathbf{q}',\mathbf{q},\lambda\right) = \mathcal{L}^{*}\left(\dot{\mathbf{q}},\mathbf{q}',\mathbf{q}\right) - \lambda^{T}\mathbf{a}(\mathbf{q},\mathbf{q}',\dot{\mathbf{q}})$$
with $\mathcal{L}^{*}\left(\dot{\mathbf{q}},\mathbf{q}',\mathbf{q}\right) = \mathcal{T}\left(\dot{\mathbf{q}},\mathbf{q}\right) - \mathcal{V}\left(\mathbf{q}',\mathbf{q}\right)$

$$\mathbf{a}(\mathbf{q},\mathbf{q}',\dot{\mathbf{q}}) \ge 0$$

$$(3)$$

Euler-Lagrange equations with unilateral constraints

$$\begin{cases} \mathbf{0} = \frac{\partial \mathcal{L}^*}{\partial \mathbf{q}} - \frac{\mathrm{d}}{\mathrm{d}S} \left(\frac{\partial \mathcal{L}^*}{\partial \mathbf{q}'} \right) - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}^*}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial \mathbf{a}}{\partial \mathbf{q}}^\top \lambda + \frac{\mathrm{d}}{\mathrm{d}S} \left[\frac{\partial \mathbf{a}}{\partial \mathbf{q}'}^\top \lambda \right] + \frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\partial \mathbf{a}}{\partial \dot{\mathbf{q}}}^\top \lambda \right] \\ \mathbf{0} \leqslant \mathbf{a}(\mathbf{q}, \mathbf{q}', \dot{\mathbf{q}}) \perp \lambda \geqslant \mathbf{0} \end{cases}$$
(4)

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lagrangian

- Kinetic energy
- External work

$$\mathcal{L}^{*}\left(\dot{\mathbf{q}},\mathbf{q}',\mathbf{q},\lambda
ight)=rac{
ho}{2}\dot{\mathbf{q}}\cdot\dot{\mathbf{q}}$$

(5)

<□ ト < 部 ト < 臣 ト < 臣 ト 三 の Q (~ Modeling the cable - 7/27

Lagrangian

- Kinetic energy
- External work

$$\mathcal{L}^{*}\left(\dot{\mathbf{q}},\mathbf{q}',\mathbf{q},\lambda\right) = \frac{\rho}{2}\dot{\mathbf{q}}\cdot\dot{\mathbf{q}} + \mathbf{f}_{e}\cdot\mathbf{q}$$
(5)

Lagrangian

- Kinetic energy
- External work
- Elastic energy

$$\mathcal{L}^{*}\left(\dot{\mathbf{q}},\mathbf{q}',\mathbf{q},\lambda\right) = \frac{\rho}{2}\dot{\mathbf{q}}\cdot\dot{\mathbf{q}} + \mathbf{f}_{e}\cdot\mathbf{q} - \frac{EA}{2}\left(\left\|\mathbf{q}'\right\| - 1\right)^{2}$$
(5)

Dynamical equations for the (standard) elastic cable

$$\left\{\frac{\mathrm{d}}{\mathrm{d}t}\left(\rho\dot{\mathbf{q}}\right) = \frac{\mathrm{d}}{\mathrm{d}S}\left(\left[EA\left(\left\|\mathbf{q}'\right\| - 1\right)\right]\frac{\mathbf{q}'}{\left\|\mathbf{q}'\right\|}\right) + \mathbf{f}_{e}\right\}$$
(6)

with $T = [EA(||\mathbf{q}'|| - 1)]$ the tension.

Modeling the cable - 7/27

Lagrangian

- Kinetic energy
- External work
- Inextensibility

$$\mathcal{L}^{*}\left(\dot{\mathbf{q}},\mathbf{q}',\mathbf{q},\lambda\right) = \frac{\rho}{2}\dot{\mathbf{q}}\cdot\dot{\mathbf{q}} + \mathbf{f}_{e}\cdot\mathbf{q} - \lambda\left(1 - \|\mathbf{q}'\|\right)$$
(5)

