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Abstract The numerical simulation of spiking neural
networks requires particular attention. On the one
hand, time-stepping methods are generic but they are
prone to numerical errors and need specific treatments
to deal with the discontinuities of integrate-and-fire
models. On the other hand, event-driven methods are
more precise but they are restricted to a limited class
of neuron models. We present here a voltage-stepping
scheme that combines the advantages of these two ap-
proaches and consists of a discretization of the voltage
state-space. The numerical simulation is reduced to
a local event-driven method that induces an implicit
activity-dependent time discretization (time-steps auto-
matically increase when the neuron is slowly varying).
We show analytically that such a scheme leads to a
high-order algorithm so that it accurately approximates
the neuronal dynamics. The voltage-stepping method is
generic and can be used to simulate any kind of neuron
models. We illustrate it on nonlinear integrate-and-
fire models and show that it outperforms time-stepping
schemes of Runge-Kutta type in terms of simulation
time and accuracy.
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1 Introduction

Neuronal information processing involves action po-
tentials, or spikes. Recent findings in neuroscience
emphasize the importance of spike timing precision.
Individual spike timing seems to play a key role in the
coding of sensory information, as some neurons fire no
more than one spike during the entire presentation of
the stimulus, e.g. Kenyon cells in the insect olfactory
system (Perez-Orive et al. 2002) or cortical cells in the
rat auditory system (DeWeese et al. 2003). In biological
systems where the processing speed is required to be
high, the timings of spikes are very precise and reliable
(Mainen and Sejnowski 1995; VanRullen et al. 2005).
Submillisecond precision of spike timing has been re-
ported (Bair and Koch 1996; Ariav et al. 2003) and
small differences in the precision of synaptic events
have a severe impact on the plasticity of synapses.

Numerical simulations of neural networks are com-
monly used to explore the spike coding paradigm. It
is thus crucial to have accurate and efficient schemes
to simulate spiking neural networks. Different strate-
gies have been developed for the simulation of spik-
ing neural networks: event-driven schemes where the
timings of spikes are calculated exactly and time-
stepping methods that approximate the membrane volt-
age of neurons on a discretized time (see Brette et al.
(2007) for a review of simulation environments). In
pure event-driven strategies the spike timings are an-
alytically given and are calculated with an arbitrary
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precision (up to the machine precision). This scheme
allows an exact simulation where no spike is missed.
This method has become increasingly popular (Mattia
and Del Giudice 2000; Makino 2003; Rochel and Mar-
tinez 2003; Brette 2006, 2007; Rudolph and Destexhe
2006; Tonnelier et al. 2007). However only a limited
class of simplified neuron models of integrate-and-fire
type is amenable to exact simulations.

Time-stepping schemes are generic since they can
be applied to any model. Classical integration schemes
of Runge-Kutta type have to be modified to properly
handle the discontinuities of integrate-and-fire neuron
dynamics generated by the resettings and the synaptic
events (Hansel et al. 1998; Shelley and Tao 2001). How-
ever when the membrane potential crosses threshold
twice during one time step (the first crossing is from
below and the second is in the downward direction), the
spike event may be missed. Due to the discontinuous
nature of integrate-and-fire network, a failure to detect
a spike may cause dramatic changes on the behavior
of the system and artificial dynamical states may be
created if the time step is badly chosen (Hansel et al.
1998). Moreover a fundamental limitation on the accu-
racy of these methods is imposed by the smoothness of
the postsynaptic potentials (Shelley and Tao 2001).

In this paper we define a generic scheme for the
simulation of neural networks based on a voltage-space
discretization that we call voltage-stepping scheme.
This scheme retains the advantages of the accuracy and
the activity-dependent computational cost of event-
driven strategies while allowing a generic simulation
of any neural model. The greatest asset is to define
an implicit and adaptive time-discretization for each
neuron that depends on its own activity. A neuron
that evolves slowly allows long time steps and has a
low computational cost whereas small time steps are
required for fast varying neurons. The proposed strat-
egy has a clear advantage when the inter-event period
is greater than the computational time step used in
classical time-stepping methods. Here we show that our
implicit and variable time-stepping scheme allows high-
order integration methods. Since recent efforts have
been made on the numerical simulations of integrate-
and-fire networks (Brette 2006, 2007; Brette et al. 2007;
Ros et al. 2006; Morrison et al. 2007; Rangan and Cai
2007; Rudolph and Destexhe 2006) we illustrate in
the next section our method using a general nonlinear
integrate-and-fire model with synaptic currents. Gener-
alization to other models are proposed. In Section 3 we
present numerical results using the quadratic integrate-
and-fire model and compare the performance of the
voltage-stepping scheme with standard time-stepping
integration methods.

2 Method

2.1 Voltage-stepping scheme

Consider the kth integrate-and-fire neuron in a network
described by its membrane potential, vk, that evolves
according to the equation

C
dvk

dt
= f (vk) + I0 + Ik

syn(t), (1)

where C is the membrane capacitance, f (v) the non-
linear current-voltage characteristic of the membrane,
I0 an external constant input current and Ik

syn the total
synaptic input received by neuron k. A spike is trig-
gered when vk reaches the threshold vth upon when
it is instantaneously reset to vr. Specific instances of
the nonlinear integrate-and-fire model (Eq. (1)) are the
quadratic model (Ermentrout and Kopell 1986; Hansel
and Mato 2001) and the exponential model Fourcaud-
Trocmé et al. (2003).

Let us consider a discretization of the voltage state-
space Vi = [vi, vi+1[ where vi = i!v and !v is a fixed
voltage-step. The basic idea of our method is to approx-
imate (Eq. (1)) by the voltage-dependent integrate-
and-fire neuron

C
dv

dt
= −gi(v − Ei) + I0 + Isyn(t), (2)

for v ∈ Vi. For clarity, the superscript k has been
dropped. Parameter gi is a voltage-dependent conduc-
tance and Ei is a voltage-dependent resting potential.
Parameters gi and Ei are such that the linear function
f!v(v) = −gi(v − Ei) approximates the nonlinear char-
acteristic f (v) on Vi. For instance, using the approxi-
mation of f by the linear interpolation function at the
boundaries of Vi gives

gi = − f (vi+1) − f (vi)

!v
,

Ei = vi + f (vi)

gi
.

