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Computational methods for the simulation of nonsmooth cable dynamics in ropeways transportation systems

Context

Context

Dynamics of a translating cable subjected to unilateral constraints, friction and
punctual loads

Engineering applications
▶ Aerial ropeways as an alternative for public

transportation with increasing velocities

▶ maintenance and support of existing
infrastructures

Scientific issues and open questions

▶ Need for efficient numerical tools for highly
stiff and nonlinear systems

▶ A design tool based on constrained dynamics
with contact and friction

▶ Understand sudden large amplitudes observed
in practice

▶ Comparison of models (thin beams or cable?).
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Modeling the cable

Assumptions

The cable is assumed to be

▶ linear elastic

▶ a curvilinear domain

▶ bending and torsion moments vanish

▶ a tension-only material ( T ⩾ 0)

As a consequence,

▶ only one space variable S , curvilinear abscissa
is needed

▶ each tangent has a left and right limit, but
kinks are possible

ε

T

Unilateral elasticity
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Modeling the cable

Kinematics

Curvilinear domain −→ domain assimilated to a curve.

q(S = 0)

q(S)

α(S)

q(S = L)
L

Two main mechanisms:

Dilatation: ε(S) =
∥∥q′(S)∥∥− 1 (1)

Flexure: κ(S) = ω′(S) = α′(S)− α′
0(S) −→ Useless here (2)
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Modeling the cable

Governing equations

Lagrangian with unilateral constraints

L
(
q̇, q′, q, λ

)
= L∗ (

q̇, q′, q
)
− λT a(q, q′, q̇)

with L∗ (q̇, q′, q) = T (q̇, q)− V
(
q′, q

)
a(q, q′, q̇) ≥ 0

(3)

Euler-Lagrange equations with unilateral constraints


0 =

∂L∗

∂q
−

d

dS

(
∂L∗

∂q′

)
−

d

dt

(
∂L∗

∂q̇

)
−

∂a

∂q

⊤
λ+

d

dS

[
∂a

∂q′

⊤
λ

]
+

d

dt

[
∂a

∂q̇

⊤
λ

]
0 ⩽ a(q, q′, q̇) ⊥ λ ⩾ 0

(4)
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Modeling the cable

Governing equations

Lagrangian

▶ Kinetic energy

▶ External work

L∗ (
q̇, q′, q, λ

)
=

ρ

2
q̇ · q̇ (5)
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Modeling the cable

Governing equations

Lagrangian

▶ Kinetic energy

▶ External work

L∗ (q̇, q′, q, λ) =
ρ

2
q̇ · q̇ + fe · q (5)
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Modeling the cable

Governing equations

Lagrangian

▶ Kinetic energy

▶ External work

▶ Elastic energy

L∗ (
q̇, q′, q, λ

)
=

ρ

2
q̇ · q̇+ fe · q −

EA

2

(∥∥q′∥∥− 1
)2

(5)

Dynamical equations for the (standard) elastic cable

{
d

dt
(ρq̇) =

d

dS

([
EA

(∥∥q′∥∥− 1
)] q′

∥q′∥

)
+ fe (6)

with T = [EA (∥q′∥ − 1)] the tension.
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Modeling the cable

Governing equations

Lagrangian

▶ Kinetic energy

▶ External work

▶ Inextensibility

L∗ (
q̇, q′, q, λ

)
=

ρ

2
q̇ · q̇+ fe · q −λ

(
1−

∥∥q′∥∥) (5)

Dynamical equations for the inextensible cable


d

dt
(ρq̇) =

d

dS

(
λ

q′

∥q′∥

)
+ fe

0 ⩽ 1−
∥∥q′∥∥ ⊥ λ ⩾ 0

(6)

with T = λ ≥ 0 the tension.
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Modeling the cable

Governing equations

Lagrangian

▶ Kinetic energy

▶ External work

▶ Unilateral elasticity

L∗ (
q̇, q′, q, q̃′, λ

)
=

ρ

2
q̇ · q̇+ fe · q −

EA

2

(∥∥q′∥∥−
∥∥q̃′∥∥)2 − λ

(
1−

∥∥q̃′∥∥) (5)