Dynamical equations for the inextensible cable

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \left(\rho \dot{\mathbf{q}} \right) = & \frac{\mathrm{d}}{\mathrm{d}S} \left(\lambda \frac{\mathbf{q}'}{\|\mathbf{q}'\|} \right) + \mathbf{f}_e \\ 0 \leqslant 1 - \|\mathbf{q}'\| \perp \lambda \geqslant 0 \end{cases}$$
(6)

with $T = \lambda \ge 0$ the tension.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lagrangian

- Kinetic energy
- External work
- Unilateral elasticity

$$\mathcal{L}^{*}\left(\dot{\mathbf{q}},\mathbf{q}',\mathbf{q},\tilde{\mathbf{q}}',\lambda\right) = \frac{\rho}{2}\dot{\mathbf{q}}\cdot\dot{\mathbf{q}} + \mathbf{f}_{e}\cdot\mathbf{q} - \frac{EA}{2}\left(\left\|\mathbf{q}'\right\| - \left\|\tilde{\mathbf{q}}'\right\|\right)^{2} - \lambda\left(1 - \left\|\tilde{\mathbf{q}}'\right\|\right)$$
(5)

Dynamical equations for the unilateral elastic cable

$$\begin{cases} \frac{d}{dt} \left(\rho \dot{\mathbf{q}} \right) = \frac{d}{dS} \left(\left[EA \left(\left\| \mathbf{q}' \right\| - \left\| \ddot{\mathbf{q}}' \right\| \right) \right] \frac{\mathbf{q}'}{\left\| \mathbf{q}' \right\|} \right) + \mathbf{f}_e \\ 0 = \left[EA \left(\left\| \mathbf{q}' \right\| - \left\| \ddot{\mathbf{q}}' \right\| \right) - \lambda \right] \frac{\ddot{\mathbf{q}}'}{\left\| \ddot{\mathbf{q}}' \right\|} \\ 0 \leqslant 1 - \left\| \ddot{\mathbf{q}}' \right\| \perp \lambda \geqslant 0 \end{cases}$$
(6)

ヘロト 人間ト 人造ト 人造ト

Lagrangian

- Kinetic energy
- External work
- Unilateral elasticity

$$\mathcal{L}^{*}\left(\dot{\mathbf{q}},\mathbf{q}',\mathbf{q},\tilde{\mathbf{q}}',\lambda\right) = \frac{\rho}{2}\dot{\mathbf{q}}\cdot\dot{\mathbf{q}} + \mathbf{f}_{e}\cdot\mathbf{q} - \frac{EA}{2}\left(\left\|\mathbf{q}'\right\| - \left\|\tilde{\mathbf{q}}'\right\|\right)^{2} - \lambda\left(1 - \left\|\tilde{\mathbf{q}}'\right\|\right)$$
(5)

Dynamical equations for the unilateral elastic cable Simplification by eliminating $\tilde{\mathbf{q}}'$

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \left(\rho \dot{\mathbf{q}}\right) = \frac{\mathrm{d}}{\mathrm{d}S} \left(\lambda \frac{\mathbf{q}'}{\|\mathbf{q}'\|}\right) + \mathbf{f}_{e} \\ 0 \leqslant \lambda - EA(\|\mathbf{q}'\| - 1) \perp \lambda \geqslant 0 \end{cases}$$
(6)

with $T = \lambda \ge 0$ the tension.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Main interests

Tension-only cable with unilateral elasticity. Uniqueness can be retrieved

Elastic cable under self-weight example

・ロト ・ 四 ト ・ ヨ ト ・

Weak formulation

Unconstrained dynamics:

$$\rho \frac{d\mathbf{v}}{dt} = [T\mathbf{e}]' + \mathbf{f}_e \tag{7}$$

where:

$$\mathbf{v} , \mathbf{q} \in \mathcal{H}^{1} = \left\{ \mathbf{q} \in \mathbb{R}^{3} \text{ t.q. } \mathbf{q} \in \mathcal{L}^{2}\left([0, L]\right), \mathbf{q}' \in \mathcal{L}^{2}\left([0, L]\right), \mathbf{q} = \int^{t} \mathbf{v} dt \right\}$$
(8)

equipped with the norm:

$$\|\mathbf{q}\|_{1} = \left[\int_{0}^{L} \mathbf{q} \cdot \mathbf{q} + \mathbf{q}' \cdot \mathbf{q}' \mathrm{d}S\right]^{\frac{1}{2}}$$
(9)