In this case the voltage-dependence of the approxi-
mated IF parameters is piecewise linear.

Note that we keep the same notation for the mem-
brane potential and its approximation (if ambiguity
we will note v!v the approximation of v). We note
Vreset =] − ∞, vr] and Vth = [vth, +∞[ the resetting and
threshold intervals, respectively.

Let t0 the time at which the membrane potential of
the neuron reaches Vi (v(t0) = i!v) and assume that



J Comput Neurosci

the neuron stays in Vi during a non-empty time interval.
Integrating (Eq. (2)) between t0 and t yields

v(t) = i!v e−(t−t0)/τi + (Ei + I0/gi)(1 − e−(t−t0)/τi)

+
t∫

t0

e−(t−y)/τi
Isyn(y)

C
dy (3)

where τi = C/gi is the voltage-dependent membrane
time constant. The synaptic current Isyn is given by

Isyn(t) = w
∑

t f
pre

α(t − t f
pre) (4)

where the t f
pre are the firing times of the presynaptic

neurons, w represents the weight of the synapse, and
α is a given function that describes the post synaptic-
potential. A common choice is α(t) = 1/τse−t/τs H(t) or
α(t) = 1/(τ1 − τ2)(e−t/τ1 − e−t/τ2)H(t) where H is the
Heaviside step function with H(t) = 1 if t > 0 and
H(t) = 0 otherwise. Since Isyn is a combination of ex-
ponential functions the integral in Eq. (3) can be com-
puted analytically and an event-driven method can be
used to calculate the next exit time, t1. Three possi-
bilities occur: (i) the membrane potential goes back
to its value at time t0, i.e. interval Vi−1 is reached (ii)
the membrane potential reaches the interval Vi+1, i.e.
v(t1) = vi+1 and (iii) the neuron is at rest, i.e. t1 = +∞.

If the spiking interval Vth is reached, then a firing
event occurs, t f = t1 and the neuron is reset. The event-
driven method is applied on a voltage-step and there-
fore our method may be seen as a local event-driven
method.

Let (tk)k∈N be the sequence of times at which the
successive intervals (Vi)i∈I are reached. This sequence

defines the integration points of an implicit variable
time-step method. The numerical integration is re-
duced to the detection of the occurrence of discrete
events that is achieved using symbolic computation or
a Newton-Raphson algorithm (that is very efficient and
only few iterations are needed). Symbolic derivation of
the events is possible for constant input currents and
for special cases of synaptic currents (Dirac synaptic
currents). Otherwise Newton-Raphson algorithm has
to be used. Note that an alternative method based
on polynomial root finding algorithms could be used
for exponential currents (Brette 2007). Within each
time interval, a symbolic expression of the membrane
potential is given by Eq. (3). The result is schematically
illustrated in Fig. 1(B) and compared with a fixed time-
step method (Fig. 1(A)). Advantages are clearly seen.
At the neuron level, when the membrane potential is
slowly varying the corresponding time-steps are large
whereas small time-steps are used when the membrane
potential strongly fluctuates. Near the threshold, due
to the nonlinear voltage-dependent current, the mem-
brane voltage changes quickly leading to short time-
steps to accurately follow the trajectory. At the network
level, the voltage stepping method presents some inter-
esting properties. Firstly, the computational cost of the
simulation is significantly reduced when the activity of
the network is localized. Serial activation of areas, like
propagating wave or synfire activity, frequently occur
in neuronal tissue, notably the cortex, the thalamus
and hippocampus (Foldiak and Young 1995). Neurons
that participate to the wave activity are excited while
the others are at rest or poorly activated. Time steps
are used to update excited neurons whereas no or
little computation is done for the others. Secondly,
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Fig. 1 Schematic view of the numerical integration of an
integrate-and-fire neuron using (A) a time-stepping scheme and
(B) a voltage-stepping scheme. The time stepping method with
a fixed time step !t requires calculations at each step inde-

pendently of the membrane potential fluctuations. The voltage-
stepping approach induces an adaptive time-step leading to a
precise approximation of the firing time



J Comput Neurosci

the spike-spike interaction1 which is usually ignored in
modified Runge-Kutta schemes (Rangan and Cai 2007)
is naturally handled in our local event-driven strategy.
Moreover unlike standard time-stepping scheme, the
implicit time-discretization defined by our technique
is different for each neuron in the network and only
depends on its own membrane potential fluctuations.

The basic idea of the voltage-stepping approach
is to define a local variable-step integrator using an
approximation of the nonlinear characteristic f by a
function that is amenable to an event-driven scheme.
The piecewise linear interpolation of the nonlinear
current f (v) leads to an approximation of the original
model by a voltage-dependent linear integrate-and-fire
(LIF) neuron (Eq. (2)). As v evolves, parameters of
the LIF change. This approach is reminiscent to the
piecewise linear caricature of neuron models (McKean
1970; Tonnelier and Gerstner 2003). In general, as we
show in the Appendix, the voltage-dependent LIF, de-
fined using an interpolation of the nonlinear currents at
the boundaries of Vi, leads to a numerical integration
with an accuracy of O(!v2) (Appendix A1). A clever
choice of the interpolation points within a voltage-
step leads to an error of order O(!v4). However it
should be noted (see Appendix A2) that the fourth
order accuracy is only reached for the simulation of
one-dimensional neuron models. A lower order scheme
(O(!v)) is obtained using a voltage-dependent non-
leaky IF model ( f!v is piecewise constant). Similarly,
a more accurate scheme is obtained using a piece-
wise quadratic approximation and the corresponding
approximated model is a voltage-dependent QIF model
( f!v is piecewise quadratic). In this paper, numeri-
cal simulations are done using voltage-dependent LIF
neurons to approximate the original neuron models.