Dynamical equations for the unilateral elastic cable



d

dt
(ρq̇) =

d

dS

([
EA

(∥∥q′∥∥−
∥∥q̃′∥∥)] q′

∥q′∥

)
+ fe

0 =
[
EA

(∥∥q′∥∥−
∥∥q̃′∥∥)− λ

] q̃′

∥q̃′∥
0 ⩽ 1−

∥∥q̃′∥∥ ⊥ λ ⩾ 0

(6)
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Modeling the cable

Governing equations

Lagrangian

▶ Kinetic energy

▶ External work

▶ Unilateral elasticity

L∗ (
q̇, q′, q, q̃′, λ

)
=

ρ

2
q̇ · q̇+ fe · q −

EA

2

(∥∥q′∥∥−
∥∥q̃′∥∥)2 − λ

(
1−

∥∥q̃′∥∥) (5)

Dynamical equations for the unilateral elastic cable
Simplification by eliminating q̃′

d

dt
(ρq̇) =

d

dS

(
λ

q′

∥q′∥

)
+ fe

0 ⩽ λ− EA(
∥∥q′∥∥− 1) ⊥ λ ⩾ 0

(6)

with T = λ ≥ 0 the tension.
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Modeling the cable

Main interests

Tension-only cable with unilateral elasticity. Uniqueness can be retrieved

g

m

1

a
−
a

x

y

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

ε < 0

a

Elastic cable under self-weight example
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Finite element method for cables

Weak formulation

Unconstrained dynamics:

ρ
dv

dt
= [Te]′ + fe (7)

where:

v , q ∈ H1 =

{
q ∈ R3 t.q. q ∈ L2 ([0, L]) , q′ ∈ L2 ([0, L]) , q =

∫ t

vdt

}
(8)

equipped with the norm:

∥q∥1 =

[∫ L

0
q · q+ q′ · q′dS

] 1
2

(9)

Then for φ ∈ H1:∫ L

0
ρ
dv

dt
· φdS +

∫ L

0
Te · φ′dS = [Te · φ]L0 +

∫ L

0
fe · φdS (10)

i.e.: ∫ L

0
ρ
dv

dt
· φdS +

∫ L

0
Te · φ′dS =

∫ L

0
fe · φdS (11)
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Finite element method for cables

Finite element approximation

FE approximation with p1 elements 1.

q(S) ≈
N∑

e=1

N(S) qe (12)

v(S) ≈
N∑

e=1

N(S) ve (13)

φ(S) ≈
N∑

e=1

N(S)φe (14)

where N stands for:

N(S) =

1− ξe 0 0 ξe 0 0
0 1− ξe 0 0 ξe 0
0 0 1− ξe 0 0 ξe

 , ξe =
S − Se

Le
(15)

(xe
x,xe

y,x
e
z) (xe+1

x ,xe+1
y ,xe+1

z )

1

Linear interpolation on element e

1O.C. Zienkiewicz and R.L. Taylor. The finite element method. Vol. 1: The basis, 2002
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Finite element method for cables

Finite element approximation

The global equilibrium reads:

N∑
e=1

φe ·
[
Me dv

e

dt
+ Ke(qe)qe − fee

]
= 0 (16)

with

Me = ρ

∫ Le

0
N(S)⊤N(S)dS , fe =

∫ Le

0
N(S)⊤fe dS (17)

Ke = EA

∫ Le

0

(∥∥N′(S)qe
∥∥− 1

) N′(S)⊤N′(S)
∥N′(S)qe∥

dS (18)

Assembly + structural damping:

0 = M
dv

dt
+ C(q, v)v + K(q)q− f (19)

No constraints for now.
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Finite element method for cables

Numerical convergence issues with standard Newton-Raphson method

▶ convergence issues far from the solution.
▶ numerous local mimina : spurious solutions

x

y

x

y

x

y

x

y

Numerical equilibrium obtained for a cable with com-

pressed segments

EA = 1.1010N, L = 51m, span = 50m, n = 25
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Finite element method for cables

How to cope with those situations

Non-smooth Newton method with a modified Jacobian:

εe(S) =
∥∥N′(S)qe

∥∥− 1 (20)

Ke =

EA

∫ Le

0

N′(S)⊤N′(S)
1 + |εe(S)|−1

dS ; εe(S) ⩾ 0

0 ; εe(S) < 0

(21)

∆Ke =


Ke + EA

∫ Le

0

N′(S)⊤N′(S)qeqe⊤N′(S)⊤N′(S)