Then for $\varphi \in \mathcal{H}^1$:

$$\int_{0}^{L} \rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} \cdot \varphi \mathrm{d}S + \int_{0}^{L} T \mathbf{e} \cdot \varphi' \mathrm{d}S = [T \mathbf{e} \cdot \varphi]_{0}^{L} + \int_{0}^{L} \mathbf{f}_{e} \cdot \varphi \mathrm{d}S$$
(10)

i.e.:

$$\int_{0}^{L} \rho \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} \cdot \varphi \mathrm{d}S + \int_{0}^{L} T \mathbf{e} \cdot \varphi' \mathrm{d}S = \int_{0}^{L} \mathbf{f}_{e} \cdot \varphi \mathrm{d}S \tag{11}$$

Finite element method for cables - 9/27

Finite element approximation

FE approximation with p1 elements ¹.

$$\mathbf{q}(S) \approx \sum_{e=1}^{N} \mathbf{N}(S) \ \mathbf{q}^{e} \qquad (12)$$
$$\mathbf{v}(S) \approx \sum_{e=1}^{N} \mathbf{N}(S) \ \mathbf{v}^{e} \qquad (13)$$
$$\varphi(S) \approx \sum_{e=1}^{N} \mathbf{N}(S) \varphi^{e} \qquad (14)$$

where N stands for:

Linear interpolation on element e

Finite element method for cables - 10/27

Finite element approximation

The global equilibrium reads:

$$\sum_{e=1}^{N} \varphi^{e} \cdot \left[\mathsf{M}^{e} \frac{\mathsf{d} \mathbf{v}^{e}}{\mathsf{d} t} + \mathsf{K}^{e}(\mathbf{q}^{e}) \mathbf{q}^{e} - \mathbf{f}_{e}^{e} \right] = \mathbf{0}$$
(16)

with

$$\mathbf{M}^{e} = \rho \int_{0}^{L^{e}} \mathbf{N}(S)^{\top} \mathbf{N}(S) \mathrm{d}S , \ \mathbf{f}^{e} = \int_{0}^{L^{e}} \mathbf{N}(S)^{\top} \mathbf{f}_{e} \ \mathrm{d}S$$
(17)

$$\mathbf{K}^{e} = EA \int_{0}^{L^{e}} \left(\left\| \mathbf{N}'(S) \mathbf{q}^{e} \right\| - 1 \right) \frac{\mathbf{N}'(S)^{\top} \mathbf{N}'(S)}{\left\| \mathbf{N}'(S) \mathbf{q}^{e} \right\|} \mathrm{d}S$$
(18)

Assembly + structural damping:

$$\mathbf{0} = \mathbf{M} \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} + \mathbf{C}(\mathbf{q},\mathbf{v})\mathbf{v} + \mathbf{K}(\mathbf{q})\mathbf{q} - \mathbf{f}$$
(19)

No constraints for now.

Image: A set of the set of the

Numerical convergence issues with standard Newton-Raphson method

- convergence issues far from the solution.
- numerous local mimina : spurious solutions

x

Numerical equilibrium obtained for a cable with compressed segments

$$EA = 1.10^{10}N, L = 51m, span = 50m, n = 25$$

Finite element method for cables - 12/27

Computational methods for the simulation of nonsmooth cable dynamics in ropeways transportation systems \Box Finite element method for cables

How to cope with those situations

Non-smooth Newton method with a modified Jacobian:

$$\varepsilon^{e}(S) = \left\| \mathsf{N}'(S) \mathsf{q}^{e} \right\| - 1 \tag{20}$$

$$\mathbf{K}^{e} = \begin{cases} EA \int_{0}^{L^{e}} \frac{\mathbf{N}'(S)^{\top} \mathbf{N}'(S)}{1 + |\varepsilon^{e}(S)|^{-1}} \mathrm{d}S \quad ; \quad \varepsilon^{e}(S) \ge 0 \\ \mathbf{0} \quad ; \quad \varepsilon^{e}(S) < 0 \end{cases}$$
(21)

$$\Delta \mathbf{K}^{e} = \begin{cases} \mathbf{K}^{e} + EA \int_{0}^{L^{e}} \frac{\mathbf{N}'(S)^{\top} \mathbf{N}'(S) \mathbf{q}^{e} \mathbf{q}^{e^{\top}} \mathbf{N}'(S)^{\top} \mathbf{N}'(S)}{(|\varepsilon^{e}(S)| + 1)^{3}} \mathrm{d}S \quad ; \quad \varepsilon^{e}(S) \ge 0 \\ EA \int_{0}^{L^{e}} \frac{\mathbf{N}'(S)^{\top} \mathbf{N}'(S)}{1 + |\varepsilon^{e}(S)|^{-1}} \mathrm{d}S \quad ; \quad \varepsilon^{e}(S) < 0 \end{cases}$$
(22)