2.2 Algorithm

Each neuron maintains a mode (i.e. its location within
the discretized voltage space) and an exit time that is
the time at which a new voltage interval is reached. The
exit time becomes a spike timing whenever the neuron
reaches the threshold interval.

• Initialization: Compute the events, i.e. the exit
times of each neuron (including spike timings) and
insert them in a priority queue.

• Process events. Extract the event to be processed,
i.e. the one with the lowest timing. Note that local
events do not have any consequence on the overall
network dynamics and only require a local updating

1interactions between spikes that are in the same time interval

of the corresponding neuron mode and exit time.
For a spike timing, the neuron is reset and the firing
event is propagated, i.e. modes and exit times of the
target neurons are updated.

Optimization of the code can be obtained using
precalculated tables of the exit-time in each voltage-
step without input. If spikes are received, these timings
can be used as an initial guess for the iterative search
algorithm.

2.3 Generalization

The voltage-stepping strategy is not limited to the sim-
ulation of one dimensional integrate-and-fire neurons.
Below we sketch how to apply this technique for differ-
ent widely used neural models.

A. Integrate-and-fire neurons with adaptation. An im-
provement of the nonlinear integrate-and-fire model
is achieved by adding a second variable to Eq. (1)
(Izhikevich 2003; Brette and Gerstner 2005)

C
dv

dt
= f (v) − u + I0 + Isyn(t) (5)

du
dt

= a(bv − u) (6)

where u represents an adaptation current. At each
firing time, the variable u is increased by an amount
c (u ← u + c). As previously, we can derive a voltage-
dependent LIF using a linear interpolation of f on
Vi. The system is now two-dimensional but since the
equations are linear on a voltage-step the approxi-
mated model can be solved analytically in this interval,
then the local event-driven scheme applies similarly.
Note that (i) nonlinear currents can be added in the
adaptation equation provided that a piecewise linear
approximation is used. (ii) Without resetting on v and
without spike-triggered-adaptation (Eq. (5–6)) has the
FitzHugh-Nagumo model as a special instance.

B. Conductance based synaptic currents. More realis-
tic descriptions of synaptic current incorporate conduc-
tance changes

Isyn(t) = gsyn(ve − v)
∑

t f
pre

α(t − t f
pre) (7)

where ve is a reversal potential. Recently the event-
driven simulation of LIF models has been extended
to synaptic conductances (Brette 2006). Thus we can
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adapt the voltage-stepping method to neural models
with synaptic conductances using the method devel-
oped in Brette (2006) to compute the local events.
However to reduce the computational cost of the simu-
lation, it is useful to use the following approximation
ve − v = ve − vi on the voltage-step Vi = [vi, vi + !v[
and go back to the voltage-dependent LIF previously
defined. In this case we introduce an error of order !v

but it is possible to restore the accuracy of the scheme
rewriting the equation as

C
dv

dt
= f (v) + I0 + g(ve − v)

dg
dt

= −g/τs

where an incoming spike triggers an instantaneous ad-
ditive change g → g + w. Nonlinearities appear both
in the characteristic, f , and in the conductance, g.
To achieve a local event-driven scheme, it is nec-
essary to discretize not only the voltage space but
the entire state-space (v, g). The method is similar to
conductance-based models and is detailed below.

C. Hodgkin-Huxley type neurons. Our approach is
not limited to integrate-and-fire neuron models and can
be used to simulate detailed neuron models including
spike-description such as Hodgkin-Huxley type mod-
els. For simplicity, we consider the Morris-Lecar model

C
dv

dt
= ḡCam∞(v)(vCa − v)+ ḡKu(vK−v)+ ḡl(vl − v)+ I

du
dt

= u∞(v) − u
τ(v)

that describes an instantaneously responding voltage-
sensitive Ca2+ conductance for excitation and a de-
layed voltage-dependent K+ conductance for recovery
(see Rinzel and Ermentrout (1998) for a complete de-
finition). Since the nonlinearity involves both v and u,
it is necessary to discretize the entire state space (v, u)

(the term state-stepping is more appropriate in this
case). The state space is partitioned into subdomains
where the function is approximated by a linear sys-
tem Fi(X) = Ai X + bi where X = (v, u). The shape of
subdomains is triangular and a simplicial partition (i.e.
triangulation based on a rectangular partition) can be
used (Girard 2002). In each triangle the approximated
neuron model has a symbolic expression from which
we calculate the switching time, i.e. the time at which a
new triangle is reached. In Fig. 2 we show the result of
the numerical integration. The method performs like an
adaptive time-stepping scheme. The neuron is updated
frequently when one state variable has large varia-
tion, specially near the threshold and at the peak of
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Fig. 2 Numerical simulation of the Morris-Lecar model with a
state-stepping algorithm. We simulate the model over one period
of its oscillatory regime. Crosses are the membrane potential
and stars are for the potassium channel. We use a voltage-
step of 6 mV and a step of 0.03 for the recovery variable. For
convenience the membrane potential has been rescaled (vertical
axis is dimensionless)

the spike where the membrane voltage present abrupt
polarization. Note that the integration points are not
only determined by the membrane potential but also
by the recovery variable. The fastest changing variable
imposes the time-steps of the neuron.

The algorithm can be extended to general n-
dimensional conductance-based neuron using a sim-
plicial subdivision of the neuron state-space and
interpolating the vector field at the vertices of the
simplex.