(|εe(S)|+ 1)3
dS ; εe(S) ⩾ 0

EA

∫ Le

0

N′(S)⊤N′(S)
1 + |εe(S)|−1

dS ; εe(S) < 0

(22)
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Finite element method for cables

Examples

x0 xL

y0 = yL

Cable subjected to vertical upwards loads and self-weight
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Finite element method for cables

Examples

-xL x0 xL

y0

Pendulum cable trajectory
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Finite element method for cables

Examples

-5 -4 -3 -2 -1 0 1 2 3 4 5
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N (N)

Tension fields in a cable network - x − y
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Finite element method for cables

Examples

-5 -4 -3 -2 -1 0 1 2 3 4 5
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900
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N (N)

Tension fields in a cable network - x − z
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Cable dynamics with contact, impact and friction

Contact kinematics - 1

The cable moves at velocity v and the obstacle
at vobs. The relative velocity from one cable
section, M, to one obstacle point, M′, reads:

u(M,M′) = v(M)− vobs(M
′) (23)

x

y

v

t

n

uN

uT

The relative velocity reads in the local basis:

u(M,M′) →
{
HN : uN(M,M′) = HN(M,M′)u(M,M′)

HT : uT (M,M′) = HT (M,M′)u(M,M′)
(24)

where t = [t1, t2]
⊤ and n ⊥ t1 ⊥ t2 ⊥ n. The contact reaction in local basis reads:

p = HN
⊤rN +HT

⊤rT = H⊤r (25)
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Cable dynamics with contact, impact and friction

Contact kinematics - 2

The link between local and global formulation is done via H and

M
dv

dt
= f + p ⇔

du

dt
= f̃ + Ŵr (26)

yields the Delassus operator Ŵ:

Ŵ = HM−1H⊤f (27)

and
f̃ = HM−1 (28)
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Cable dynamics with contact, impact and friction

Coulomb friction with contact at the velocity level

Coulomb’s second order cone

K =
{
r ∈ R3 , ∥rT ∥ ⩽ µrN

}
(29)

Coulomb friction with contact at the veloicty level
three distinct cases:

▶ No contact i.e. r = 0 and uN ⩾ 0

▶ The cable sticks r ∈ K and u = 0

▶ The cable slips at contact r ∈ ∂K/{0} and rT = −αuT

De Saxcé et Feng’s change of variable

ũ = u+ µ ∥uT ∥ n (30)

Coulomb friction is recast in a second order cone complementarity

K∗ ∋ ũ ⊥ r ∈ K (31)

where K∗ =
{
u ∈ R3 , ∀r ∈ K , u · r ⩾ 0

}
is the dual cone.
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Numerical scheme for non-smooth dynamics

Numerical scheme development - 1

We go back to the FEM:0 = M
dv

dt
+ C(q, v)v + K(q)q− f

such that g(q, t) ⩾ 0 , where g is given

(32)

Traditionally: 
M

dv

dt
+ C(q, v)v + K(q)q = f + p

p = ∇g(q, t)λ

0 ⩽ λ ⊥ g(q) ⩾ 0

(33)

Inequality −→ non-smooth velocity (bounded variations)

Mdv + [C(q, v)v + K(q)q] dt = fdt + dp (34)

where measures dv and dp are discomposed as:

dv = γdt +
(
v+ − v−

)
dv + dvs (35)

dp = pdv + dps (36)

where γ is the acceleration in the usual sense and dt the Lebesgue’s measure.
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Numerical scheme for non-smooth dynamics

Numerical scheme development - 2

Time integration on [tk , tk+1] of the linearized model uses the θ-method for the
smooth terms: {

M̂k (vk+1 − vk )− f̂k = pk+1

qk+1 = qk + hθvk + h(1− θ)vk+1

(37)

where

M̂k = M+ hθC+ h2θ2∆Kk (38)

f̂k = hθfk+1 + h(1− θ)fk − hCvk − hKkqk − h2θ∆Kkvk (39)

pk+1 =

∫ tk+1

tk

dp , h = tk+1 − tk (40)

Introducing the free velocity vf as

vf = vk + M̂−1
k f̂k , (41)

we obtain
M̂k (vk+1 − vf ) = pk+1. (42)

More details are available in the work of Moreau et Jean2.