Image: A line box of the second secon

Examples

Cable subjected to vertical upwards loads and self-weight

Finite element method for cables - 14/27

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Computational methods for the simulation of nonsmooth cable dynamics in ropeways transportation systems \Box Finite element method for cables

Examples

Pendulum cable trajectory

Examples

Tension fields in a cable network - x - y

Examples

Tension fields in a cable network - x - z

Contact kinematics - 1

The cable moves at velocity **v** and the obstacle at \mathbf{v}_{obs} . The relative velocity from one cable section, M, to one obstacle point, M', reads:

$$\mathbf{u}(M, M') = \mathbf{v}(M) - \mathbf{v}_{\rm obs}(M') \qquad (23)$$

The relative velocity reads in the local basis:

$$\mathbf{u}(M,M') \rightarrow \begin{cases} \mathbf{H}_N & : & \mathbf{u}_N(M,M') = \mathbf{H}_N(M,M')\mathbf{u}(M,M') \\ \mathbf{H}_T & : & \mathbf{u}_T(M,M') = \mathbf{H}_T(M,M')\mathbf{u}(M,M') \end{cases}$$
(24)

where $t = [t_1, t_2]^\top$ and $n \perp t_1 \perp t_2 \perp n.$ The contact reaction in local basis reads:

$$\mathbf{p} = \mathbf{H}_N^{\top} \mathbf{r}_N + \mathbf{H}_T^{\top} \mathbf{r}_T = \mathbf{H}^{\top} r$$
(25)

Contact kinematics - 2

The link between local and global formulation is done via ${\boldsymbol{\mathsf{H}}}$ and

$$\mathbf{M}\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \mathbf{f} + \mathbf{p} \quad \Leftrightarrow \quad \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{\tilde{f}} + \mathbf{\widehat{W}r}$$
(26)

yields the Delassus operator $\widehat{\mathbf{W}}$:

$$\widehat{\mathbf{W}} = \mathbf{H}\mathbf{M}^{-1}\mathbf{H}^{\top}\mathbf{f}$$
(27)

and

$$\tilde{\mathbf{f}} = \mathbf{H}\mathbf{M}^{-1} \tag{28}$$

-

Computational methods for the simulation of nonsmooth cable dynamics in ropeways transportation systems
Cable dynamics with contact, impact and friction

Coulomb friction with contact at the velocity level

Coulomb's second order cone

$$\mathbf{K} = \left\{ \mathbf{r} \in \mathbb{R}^3 , \|\mathbf{r}_{\mathcal{T}}\| \leqslant \mu \mathbf{r}_{\mathcal{N}} \right\}$$
(29)

Coulomb friction with contact at the veloicty level

three distinct cases:

- No contact i.e. $\mathbf{r} = 0$ and $\mathbf{u}_N \ge 0$
- The cable sticks $\mathbf{r} \in \mathbf{K}$ and $\mathbf{u} = \mathbf{0}$
- The cable slips at contact $\mathbf{r} \in \partial \mathbf{K} / \{\mathbf{0}\}$ and $\mathbf{r}_T = -\alpha \mathbf{u}_T$

De Saxcé et Feng's change of variable

$$\tilde{\mathbf{u}} = \mathbf{u} + \mu \|\mathbf{u}_{\mathcal{T}}\|\,\mathbf{n} \tag{30}$$

Coulomb friction is recast in a second order cone complementarity

$$\mathbf{K}^* \ni \tilde{\mathbf{u}} \perp \mathbf{r} \in \mathbf{K} \tag{31}$$

where $\mathsf{K}^*=\left\{\mathsf{u}\in\mathbb{R}^3\;,\;\forall \mathsf{r}\in\mathsf{K}\;,\;\mathsf{u}\cdot\mathsf{r}\geqslant0\right\}$ is the dual cone.

