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Introduction and Motivations

Introduction

Topic

Dynamics with unilateral contacts (one-sided inequalities)

for finite and infinite freedom dynamics.

Original motivation: flexible multi-body systems and divided materials.

Objectives
I Dynamics and unilateral constraints imply nonsmoothness

I velocities are discontinuous function of time
I possibly, impulsive forces (percussions)

I Numerical time integration of nonsmooth systems must be done with care
I Issues with standard and higher order methods
I Moreau–Jean scheme answers to several questions

I Extensions of Moreau–Jean scheme improve order and qualitative aspects
I Focus on nonsmooth generalized α–scheme

I An open question : nonsmoothness and percussions in elastic solids
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Introduction and Motivations

Nonsmooth dynamical systems

nonsmooth = lack of continuity/differentiability
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I nonsmooth solutions in time (jumps, kinks, distributions, measures)

I nonsmooth modeling and constitutive laws (set–valued mapping, inequality
constraints, complementarity, impact laws)
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Introduction and Motivations

Unilateral contact

Unilateral contact and impact

Body A

Body B

CA

N

T1

T2

CB

gN

gN

rN

I gap function gN = (CB − CA)N.

I reaction forces
r = rNN + rT, rN ∈ IR and rT ∈ IR2.

I Signorini condition at position level

0 ≤ gN ⊥ rN ≥ 0
m

−rN ∈ NIR+
(gN)

m
rN = projIR+

(rN − ρgn)

I relative velocity
u = uNN + uT, uN ∈ IR and uT ∈ IR2.

I Signorini condition at velocity level{
0 ≤ uN ⊥ rN ≥ 0 if gN ≤ 0
rN = 0 otherwise.

I Impact law if needed u+
N = −e u−N

e is the coefficient of restitution.
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Introduction and Motivations

Unilateral contact

Multiple constraints

I q ∈ IRn coordinates that describes the state of the system in finite-dimension

I Notion of admissible set C(t)

C(t) = {q ∈ IRn, gα(q, t) ≥ 0, α ∈ {1 . . . ν}}

I Normal cone inclusion
−r ∈ NC(t)(q)

where the normal cone to C(t)

NC(t)(q) = {y | y = −∇qg(q, t)λ, 0 ≤ gα(q, t) ⊥ λα ≥ 0}

I Coulomb’s friction : Second-Order Cone Complementarity condition

K? 3 û ⊥ r ∈ K ⇐⇒ −r ∈ NK? (û) (1)

with K = {r ∈ IR3 | ‖rT‖ ≤ µrn} and û = u + µ‖uT‖N.
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Introduction and Motivations

Nonsmooth dynamics in finite dimension.

Nonsmooth dynamics in finite dimension.

Space–discretized equations (by FEM, for instance)
or discrete mechanical systems (rigid bodies, linkages, . . . )

Definition (Perfect unilateral constraints on the smooth dynamics)

q̇ = v

M(q)
dv

dt
+ F (t, q, v) = r

−r ∈ NC(t)(q(t))

(2)

where r it the generalized force or generalized reaction due to the constraints.

Remark
I Second order differential inclusion.

I The unilateral constraints are said to be perfect due to the normality condition.

Time-integration methods for nonsmooth contact dynamics : beyond the seminal Moreau-Jean scheme Vincent Acary – 6/38



Time-integration methods for nonsmooth contact dynamics : beyond the seminal Moreau-Jean scheme

Introduction and Motivations

Nonsmooth dynamics in finite dimension.

Nonsmooth dynamics in finite dimension.

Fundamental assumptions.

I The velocity v = q̇ is of Bounded Variations (B.V)
Ü The equation are written in terms of a right continuous B.V. (R.C.B.V.)
function, v+ such that

v+ = q̇+ (3)

I q is related to this velocity by

q(t) = q(t0) +

∫ t

t0

v+(t) dt (4)

I The acceleration, ( q̈ in the usual sense) is hence a differential measure dv
associated with v such that

dv(]a, b]) =

∫
]a,b]

dv = v+(b)− v+(a) (5)
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Introduction and Motivations

Nonsmooth dynamics in finite dimension.