2.4 Link with previous works

Traditional event-driven methods are actually spike-
driven schemes; the neuron state variables are updated
when a spike is received or emitted. The voltage-
stepping technique produces new events: the events are
not only firing times or spike receptions but also the
times of mode switching, i.e. when the neuron reaches
a new voltage interval. Consequently the number of
events is increased, albeit at a reduced computational
cost because local events do not have any repercussion
on the overall activity of the network and are only
used to update the corresponding neuron parameters.
When the cost of managing events becomes prohibitive,
it could be useful to introduce local event queues
to reduce the cost of event management (Morrison
et al. 2007).
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The voltage-stepping scheme combines event-driven
and discretization techniques. A method based on a
combination of event-driven and time-driven schemes
has been recently developed but requires a minimal
synaptic propagation delay greater than the computa-
tion time step (Morrison et al. 2007). Fast methods
have been developed but are limited to the linear IF
neuron (Rangan and Cai 2007). To simulate more re-
alistic neural models, an alternative approach has been
proposed by Ros et al. (2006) in which an event-driven
scheme uses lookup tables. The simulation is reduced
to a search within a precalculated table of function
values. This scheme combines the benefits of using
realistic neural models and high-speed simulations but
becomes cumbersome to manage when a good accuracy
is required for the numerical simulation.

Adaptive time-stepping schemes provide short time-
step integration for active neurons and long-time step
integration when the neuron is at rest or slightly acti-
vated. These methods have a clear advantage when the
entire shape of the spike is calculated. When simulat-
ing neural networks, classical variable-step integrators
fail to be efficient since the fastest changing neuron
imposes the time-discretization for the entire network.
To avoid this problem, Lytton and Hines (2005) have
used an independent variable time-step integrator for
each neuron. A critical problem is to coordinate the
local integrators of each neuron in the network and
to properly handle the events. Indeed, when an event
arrives at a neuron at time te it is necessary to have all
the states of the receiving neurons at time te. This is
accomplished using additional operations: a fixed-step
integration, interpolation and reinitialization. More-
over the integration coordinator must ensure that the
individual time-steps are correctly chosen: there is al-
ways an overlap between all the integration intervals of
neurons. In our approach both local and global events
are nicely handled in an event-driven scheme and there
is no requirement on the time-steps. The variable time-
steps induced by the voltage-stepping scheme present
interesting properties: (i) by construction the thresh-
old event lies on an integration time-step boundary.
(ii) Integration points are independent, i.e. in network
simulation, the time steps are different from one neu-
ron to another. (iii) Time-steps are imposed by the
voltage-trajectory and when the neuron is at rest, no
step is computed.

Approximation by piecewise linear systems has be-
come a classical tool for the global qualitative analy-
sis of dynamical systems and has been proposed as
a technique for numerical simulations (Girard 2002).
The voltage-stepping method is a variant of the hybrid
computation method where the simulation is done by

using an approximation of the vector field (Della-Dora
et al. 2001). The hybrid computation requires a full
discretization of the state space that appears to be pro-
hibitive for large dynamical systems. Taking advantage
of point-like interactions between neurons this scheme
could be efficiently implemented for the simulation of
spiking networks. Following the hybrid-system frame-
work (differential equations with discrete events), we
interpret spiking neural networks as an hybrid system
where global events are spikes and local events are
mode switches. During simulation the neuron switches
between modes depending on the value of the voltage,
i.e. parameters of the model change when a mode
transition is detected.

3 Numerical results

To illustrate our numerical scheme we consider the
quadratic integrate-and-fire (QIF) model. The QIF
model includes nonlinear spike generating current and
represents the normal form of any type I neuron model
near the bifurcation (Ermentrout 1996; Ermentrout
and Kopell 1986). It is widely used as a realistic neural
model (Brunel and Latham 2003; Fourcaud-Trocmé
et al. 2003; Hansel and Mato 2001). The dynamics of
the QIF model is described by

τ
dv

dt
= v2 + I0 + Isyn(t) (8)

where v, I0 and Isyn are dimensionless membrane po-
tential, input current and synaptic current, respectively.
Parameter τ is the membrane time constant. We treat
synaptic currents of the form

Isyn(t) = w exp(−(t − t f )/τs), t ≥ t f

= 0, t < t f (9)

that could be rewritten as

dIsyn

dt
= −Isyn/τs,

Isyn ← Isyn + w when t = t f

where τs is the synaptic time constant and w the synap-
tic weight. Numerical values of QIF neurons are taken
from Martinez (2005), the membrane time constant is
τ = 0.25 ms, the reset potential is vr = −0.0749 and the
threshold is vth = 0.7288. The synaptic time constant
is τs = 6 ms and the synaptic strength is w = 5 × 10−4.
Note that the membrane potential, in voltage unit, is
obtained using the variable change V ← C/qv + V0
where C = 0.2 nF, q = 0.00643 mS. V−1 and V0 =
−60.68 mV. Therefore a factor of C/q = 31.1 mV has
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to be applied to the voltage step !v to retrieve the
physical unit.

One of the goals of our numerical scheme is to simu-
late accurately the dynamics of spiking neurons and to
investigate temporal coding properties. Therefore we
are interested in reproducing the exact timing of spikes
and we use the following measure of error:

E(t f ) = 1
N

∑

f

|t f
ex − t f

ap| (10)

where N is the number of spikes, t f
ex are the exact

firing times (i.e. with an arbitrary precision) and t f
ap

are the corresponding approximated firing times that
depends on !v for voltage-stepping methods or on !t
for time-stepping methods (see below). Using Eq. (10)
we implicitly assume, as a minimal requirement, that
the number of spikes between the exact and the ap-
proximated spike trains does not differ. This is achieved
using a sufficiently accurate numerical scheme, i.e. the
steps are small enough to capture all the spikes. When
the number of spikes may differ, we use the following
error

E(ν) = |νex − νap| (11)

where νex and νap is the exact and approximated firing
rate, respectively.
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Fig. 3 Error E(t f ) (in ms) on the firing time of the QIF neuron as
a function of v(0) for different algorithms. Squares and circles are
the modified RK2 with !t = 0.03 ms and RK4 with !t = 0.2 ms,
triangles and diamonds are VS2 with !v = 0.005 and VS4 with
!v = 0.01 respectively

Table 1 Mean error and time cost for the numerical schemes
used in Fig. 3

RK2 RK4 VS2 VS4
Mean error (µs) 0.245 0.177 0.129 3 × 10−4

Mean time cost (ms) 0.8878 0.7705 0.7681 0.7659

We have shown previously that the QIF model is
amenable to an exact simulation (Tonnelier et al. 2007)
that we will use for t f

ex in the error analysis (here
the precision is fixed at 10−7 ms on individual spike
times). We focus our numerical study on the voltage-
stepping scheme with piecewise linear approximation.
Parameters of the approximated voltage-dependent
LIF, using an interpolation at the boundaries of Vi (we
will call VS2 scheme), are gi = −!v(2i + 1) and Ei =
!v i(i + 1)/(2i + 1) where !v is a fixed voltage-step.
We also consider the voltage-stepping scheme using
a linear interpolation at gaussian abscissas (hereafter
VS4 scheme).