2M. Jean and J.J. Moreau. Dynamics in the presence of unilateral contacts and dry friction: a numerical
approach, Unilateral problems in structural analysis. II, pages 151–196. CISM 304, Spinger Verlag, 1987.
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Numerical scheme for non-smooth dynamics

Numerical scheme development - 3

In the local basis:
uk+1 = uf + Ŵrk+1 (43)

The reaction, r, is found by solving the following second order cone complementarity
problem: 

uk+1 = uf + Ŵrk+1

ũk+1 = uk+1 + µ ∥uT ∥ n
K∗ ∋ ũk+1 ⊥ rk+1 ∈ K

(44)

The latter is solved using the Siconos platform (INRIA):

▶ Block projected Gauss-Seidel

▶ Alternating Direction Method of Multipliers (ADMM)

▶ Interior Point Methods for SOCP (IPM)
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Numerical scheme for non-smooth dynamics

Belt dynamics - 1

vp(t)

Belt

Model
▶ Low friction coefficient for the driven

pulley

▶ Friction coefficient close to 1 for the drive
pulley

▶ Mesh assembly with first and last node
identical

▶ The velocity of the drive pulley is given

▶ Cylinder for the pulley

▶ Rayleigh damping

EA L ρ Horizontal span vp Radius
30100 N 1.2 m 0.096 kg/m 0.45 m 60 rad/s 0.05 m
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Numerical scheme for non-smooth dynamics

Belt dynamics - 2

Strain in the belt at 5 s
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Numerical scheme for non-smooth dynamics

Belt dynamics - 2

Frictional dynamics at the pulley cable interface
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Numerical scheme for non-smooth dynamics

Constrained modes

The mode is seen as a vibration around an equilibrium:

0 = M
dv

dt
+ Cv + K(q)q− f − (∇qa)

⊤λ− (∇qg)
⊤λ̄

0 =
dq

dt
− v

0 = a(q)

0 ⩽ g(q) ⊥ λ̄ ⩾ 0

. (45)

The active constraints sets are denoted with ·A. For a given equilibrium q, we use the
following relation: 

0 = K(q)q− f − (∇qa)
⊤λ− (∇qg)

⊤λ̄

0 = a(q)

0 = gA(q) and 0 = λ̄Ā

(46)

where we assume that:

g(q) =

[
gA(q)
gĀ(q)

]
; λ̄ =

[
λ̄A
λ̄Ā

]
(47)
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Numerical scheme for non-smooth dynamics

An incremental dynamics around the latter is written as:
0 = Mü+ K(q+ u)(q+ u)− f − (∇qa)

⊤(λq + λu)− (∇qg)
⊤(λ̄q + λ̄u)

0 = a(q+ u)

0 = gA(q+ u) and 0 = λ̄Ā

(48)

With projection method 3 we enforce the dynamics to satisfy the constraints as:

0 = P⊤Q⊤MQP¨̃u+P⊤Q⊤∆K(q)QPũ−P⊤Q⊤(∇qa)
⊤λu−P⊤Q⊤(∇qg)

⊤λ̄u . (49)

which simplifies as: (
M̃−1∆̃K(q)− ω2I

)
ũ = 0 . (50)

where: {
M̃ = (QP)⊤M (QP)

∆̃K(q) = (QP)⊤∆K(q) (QP)
. (51)

3B. Fraejis de Veubeke, M. Gérardin, and A. Huck. Structural dynamics. LTAS, Liège, 1974.
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Numerical scheme for non-smooth dynamics

Global modes examples
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First mode of the ”Spyder” web ob-
tained with MEF
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Numerical scheme for non-smooth dynamics

Global modes examples

Equilibrium of an aerial ropeways

One mode where vibrations happen on several spans simultaneously.
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Conclusion

Conclusion and perspectives

Conclusion
▶ Lagrangian formalism for the cable:

▶ Unilateral elastic (tension only) FE for the cable

▶ Frictional contact dynamics for the constrained cable

▶ Global modes for constrained cable systems

Perspectives

▶ Convergence, existence and uniqueness of solution

▶ Use of higher order schemes such as nonsmooth generealized-α scheme

▶ Full development of inextensible with linear and nonlinear modes computations

▶ Question of impulsive forces (percussions) in elastic systems.

▶ Integration of roller batteries as rigid MBS for supports
Photo credit: LEITNER
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Conclusion

Thanks for your attention
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response of mobile cables. Engineering Structures, 210, 2020.
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