 $<\Box + < \bigcirc + > = < \bigcirc < \bigcirc$ Cable dynamics with contact, impact and friction - 17/27

Computational methods for the simulation of nonsmooth cable dynamics in ropeways transportation systems
Numerical scheme for non-smooth dynamics

Numerical scheme development - 1

We go back to the FEM:

$$\begin{cases} \mathbf{0} = \mathbf{M} \frac{d\mathbf{v}}{dt} + \mathbf{C}(\mathbf{q}, \mathbf{v})\mathbf{v} + \mathbf{K}(\mathbf{q})\mathbf{q} - \mathbf{f} \\ \text{such that } \mathbf{g}(\mathbf{q}, t) \ge \mathbf{0} \quad \text{, where } \mathbf{g} \text{ is given} \end{cases}$$
(32)

Traditionally:

$$\begin{cases} \mathsf{M} \frac{\mathsf{d} \mathsf{v}}{\mathsf{d} t} + \mathsf{C}(\mathsf{q}, \mathsf{v}) \mathsf{v} + \mathsf{K}(\mathsf{q}) \mathsf{q} = \mathsf{f} + \mathsf{p} \\ \mathsf{p} = \nabla_{\mathsf{g}}(\mathsf{q}, t) \lambda \\ \mathsf{0} \leqslant \lambda \perp \mathsf{g}(\mathsf{q}) \geqslant \mathsf{0} \end{cases}$$
(33)

Inequality \rightarrow non-smooth velocity (bounded variations)

$$\mathsf{Md}\mathbf{v} + [\mathsf{C}(\mathbf{q},\mathbf{v})\mathbf{v} + \mathsf{K}(\mathbf{q})\mathbf{q}] dt = \mathsf{f}dt + \mathsf{d}\mathbf{p} \tag{34}$$

where measures $d\mathbf{v}$ and $d\mathbf{p}$ are discomposed as:

$$d\mathbf{v} = \gamma dt + (\mathbf{v}^+ - \mathbf{v}^-) d\mathbf{v} + d\mathbf{v}_s$$
(35)

$$d\mathbf{p} = \mathbf{p}d\mathbf{v} + d\mathbf{p}_{s} \tag{36}$$

where γ is the acceleration in the usual sense and dt the Lebesgue's measure.

Numerical scheme for non-smooth dynamics - 18/27

Numerical scheme development - 2

Time integration on $[t_k, t_{k+1}]$ of the linearized model uses the θ -method for the smooth terms:

where

$$\widehat{\mathbf{M}}_{k} = \mathbf{M} + h\theta\mathbf{C} + h^{2}\theta^{2}\Delta\mathbf{K}_{k}$$
(38)

$$\widehat{\mathbf{f}}_{k} = h\theta\mathbf{f}_{k+1} + h(1-\theta)\mathbf{f}_{k} - h\mathbf{C}\mathbf{v}_{k} - h\mathbf{K}_{k}\mathbf{q}_{k} - h^{2}\theta\Delta\mathbf{K}_{k}\mathbf{v}_{k}$$
(39)

$$\mathbf{p}_{k+1} = \int_{t_k}^{t_{k+1}} d\mathbf{p} \quad , \quad h = t_{k+1} - t_k \tag{40}$$

Introducing the free velocity \mathbf{v}_f as

$$\mathbf{v}_f = \mathbf{v}_k + \widehat{\mathbf{M}}_k^{-1} \widehat{\mathbf{f}}_k, \tag{41}$$

we obtain

$$\widehat{\mathbf{M}}_{k}\left(\mathbf{v}_{k+1}-\mathbf{v}_{f}\right)=\mathbf{p}_{k+1}.$$
(42)

More details are available in the work of Moreau et Jean².