Since fixed time-step integration remains the simu-
lation standard, we compare the performance of our
schemes (VS2 and VS4) to the one of the ‘correspond-
ing’ time-stepping algorithms. The second or fourth
order Runge-Kutta scheme with a linear or cubic in-
terpolation of firing times (i.e. modified RK2 or mod-
ified RK4) has been shown to be a second or fourth
order scheme, respectively, in the simulation of spiking
neurons (Hansel et al. 1998; Shelley and Tao 2001).
The RK schemes are monitored by a fixed time-step
!t that controls the error-functions (Eqs. (10)–(11)) of
the methods. It is important to notice that several prob-
lems may arise when comparing the different methods:
i) the computation time of voltage-stepping schemes
is implementation-dependent and many algorithmic
tricks could speed up the calculations,2 ii) the accuracy
and computation time of voltage-stepping schemes is
activity-dependent (in the extreme case where no spike
is emitted the computational cost is negligible for our
method whereas Runge-Kutta schemes perform all the
steps to reach a predetermined simulation time). We
overcome issue i) by comparing straight-forward im-
plementations of each method and issue ii) by using
different inputs leading to different spiking activities.
Voltage-stepping and time-stepping methods are ap-
plied to simulate a single neuron with a constant input
current and a Poisson input spike train. The accuracy
of the voltage-stepping approach is also demonstrated
on the simulation of a network of spiking neurons.

2In particular, since our approach can be seen as a local event-
driven technique, all the recently proposed methods to optimize
event-driven schemes could be tested and used.
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Fig. 4 Log-Log plot of the time cost (ms) for both modified
Runge-Kutta methods (RK2 and RK4) and voltage-stepping
methods (VS2 and VS4) as a function of the error

The algorithms were programmed with Matlab and the
numerical simulations are performed on a portable PC
running Windows at 1.7 GHz.

3.1 Constant input current

We ignore the synaptic current, Isyn = 0, and consider
a QIF neuron with a constant external driving current
I0. For I0 < 0 there is a pair of equilibrium points.
One is stable and the other is an unstable fixed point
above which a spike is emitted. The neuron is said
to be excitable. For I0 > 0 the neuron fires regularly.
The neuron is said to be in the oscillating regime. We
quantify the accuracy by calculating the error E(t f )

(Eq. (10)) and E(ν) (Eq. (11)) in the excitable and
oscillating regime, respectively.

A. Excitable regime Let I0 < 0 and consider an initial
condition v(0) slightly above the unstable fixed point√−I0. Without further input, the membrane potential
is given by

v(t) = −
√

−I0 coth(
√

−I0t/τ − atanh(
√

−I0/v(0))),

and the exact spike timing is given by

t f
ex =τ/

√
−I0

(
atanh(

√
−I0/v(0))−atanh(

√
−I0/vpeak)

)
.

We compute error E(t f ) (Eq. (10)) between the exact
firing time given above and the approximated one, nu-
merically obtained using the voltage-stepping method
VS2 with !v = 0.005 and VS4 with !v = 0.01 (!v =
0.15 mV, 0.31 mV in physical unit). To assess the per-
formance of the method, we compare it to the modified
RK2 and RK4 respectively with !t = 0.03 ms and !t =
0.2 ms that could be considered as a very high temporal
resolution but are required by the modified Runge-
Kutta methods in order to calculate each neuronal
trajectory accurately (usually smaller than 0.02 ms to
reach a good accuracy (Shelley and Tao 2001; Rangan
and Cai 2007)). The precise values of !t are chosen
here in order to obtain a mean cost similar to the one
obtained for the voltage-stepping scheme. Errors on the
firing time as a function of the initial voltage value v(0)

are depicted in Fig. 3. The slow decrease of the error
for VS methods with respect to v(0) is a consequence
of the activity-dependent accuracy of the method. As
v(0) increases, the number of voltage-steps necessary
to reach the voltage peak decreases and thus the accu-
mulating error. The RK methods are less robust and we
suspect that the oscillating behavior observed in Fig. 3 is
related to the uniform and non-optimized distribution
of the time-steps. As v(0) increases the firing time
occurs faster and the number of time intervals needed
to reach firing time gets smaller. As a consequence, one
would expect a reduction of the error. However, for
RK methods, the same discretization of time is used
independently of v(0). As v(0) increases, the firing time

Table 2 Error and time cost
for the different algorithms
and parameters used in Fig. 4