Nonsmooth dynamics in finite dimension.

Definition (Nonsmooth Lagrangian Dynamics)
M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

(6)

where di is the reaction measure and dt is the Lebesgue measure.

Remarks
I The nonsmooth Dynamics contains the impact equations and the smooth

evolution in a single equation.

I The formulation allows one to take into account very complex behaviors,
especially, finite accumulation (Zeno-state).

I This formulation is sound from a mathematical Analysis point of view.

References: [19, 20, 15, 16]
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Introduction and Motivations

Nonsmooth dynamics in finite dimension.

Nonsmooth dynamics in finite dimension.

Measures Decomposition

Densities w.r.t. Lebesgue measure dt

dv

dt
= γ = q̈ acceleration defined in the usual sense a.e.

di

dt
= f Lebesgue measurable force

Densities w.r.t. purely atomic measure dν =
∑

i δti
dν is a purely atomic measure concentrated at the instants ti of discontinuities of v

dv

dν
= v+ − v− velocity jump

di

dν
= p percussion (impulsive force)
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Introduction and Motivations

Nonsmooth dynamics in finite dimension.

Impact equations and non impulsive dynamics

Using the densities in the nonsmooth Lagrangian Dynamics, one obtains

Definition (Impact equations at any time ti )

M(q)(v+ − v−)dν = pdν, (7)

or, equivalently,
M(q(ti ))(v+(ti )− v−(ti )) = pi , (8)

Definition (Smooth Dynamics almost everywhere)

M(q)γdt + F (t, q, v)dt = fdt (9)

or

M(q)γ+ + F (t, q, v+) = f + [dt − a.e.] (10)
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Introduction and Motivations

The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Definition (Moreau’s sweeping process of second order [15, 16])
The inclusion (2) is “replaced” by the following inclusion

M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

−di ∈ NTC (q)(v+ + ev−)

(11)

Inclusion at the velocity level of the measure
A key stone of this formulation is the inclusion in terms of velocity. For C = IR+,

−di ∈ NTIR+
(q)(v+ + ev−)⇐⇒ if q ≤ 0, then 0 ≤ v+ + ev− ⊥ di ≥ 0

Ü Foundation for the Moreau–Jean time–stepping approach.
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Introduction and Motivations

The Moreau’s sweeping process

Mathematical results

Finite dimension
I Counter example to uniqueness with C∞ data (Schatzman, Percivale)

I Existence and uniqueness in the frictionless case with analytic data (Ballard[3])
I Frictional case.

I No result in the general case
I Existence and uniqueness with lumped mass system

Infinite dimension. Elastodynamics (or elasto-plastic) dynamics.
The situation if far more complex. See the discussion at the end of the talk.
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Time Integration Schemes

Time Integration Schemes
State–of–the–art
Principle of nonsmooth event capturing methods (Time–stepping schemes)
Moreau–Jean’s scheme and Schatzman–Paoli’s scheme

Time-integration methods for nonsmooth contact dynamics : beyond the seminal Moreau-Jean scheme Vincent Acary – 13/38



Time-integration methods for nonsmooth contact dynamics : beyond the seminal Moreau-Jean scheme

Time Integration Schemes

State–of–the–art

How to perform numerical time integration ?

1 - Smoothing dynamics

I Regularization techniques with penalty paramater
I Advanced and sophisticated methods for FEM discretizations.

I Singular mass method and mass redistribution method.
Renard, Laborde and co-workers [14, 18]

I Nitsche’s method.
Wriggers, Zavarise, Chouly, Hild, Renard among others [23, 11, 12]

� convergence proof

� enable the use of standard time discretization methods.

� numerical stiff ordinary differential equations.

� spurious oscillations of contact forces, and then stresses.