²M. Jean and J.J. Moreau. *Dynamics in the presence of unilateral contacts and dry friction: a numerical approach*, Unilateral problems in structural analysis. II, pages 151–196. CISM 304, Spinger Verlag, 1987

Computational methods for the simulation of nonsmooth cable dynamics in ropeways transportation systems
Numerical scheme for non-smooth dynamics

Numerical scheme development - 3

In the local basis:

$$\mathbf{u}_{k+1} = \mathbf{u}_f + \widehat{\mathbf{W}} \mathbf{r}_{k+1} \tag{43}$$

The reaction, $\mathbf{r},$ is found by solving the following second order cone complementarity problem:

$$\begin{cases} \mathbf{u}_{k+1} = \mathbf{u}_f + \widehat{\mathbf{W}} \mathbf{r}_{k+1} \\ \widetilde{\mathbf{u}}_{k+1} = \mathbf{u}_{k+1} + \mu \| \mathbf{u}_T \| \mathbf{n} \\ \mathbf{K}^* \ni \widetilde{\mathbf{u}}_{k+1} \perp \mathbf{r}_{k+1} \in \mathbf{K} \end{cases}$$
(44)

The latter is solved using the Siconos platform (INRIA):

- Block projected Gauss-Seidel
- Alternating Direction Method of Multipliers (ADMM)
- Interior Point Methods for SOCP (IPM)

Belt dynamics - 1

Model

- Low friction coefficient for the driven pulley
- Friction coefficient close to 1 for the drive pulley
- Mesh assembly with first and last node identical
- The velocity of the drive pulley is given
- Cylinder for the pulley
- Rayleigh damping

EA	L	ρ	Horizontal span	v _p	Radius
30100 N	1.2 m	0.096 kg/m	0.45 m	60 rad/s	0.05 m

Belt dynamics - 2

Strain in the belt at 5 s

イロト イポト イヨト イヨト

Belt dynamics - 2

Frictional dynamics at the pulley cable interface

イロト 不得 トイヨト イヨト

Constrained modes

The mode is seen as a vibration around an equilibrium:

$$\begin{cases} \mathbf{0} = \mathbf{M} \frac{d\mathbf{v}}{dt} + \mathbf{C}\mathbf{v} + \mathbf{K}(\mathbf{q})\mathbf{q} - \mathbf{f} - (\nabla_{\mathbf{q}}\mathbf{a})^{\top}\lambda - (\nabla_{\mathbf{q}}\mathbf{g})^{\top}\bar{\lambda} \\ \mathbf{0} = \frac{d\mathbf{q}}{dt} - \mathbf{v} \\ \mathbf{0} = \mathbf{a}(\mathbf{q}) \\ \mathbf{0} \leq \mathbf{g}(\mathbf{q}) \perp \bar{\lambda} \geq \mathbf{0} \end{cases}$$
(45)

The active constraints sets are denoted with \cdot_A . For a given equilibrium **q**, we use the following relation:

$$\begin{cases} \mathbf{0} = \mathbf{K}(\mathbf{q})\mathbf{q} - \mathbf{f} - (\nabla_{\mathbf{q}}\mathbf{a})^{\top}\boldsymbol{\lambda} - (\nabla_{\mathbf{q}}\mathbf{g})^{\top}\boldsymbol{\bar{\lambda}} \\ \mathbf{0} = \mathbf{a}(\mathbf{q}) \\ \mathbf{0} = \mathbf{g}_{\mathcal{A}}(\mathbf{q}) \quad \text{and} \quad \mathbf{0} = \ \bar{\boldsymbol{\lambda}}_{\bar{\mathcal{A}}} \end{cases}$$
(46)

where we assume that:

$$\mathbf{g}(\mathbf{q}) = \begin{bmatrix} \mathbf{g}_{\mathcal{A}}(\mathbf{q}) \\ \mathbf{g}_{\bar{\mathcal{A}}}(\mathbf{q}) \end{bmatrix} \quad ; \quad \bar{\boldsymbol{\lambda}} = \begin{bmatrix} \bar{\boldsymbol{\lambda}}_{\mathcal{A}} \\ \bar{\boldsymbol{\lambda}}_{\bar{\mathcal{A}}} \end{bmatrix}$$
(47)

Computational methods for the simulation of nonsmooth cable dynamics in ropeways transportation systems Numerical scheme for non-smooth dynamics