RK2: !t (ms) 0.2000 0.1667 0.1333 0.1000 0.0667 0.0333
Error (µs) 3.8257 3.1537 2.7606 2.4888 0.4650 0.2668
Time cost (ms) 0.3093 0.3119 0.3177 0.3228 0.3714 0.4452
RK4: !t (ms) 0.5000 0.4500 0.4000 0.3500 0.3000 0.2500
Error (µs) 1.8993 1.8645 0.7734 0.7659 0.4890 0.3992
Time cost (ms) 0.2739 0.2753 0.3055 0.3075 0.3292 0.3503
VS2: !v 0.0101 0.0072 0.0056 0.0046 0.0039 0.0034
Error (µs) 2.3573 1.2058 0.7302 0.4891 0.3503 0.2631
Time cost (ms) 0.2901 0.2991 0.3098 0.3176 0.3291 0.3354
VS4: !v 0.0201 0.0182 0.0168 0.0155 0.0144 0.0134
Error (µs) 0.0086 0.0042 0.0022 0.0013 0.0008 0.0005
Time cost (ms) 0.2306 0.2455 0.2526 0.2737 0.2940 0.3191
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occurs at different positions within a time step leading
to different accuracies that mask the expected reduc-
tion of the error. Such oscillating phenomenon does
not occur using the voltage-stepping approach since the
time-steps are implicitly defined and are adjusted to
the activity profile of the neuron. The time costs of
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Fig. 6 Error E(ν) (in Hz) on the firing rate of the QIF neuron as a
function of the input current. The squares and circles correspond
to the modified RK2 with !t = 0.025 ms and the modified RK4
with !t = 0.1 ms, respectively. Triangles represent VS2 with
!v = 0.008 and diamonds VS4 with !v = 0.08

Table 3 Mean error and time cost for the different algorithms
with parameters used in Fig. 6

RK2 RK4 VS2 VS4
Mean error (Hz) 0.0475 0.0647 0.0137 3 × 10−5

Mean time cost (ms) 0.9766 0.7542 0.6034 0.4423

the different algorithms applied in Fig. 3 are given in
Table 1. Accuracy and time cost are computed as the
mean over the different initial values v(0) taken in
Fig. 3. Since the mean computation time is approxi-
mately the same for all numerical schemes, a direct
comparison of the methods is done observing the pro-
duced errors. In the following, a further comparative
analysis of the efficiency is done.

To have a more practical view of the efficiency of the
schemes, we compare in Fig. 4 the computation times
of each method as a function of the accuracy (Table 2).

Results show that, in terms of efficiency, VS2 is
superior to the modified RK2 method and comparable
to the modified RK4 method. For finer resolutions, the
VS2 algorithm performs faster than RK4 whereas for
an error above approximately 1 µs the RK4 method is
more efficient. In all cases, the VS4 method is always
more efficient. A major reason of the lack of efficiency
of the Runge-Kutta scheme is that the uniform distrib-
ution of time steps implies the use of unnecessary time
steps for subthreshold voltage in order to have short
time steps at the peak of the spike.
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Fig. 7 Log-Log plot of the error E(ν) on the firing rate as a
function of the voltage-step for the voltage-stepping methods
VS2 (circle) and VS4 (square). The lines (not fits) indicate the
order of the methods. Dotted-line is second order and solid-line is
fourth order
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Fig. 8 Log-Log plot of the time cost (s) for the modified Runge-
Kutta methods (RK2 and RK4) and voltage-stepping methods
(VS2 and VS4) as a function of the accuracy in the high activity
regime

We also examine the errors of VS2 and VS4 schemes
as a function of the voltage-step (Fig. 5). As expected,
the errors of our VS2 scheme decreases quadratically
with !v while the error of the VS4 scheme diminishes
as the fourth power of !v.

B. Oscillating regime For I0 > 0 the neuron fires reg-
ularly and the firing rate is given by

νex =
√

I0

τ
(

arctan ϑ√
I0

− arctan vr√
I0

) (12)

In Fig. 6, we compare the error E(ν) (Eq. (11)) ob-
tained by our voltage-stepping methods (VS2 and VS4)
and the modified Runge-Kutta methods (RK2 and
RK4) for different step-sizes. Time-steps are those usu-
ally used for modified Runge-Kutta schemes (of order
0.01ms) (Shelley and Tao 2001; Rangan and Cai 2007).
The voltage steps are chosen in order to reach a similar
mean time cost. As previously, the VS method is more
robust in the sense that changing the input parameter I0
does not affect significantly the accuracy. The error and
the time cost computed as the mean over the different
input currents used in Fig. 6 are computed in Table 3.
Results obtained on the error E(ν) are in line with
those obtained with E(t f ). The VS4 method is the most
efficient algorithm and reaches the best accuracy with
the lowest computational time.

Again, the order of the voltage-stepping methods
VS2 and VS4 is numerically evaluated in Fig. 7 and
corroborates the result previously obtained.

3.2 Poisson input spike train

We consider a simple test neuron receiving a synaptic
activity modeled by a fluctuating spike train. Note that
we use a current injection and a more realistic input sce-
nario would be stochastic conductance changes. How-
ever a random conductance scenario can be replaced,
to a high degree of accuracy, by a random current injec-
tion (Richardson 2004). For clarity, we keep the current
injection paradigm. Firstly, we investigate two scenarios
that reproduce two different regimes of neural activity.
Secondly, we study the dependence on the input rate.

In the first scenario, we use a fixed excitatory spike
train generated by a Poisson process with rate νE =
104 spikes/s that models the interaction with 1000 ex-
citatory presynaptic neurons firing at 10 Hz. In this
scenario, the neuron operates in a high activity regime
with a firing rate ∼ 400 spikes/s. The second scenario
is described by two fluctuating synaptic currents, one
excitatory Poisson process (νE = 104 spikes/s) and one
inhibitory Poisson process (νI = 104 spikes/s). The neu-
ron operates in a fluctuation-driven regime with a
moderate firing rate (∼ 30 spikes/s). We compute the
error on the spike timings of the QIF model using
the voltage-stepping methods (VS2 and VS4) and the
Runge-Kutta methods (RK2 and RK4). In order to
compare the different numerical schemes, the voltage-
steps and the time-steps are chosen so that to obtain
a corresponding error. Simulation times are then com-
pared. In the first scenario the neuron fires regularly
with monotonic subthreshold membrane voltage tra-
jectories. For different values of the time-steps and
voltage-steps we compute the error and the time cost

Table 4 Error and time cost for the different algorithms and
parameters used in Fig. 8 (high activity regime)