� issue with inelastic impacts.
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Time Integration Schemes

State–of–the–art

How to perform numerical time integration ?

2 - Event detecting schemes (Event-driven)

I accurate time detection of events

I standard smooth numerical time integration methods.

� higher order integration of free flight motions

� sensibility to numerical thresholds

� reformulation of constraints at higher kinematic levels.

� unable to deal with finite accumulation, or very large number of events.
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Time Integration Schemes

State–of–the–art

How to perform numerical time integration ?

3 - Event-capturing schemes (a.k.a. time stepping schemes)

� robust, stable and proof of convergence

� low kinematic level for the constraints

� able to deal with finite accumulation

� very low order of accuracy even in free flight motions

� drift of the constraints at position, velocity or acceleration levels.

Main schemes
I Moreau–Jean

I Schatzman–Paoli
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Time Integration Schemes

Principle of nonsmooth event capturing methods (Time–stepping schemes)

Principle of nonsmooth event capturing methods (Time–stepping schemes)

1. A unique formulation of the dynamics is considered. For instance, a dynamics in
terms of measures. 

−mdv + fdt = di

q̇ = v+

0 ≤ di ⊥ v+ ≥ 0 if q ≤ 0

(12)

2. The time-integration is based on a consistent approximation of the equations in
terms of measures. For instance,∫

]tk ,tk+1]
dv =

∫
]tk ,tk+1]

dv = (v+(tk+1)− v+(tk )) ≈ (vk+1 − vk ) (13)

3. Consistent approximation of measure inclusion.

0 ≤ di ⊥ v+ ≥ 0 if q ≤ 0
Ü


pk+1 ≈

∫
]tk ,tk+1]

di

0 ≤ pk+1 ⊥ vk+1 ≥ 0 if q̃k ≤ 0

(14)
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Time Integration Schemes

Moreau–Jean’s scheme and Schatzman–Paoli’s scheme

Moreau–Jean’s Time stepping scheme [16, 13]

Principle



M(qk+θ)(vk+1 − vk )− hFk+θ = pk+1 = G(qk+θ)Pk+1, (15a)

qk+1 = qk + hvk+θ, (15b)

uk+1 = GT (qk+θ) vk+1 (15c)

0 ≤ uαk+1 + eUαk ⊥ Pαk+1 ≥ 0 if ḡαk,γ ≤ 0

Pαk+1 = 0 otherwise
. (15d)

with

I G(q) = ∇qg(q)

I θ ∈ [0, 1]

I xk+θ = (1− θ)xk+1 + θxk
I Fk+θ = F (tk+θ, qk+θ, vk+θ)

I ḡk,γ = gk + γhuk , , γ ≥ 0 is a prediction of the constraints.
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Time Integration Schemes

Moreau–Jean’s scheme and Schatzman–Paoli’s scheme

Schatzman–Paoli’s Time stepping scheme [17]

Principle



M(qk+1)(qk+1 − 2qk + qk−1)− h2Fk+θ = pk+1, (16a)

vk+1 =
qk+1 − qk−1

2h
, (16b)

−pk+1 ∈ NK

(
qk+1 + eqk−1

1 + e

)
, (16c)

where NK defined the normal cone to K .
For K = {q ∈ IRn, y = g(q) ≥ 0}

0 ≤ g

(
qk+1 + eqk−1

1 + e

)
⊥ ∇g

(
qk+1 + eqk−1

1 + e

)
Pk+1 ≥ 0 (17)
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Time Integration Schemes

Moreau–Jean’s scheme and Schatzman–Paoli’s scheme

But ...