An incremental dynamics around the latter is written as:

$$\begin{cases} \mathbf{0} = \mathsf{M}\ddot{\mathbf{u}} + \mathsf{K}(\mathbf{q} + \mathbf{u})(\mathbf{q} + \mathbf{u}) - \mathbf{f} - (\nabla_{\mathbf{q}}\mathbf{a})^{\top}(\lambda_{\mathbf{q}} + \lambda_{\mathbf{u}}) - (\nabla_{\mathbf{q}}\mathbf{g})^{\top}(\bar{\lambda}_{\mathbf{q}} + \bar{\lambda}_{\mathbf{u}}) \\ \mathbf{0} = \mathbf{a}(\mathbf{q} + \mathbf{u}) \\ \mathbf{0} = \mathbf{g}_{\mathcal{A}}(\mathbf{q} + \mathbf{u}) \quad \text{and} \quad \mathbf{0} = \bar{\lambda}_{\bar{\mathcal{A}}} \end{cases}$$
(48)

With projection method ³ we enforce the dynamics to satisfy the constraints as:

$$\mathbf{0} = \mathbf{P}^{\top} \mathbf{Q}^{\top} \mathbf{M} \mathbf{Q} \mathbf{P} \ddot{\widetilde{\mathbf{u}}} + \mathbf{P}^{\top} \mathbf{Q}^{\top} \Delta \mathbf{K}(\mathbf{q}) \mathbf{Q} \mathbf{P} \widetilde{\mathbf{u}} - \mathbf{P}^{\top} \mathbf{Q}^{\top} (\nabla_{\mathbf{q}} \mathbf{a})^{\top} \boldsymbol{\lambda}_{\mathbf{u}} - \mathbf{P}^{\top} \mathbf{Q}^{\top} (\nabla_{\mathbf{q}} \mathbf{g})^{\top} \bar{\boldsymbol{\lambda}}_{\mathbf{u}} .$$
(49)

which simplifies as:

$$\left(\widetilde{\mathsf{M}}^{-1}\widetilde{\Delta \mathsf{K}}(\mathsf{q}) - \omega^2 \mathsf{I}\right)\widetilde{\mathsf{u}} = \mathbf{0} .$$
(50)

where:

$$\begin{cases} \widetilde{\mathbf{M}} = (\mathbf{Q}\mathbf{P})^{\top}\mathbf{M}(\mathbf{Q}\mathbf{P}) \\ \widetilde{\Delta\mathbf{K}}(\mathbf{q}) = (\mathbf{Q}\mathbf{P})^{\top}\Delta\mathbf{K}(\mathbf{q})(\mathbf{Q}\mathbf{P}) \end{cases}$$
(51)

³B. Fraejis de Veubeke, M. Gérardin, and A. Huck. Structural dynamics. LTAS, Liège 1974. 🗄 > 4 🗄 > 📑 🧼 🤉

Global modes examples

First mode of the "Spyder" web obtained with MEF

(日)

B b

Computational methods for the simulation of nonsmooth cable dynamics in ropeways transportation systems
Numerical scheme for non-smooth dynamics

Global modes examples

Equilibrium of an aerial ropeways

One mode where vibrations happen on several spans simultaneously.

Numerical scheme for non-smooth dynamics – 25/27

Conclusion and perspectives

Conclusion

- Lagrangian formalism for the cable:
- Unilateral elastic (tension only) FE for the cable
- Frictional contact dynamics for the constrained cable
- Global modes for constrained cable systems

Perspectives

- Convergence, existence and uniqueness of solution
- Use of higher order schemes such as nonsmooth generealized- α scheme
- ▶ Full development of inextensible with linear and nonlinear modes computations
- Question of impulsive forces (percussions) in elastic systems.

Integration of roller batteries as rigid MBS for supports Photo credit: LEITNER

Thanks for your attention

C. Bertrand, A. Ture Savadkoohi, and C.-H. Lamarque. *Nonlinear oscillations of a pendulum cable with the effects of the friction and the radius of the support*. Nonlinear Dynamics,96:1303–1315, 2019.

C. Bertrand, C. Plut, A. Ture Savadkoohi, and C.-H. Lamarque. On the modal response of mobile cables. Engineering Structures, 210, 2020.

C. Bertrand, V. Acary, A. Ture Savadkoohi, and C.-H. Lamarque. A robust and efficient numerical finite element method for cables. International Journal for Numerical Method in Engineering, 121, 2020.

C. Bertrand, A. Ture Savadkoohi, V. Acary, and C.-H. Lamarque. *Reduced-order model for the non-linear dynamics of cables*. Journal of Engineering Mechanics, 148, 2022.