RK2: !t (ms) 0.0200 0.0100 0.0050 0.0010
Error (ms) 0.3874 0.0196 0.0094 0.0042
Time cost (s) 982 1747 3383 15845
RK4: !t (ms) 0.1000 0.0500 0.0300 0.0100
Error (ms) 0.3051 0.0633 0.0272 0.0068
Time cost (s) 270 457 745 2126
VS2: !v 0.0161 0.0080 0.0054 0.0040
Error (ms) 0.3151 0.0794 0.0082 0.0034
Time cost (s) 890 1305 1702 2283
VS4: !v 0.0179 0.0124 0.0095 0.0077
Error (ms) 0.0532 0.0200 0.0021 0.0009
Time cost (s) 333 526 1131 1602
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Table 5 Error and time cost
for the different algorithms
and parameters used in Fig. 9
(balanced regime)

RK2: !t (ms) 0.0200 0.0100 0.0050 0.0010
Error (ms) 0.5327 0.0952 0.0482 0.0191
Time cost (s) 1402 2356 4476 24055
RK4: !t (ms) 0.1000 0.0500 0.0300 0.0100
Error (ms) 0.2123 0.1232 0.0872 0.0336
Time cost (s) 603 805 970 2795
VS2: !v 0.0161 0.0080 0.0054 0.0040
Error (ms) 0.5152 0.1112 0.0102 0.0062
Time cost (s) 1296 1706 2196 2543
VS4: !v 0.0179 0.0124 0.0095 0.0077
Error (ms) 0.0819 0.0611 0.0190 0.0091
Time cost (s) 457 543 885 1306

of the different schemes. Results are depicted in Fig. 8,
and the corresponding data are given in Table 4.

In this scenario, we found that the VS2 scheme is
more efficient than the modified RK2 but better results
are obtained using the RK4 scheme at coarse resolu-
tions (see Table 4). However when a high accuracy is
required (error in the order of 10 µs), the time cost
of the time-stepping scheme significantly increases and
VS2 becomes faster. Again, the VS4 method outper-
forms the other schemes. The possible reason for the
discrepancy of the modified RK schemes for high accu-
racy is due to the non-smooth dynamic of the synaptic-
induced changes given by Eq. (9). More precisely, for
time-stepping schemes, when a spike is emitted by the
neuron (at time t f ), the additional postsynaptic changes
after the spike times are neglected (until a new step
tn+1 > t f is reached). For post-synaptic changes with
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Fig. 9 Log-Log plot of the time cost (s) for both the modified
Runge-Kutta methods (RK2 and RK4) and voltage-stepping
(VS2 and VS4) as a function of the accuracy for the balanced
regime

non-smooth initiation (like Eq. (9)) the error becomes
relevant and we suspect that the modified RK scheme
behaves like a first-order scheme and therefore re-
quires small time-steps to accurately compute spike
times. This problem does not occur in voltage-stepping
scheme since the step is automatically adjusted to the
computed firing time.

In the second scenario, the membrane potential is
driven by the balance of excitation and inhibition lead-
ing to irregular spike-times. For a fixed voltage-step
value, the accuracy of the voltage-stepping is affected
(see Table 5).

The efficiency of Runge-Kutta type schemes dramat-
ically decreases (mainly for the RK2 scheme) and small
time-steps are necessary to compute accurately the
spike times. The respective efficiency of the schemes is
similar to the one obtained in the high activity regimes:
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Fig. 10 Log-Log plot of the time cost (s) for the modified Runge-
Kutta methods (RK2 and RK4) and voltage-stepping methods
(VS2 and VS4) as a function of the input firing rate in the high
activity regimes
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VS4 has the better performance and RK2 the worst.
The efficiency of VS2 versus RK4 depends on the level
of required accuracy.

Finally, we investigate the dependence on the rate
of the input spike train. We consider the first scenario
using different values of the input firing rate νE = 104

spikes/s, 103 spikes/s, 500 spikes/s and 333 spikes/s. For
a given level of accuracy (here approximatively 0.1 µs)
the computation times are computed for the different
numerical schemes (see Fig. 10 and Table 6). For all
schemes an increase in time cost is observed as the
activity becomes higher. In the high activity regimes,
the computation time of Runge-Kutta algorithms dra-
matically increases. Moreover for all input firing rate
the relative efficiency of the methods is the same as the
one previously obtained. Note that since high accuracy
is required the VS2 scheme is more efficient than the
modified RK4 scheme.

3.3 Network activity

We demonstrate the accuracy of our integration
scheme by applying it to a network of N = 100 in-
hibitory neurons. Such network shows rapid synchro-
nization through mutual inhibitions and variations
of this model have been widely studied (Wang and
Buzsaki 1996; Martinez 2005; Ambard and Martinez
2006). We consider all-to-all coupling between in-
hibitory neurons with a synaptic strength w = 0.005.
Each inhibitory neuron is driven by a pre-synaptic exci-
tatory spike train (Poisson process, νE = 104 spikes/s)
with a synaptic weight w = 0.005 . The neurons are
modeled as QIF with the same parameters as before.
We integrate until t = 40 ms and use the VS2 method
with a subdivision of the voltage-space into N!v =
250 voltage-intervals. For error analysis we simulate
the network using an exact event-driven simulation

Table 6 Mean error and time cost for the different algorithms
and spike rates used in Fig. 10

RK2 RK4 VS2 VS4
νE = 333 spikes/s

Error (µs) 0.1003 0.1044 0.0959 0.0939
Time cost (s) 3687 3035 2434 2389

νE = 500 spikes/s
Error (µs) 0.1069 0.1027 0.1047 0.0990
Time cost (s) 3749 3177 2482 2423

νE = 103 spikes/s
Error (µs) 0.0961 0.0959 0.0955 0.1012
Time cost (s) 5224 4264 2795 2523

νE = 104 spikes/s
Error (µs) 0.1032 0.1075 0.0987 0.0964
Time cost (s) 74235 64635 4353 4032
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Fig. 11 Simulation of a network of 100 inhibitory neurons. Spike
times are computed exactly (dots) and with the VS2 method
using N!v = 250 voltage-intervals (‘+’). A high degree of accu-
racy is obtained and spikes are superimposed most of time (see
enlargement)

(Tonnelier et al. 2007). The exact and approximated
spike times are shown in Fig. 11. The network produces
344 spikes. Here, an accuracy of 0.22 µs on individual
spike-time is reached.