Both schemes are

I quite inaccurate (at most first order)

I “conserve” or “dissipate” a lot of energy

This is a consequence of the first order approximation of the smooth forces term F

Recent improvements

I Time discontinuous Galerkin methods, with T. Schindler et al. [21, 22]

I Stabilized index-2 formulation [2, 1]

I Stabilized index-1 formulation, with O. Brüls and A. Cardona [5]

I Time finite element method and variational integrators. G. Cappobianco, S.
Eugster et al.[7, 6]

I Nonsmooth generalized–α schemes, with O. Brüls, A. Cardona et al. [10, 4, 8]
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Nonsmooth generalized-α schemes

Nonsmooth generalized-α schemes
Direct application of Newmark scheme or generalized α-scheme
Splitting the dynamics between smooth and nonsmooth part
GGL stabilization
Numerical illustrations
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Nonsmooth generalized-α schemes

Direct application of Newmark scheme or generalized α-scheme

Direct application of Newmark scheme or generalized α-scheme

Inconsistent results in discrete time with a direct application

I Contact condition at velocity level is wrong

I Pseudo-artificial impact law.

I Contact stresses are polluted with spurious oscillations.

Do no direclty apply generalized α-scheme with unilateral contact !!
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Nonsmooth generalized-α schemes

Splitting the dynamics between smooth and nonsmooth part

The nonsmooth generalized α scheme

Splitting the dynamics between smooth and nonsmooth part

dw = dv − ˙̃v dt (18)

Smooth (non-impulsive) part
Solutions of the following DAE

˙̃q = ṽ (19a)

M(q) ˙̃v − gT
q (q) λ̃ = f(q, v, t) (19b)

gUq (q) ṽ = 0 (19c)

λ̃
U

= 0 (19d)

with the initial value ṽ(tn) = v(tn), q̃(tn) = q(tn).
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Nonsmooth generalized-α schemes

Splitting the dynamics between smooth and nonsmooth part

The nonsmooth generalized α scheme

Splitting the dynamics between smooth and nonsmooth part

q̇ = v (20a)

dv = dw + ˙̃v dt (20b)

M(q) ˙̃v − gU,Tq λ̃
U

= f(q, v, t) (20c)

gUq ṽ = 0 (20d)

λ̃
U

= 0 (20e)

M(q) dw − gT
q (di− λ̃ dt) = 0 (20f)

gUq v = 0 (20g)

if g j (q) ≤ 0 then 0 ≤ g j
q v + e g j

q v− ⊥ di j ≥ 0, ∀j ∈ U (20h)
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Nonsmooth generalized-α schemes

GGL stabilization

The nonsmooth generalized α scheme

GGL approach to stabilize the constraints at the position level
The equations of motion become

M(q) q̇− gT
q µ = M(q) v (21a)

���XXXq̇ = v→ gU (q) = 0 (21b)

0 ≤ gU (q) ⊥ µU ≥ 0 (21c)

dv = dw + ˙̃v dt (21d)

M(q) ˙̃v − gU,Tq λ̃
U

= f(q, v, t) (21e)

gUq ṽ = 0 (21f)

λ̃
U

= 0 (21g)

M(q) dw − gT
q (di− λ̃ dt) = 0 (21h)

gUq v = 0 (21i)

if g j (q) ≤ 0 then 0 ≤ g j
q v + e g j

q v− ⊥ di j ≥ 0, ∀j ∈ U (21j)
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Nonsmooth generalized-α schemes

GGL stabilization

The nonsmooth generalized α scheme

Velocity jumps and position correction
The multipliers Λ(tn; t) and ν(tn; t) are defined as

Λ(tn; t) =

∫
(tn,t]

(di− λ̃(τ)dτ) (22a)

ν(tn; t) =

∫ t

tn

(µ(τ) + Λ(tn; τ)) dτ (22b)

with Λ(tn; tn) = ν(tn; tn) = 0.
The velocity jump and position correction variables

W(tn; t) =

∫
(tn,t]

dw = v(t)− ṽ(t) (23a)

U(tn; t) =

∫ t

tn

(q̇− ṽ)dt = q(t)− q̃(t) (23b)

Ü Low-order approximation of impulsive terms.
Ü Higher–order approximation of non impulsive terms.
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Nonsmooth generalized-α schemes

GGL stabilization

The nonsmooth generalized α scheme

M(qn+1)Un+1 − gT
q,n+1 νn+1 = 0 (24a)

gU (qn+1) = 0 (24b)

0 ≤ gU (qn+1) ⊥ νUn+1 ≥ 0 (24c)

M(qn+1) ˙̃vn+1 − f(qn+1, vn+1, tn+1)− gU,Tq,n+1 λ̃
U
n+1 = 0 (24d)

gUq,n+1 ṽn+1 = 0 (24e)

M(qn+1)Wn+1 − gT
q,n+1Λn+1 = 0 (24f)

gUq,n+1vn+1 = 0 (24g)

if g j (q∗n+1) ≤ 0 then 0 ≤ g j
q,n+1 vn+1 + e g j

q,n vn ⊥ Λj
n+1 ≥ 0, ∀j ∈ U
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Nonsmooth generalized-α schemes

GGL stabilization

The nonsmooth generalized α scheme

Nonsmooth generalized α-scheme

q̃n+1 = qn + hvn + h2(0.5− β)an + h2βan+1 (25a)

qn+1 = q̃n+1 + Un+1 (25b)

ṽn+1 = vn + h(1− γ)an + hγan+1 (25c)

vn+1 = ṽn+1 + Wn+1 (25d)

(1− αm)an+1 + αman = (1− αf ) ˙̃vn+1 + αf
˙̃vn (25e)

Special cases

I αm = αf = 0 Ü Nonsmooth Newmark

I αm = 0, αf ∈ [0, 1/3] Ü Nonsmooth Hilber-Hughes–Taylor (HHT)

Spectral radius at infinity ρ∞ ∈ [0, 1]

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞

ρ∞ + 1
, β =

1

4
(γ +

1

2
)2. (26)
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Nonsmooth generalized-α schemes

GGL stabilization

The nonsmooth generalized α scheme

Observed properties on examples

I the scheme is consistent and globally of order one.

I the scheme seems to share the stability property as the original HHT

I the scheme dissipates energy only in high-frequency oscillations (w.r.t the
time–step.)

Discrete energy balance (proof in [2])

I For the Moreau–Jean, a simple variant allows us to obtain a scheme which always
dissipates energy.

I For the Newmark and the HHT scheme with retrieve the dissipation properties as
the smooth case. The term associated with impact is added in the balance.

Ü nonsmooth generalized-α-schemes are stable with a controllable dissipation of
mechanical energy and satisfies kinematic constraints at various levels
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Nonsmooth generalized-α schemes

Numerical illustrations

Numerical Illustrations

Two ball oscillator with impact.
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Nonsmooth generalized-α schemes

Numerical illustrations

Numerical Illustrations12 Q.Z. CHEN ET AL.
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Figure 7. Numerical results for the total energy of the bouncing oscillator.

An analytically-exact solution for this benchmark is detailed in [20]. For comparison, the same
parameters are applied in this test example: Young’s Modulus E =900 Pa, density of the bar
ρ =1 kg/m3, undeformed initial length L =10 m, initial height to the bottom h0 =5 m, and initial
velocity v0 =10 m/s. The restitution coefficient for the impact is set as 0. The gravity acceleration
g is set to 0 so that only one close impact will occur.

The bar is discretized in space by 200 finite elements. Time step size can be chosen based on
the evaluation of the Courant number – a relevant ratio which links the mesh size and the step size
[20]. The step size with this mesh discretization is then chosen as h =2 · 10−3 s. Other algorithmic
parameters are as: ρ∞ = 0.6 for the nonsmooth generalized-α method; θ = 1 for the Moreau–Jean
method; γ = 1 and β = 0.5625 for the fully implicit Newmark method.
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Figure 8. Comparison the numerical results for the bouncing elastic bar: (a) position, (b) pressure.

Figure 8 shows the position and the pressure on the bottom of the bar. Also, the total energy of the
bouncing elastic bar is analyzed, as shown in Figure 9. The numerical results of the position response
and the pressure are compared to the exact solution. As one can tell from the figures, close contact
analysis is stable for all the three methods. Compared to Moreau-Jean and fully implicit Newmark
methods, the nonsmooth generalized-α method has better accuracy for the position response and
the pressure, in particular for the period near/after the take-off. As for the energy performance

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme
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Numerical Illustrations

Impacting elastic bar
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A modeling problem

Timoshenko’s solutions

v0

Standard assumptions in continuum mechanics

I Unilateral contact in elastic solids generates traveling surfaces (manifold of
co-dimension 1) of velocity discontinuities

S = {x , t ∈ Ω× [0,T ] | v+(x , t) 6= v−(x , t)}

I Discontinuity surfaces have no mass (negligible sets with respect to the mass
measure (no discrete mass))
Theory of shock waves in continuum media. Germain et al.

I The conservation equation and principles of virtual power implies that is no
impulsive stresses or forces. Virtual power of inertial forces at time of jump t∫

Ω

v?,+(x , t) + v?,−(x , t)

2
· (v+(x , t)− v−(x , t))dm = 0
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Mathematical results

Few generic mathematical results
I 1D, 2D, or 3D elastic half-spaces, or tubes:

I Existence and uniqueness obtained by Lebeau and Schatzman
I Conservation of energy is obtained (and not imposed).
I No impact law in the models.

General implicit assumption
No impulsive forces and no need of impact law for closing the system.

Consequences

I Impact law in space-discretized systems should not change the results at
convergence in time and space

I Coefficient of restitution acts as a numerical parameter that is convenient in
discrete time and space.
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Mathematical results

but, because there is a but

Quote from the Lebeau and Schatzman’s article :

Ω = {x ∈ IRd , xd > 0} is the ambient half-space of study
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Mathematical results

Submanifold of lower dimension : strings, beams, plates and shells
The solutions are far more complicated and raise modeling issues.

I Strings (1D wave equation) (Cabannes, Schatzman et al.)
I punctual obstacles: no impulsive forces
I convex and concave obstacle : possible impulse force and the need for an impact law or

a conservation of energy rule

I Beams
I Paoli and Shillor: Existence of solutions for a clamped beam with two stop at free end.
I Reaction forces are impulsive.
I no uniqueness : an ingredient is missing ?

I distributed discrete masses

Consequences

I An impact law, of conservation law, may be needed in the model.

I Coefficient of restitution is no longer a numerical parameter , and should
influence the results at convergence.
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Some illustrations

Impact on a cantilever beam

I surface contact

x

y

v0

I punctual contact

x

y

v0

Chatterjee’s work [9]
Response of infinite beam to a punctual impulse by Fourier transform
Elastic infinite beams show velocity discontinuity for the whole beam at initial time .
(infinite speed of bending wave)

−utt + αuxxxx = p

I

Time-integration methods for nonsmooth contact dynamics : beyond the seminal Moreau-Jean scheme Vincent Acary – 37/38



Time-integration methods for nonsmooth contact dynamics : beyond the seminal Moreau-Jean scheme

Open discussion: Nonsmoothness and percussions in continuum media

Conclusions

I Space discretized systems are finite dimensional systems :
I Moreau-Jean scheme deals consistently with nonsmoothness
I impact law or velocity level constraints is a good stabilization technique

(index-reduction)
I coefficient of restitution is a useful numerical parameter

I Nonsmooth generalized α-scheme extends all the good properties of original
schemes (both Moreau–Jean and generalized α)

I If the continuous model needs for an impact law, the discrete scheme can take
into account this feature, otherwise it enables stabilization of the constraints.

I For multi-body systems (flexible+rigid+joints+contact+friction), we have a
monolithic scheme that is consistent.
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Thank you for your attention. 27-01-21 15:03
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