4 Conclusions

Recent efforts have been made to simulate integrate-
and-fire neuronal networks. Specific methods like
event-driven schemes (Makino 2003; Brette 2006,
2007), fast methods (Rangan and Cai 2007) or ex-
act time-stepping schemes (Morrison et al. 2007) are
limited to linear integrate-and-fire models. Voltage-
stepping methods are generic numerical schemes that
realize an efficient and accurate numerical integration
of spiking neural networks. Important elements in our
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approach are (i) the variable time-steps that are differ-
ent for each neuron in the network depending on their
activity (ii) the treatment of the possible discontinuities
of the dynamics (iii) the event-driven nature of the
simulation.

In this paper we have mainly addressed the sin-
gle neuron case even if we have shown that network
simulation could benefit from the voltage-stepping in-
tegration scheme. We expect that the superiority of
the method over traditional time-stepping schemes ob-
served for one neuron will be more patent in net-
work simulations. In fact, it frequently appears that
in large network simulation some area are quiescent
and relatively few neurons are activated. Since our
method only handles active neurons, a speed up in
simulation time is expected. Our approach forms the
basis of further studies on numerical methods with an
emphasis on computation time. The recent advances
made on event-driven techniques could be adapted to
the voltage-stepping scheme. Critical points are the
management of the event queue and the efficiency
of the zero search algorithm. The local event queues
employed in Morrison et al. (2007) could be combined
with the voltage-stepping algorithm to reduce the cost
of event management. For the second point, improve-
ment could be done in several ways: i) an optimized
algorithm devoted to the function considered here, ii)
a ’good’ initial guess using an a priori prediction of the
exit-time. This estimation could be done using precal-
culated table or using more elaborate approximation
techniques. Our voltage-stepping method is not neces-
sarily restricted to a uniform voltage step !v. There
exist efficient algorithms (Breiman 1993) that can be
used to optimize both the non-uniform distribution of
intervals Vi and their associated linear approximations.
Therefore, a possible extension of our approach is to
use a voltage-discretization adapted to the nonlinear
voltage-dependent current of the model.

Acknowledgement Research supported by the INRIA cooper-
ative research initiative RDNR.

Appendix: Order of voltage-stepping schemes

For simplicity, we consider a general neuron model
described as follows (notations are defined in Sections
2 and 3)

dv(t)
dt

= f (v(t)) (13)

Over Vi, one possible linear interpolation of the func-
tion f (v) is achieved by interpolating it at the bound-

aries vi and vi+1. Other possible linear interpolations
will be discussed in the second part of this appendix.

Appendix A1: Linear interpolation at boundaries
(VS2 method)

Let us consider v!v the solution of the following dynam-
ical system:

dv

dt
= f!v(v), (14)

where f!v is the piecewise linear function defined as
follows:

f!v(v) = vi+1 − v

!v
f (vi) + v − vi

!v
f (vi+1)

It is straightforward to show that the error of approxi-
mation is given by

| f (v) − f!v (v)| = O
(
!v2) (15)

Considering the following theorem:

Theorem 1 Fundamental Inequality (see for instance
Hubbard and West (1991)). For a differential equation
ẋ = F(x) satisfying the Lipschitz condition with K *= 0
and if u1(t) and u2(t) are two continuous, piecewise
differentiable functions satisfying |u̇i(t) − F(ui(t))| ≤ εi

for all t at which u1(t) and u2(t) are differentiable and
if |u1(0) − u2(0)| ≤ δ, then

|u1(t) − u2(t)| ≤ δeK|t| + ε1 + ε2

K
(
eK|t| − 1

)
.

Applying Theorem 1 to Eqs. (13), (14) and using
Eq. (15), it can be proved that |v − v!v| = O

(
!v2). It

follows
∣∣∣t f

ex − t f
ap

∣∣∣ = O
(
!v2) that means that the esti-

mate error on the exact spike time is of order O
(
!v2).

Remarks

• At the neural network level, the incoming spikes
generated by presynaptic neurons introduced a sec-
ond order error (since

∣∣∣t f
ex − t f

ap

∣∣∣ = O(!v2)). Noting
the fact that f!v also introduced a second-order
error, the proposed voltage-stepping scheme (VS2)
guarantees the same accuracy at the network level
as the neuron level, even after considering the ef-
fect of propagation of error on spike times.

• For the p-dimensional case, the only difference is to
approximate f (v) over Vi ⊆ Rp by a linear system:
f!v (v) = Aiv + bi, which is uniquely determined
as the linear interpolation vector field of f (v). The
same result can be proved using a norm on Rp, ‖·‖,
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instead of the absolute value |·| ( see Girard 2002
for more details).

Appendix A2: Linear interpolation at gaussian
abscissas (VS4 method)

Let us consider (Eq. (13)) and (Eq. (14)) over a voltage
interval Vi. Without loss of generality, assume that the
voltage interval Vi+1 is reached. We have

!ti = ti
ex − ti

ap =
∫ vi+1

vi

(
1

f (v)
− 1

f!v (v)

)
dv (16)

where ti
ex represents the exact exit time of Vi, and ti

ap
represents its approximation. The best choice for f!v

is those that minimize (Eq. (16)). We have 1/ f!v(v) ∈
C∞ (almost everywhere). For 1/ f (v) ∈ Ck, k ≥ 4, and
according to Gaussian quadrature rule, the linear inter-
polation at gaussian abscissas f!v satisfies

∫ vi+1

vi

(
1

f (v)
− 1

f!v (v)

)
dv = O

(
!v5) (17)

The only point is to calculate the gaussian abscissas
over Vi. Over Vi =

[
vi, vi+1

[
, the gaussian abscissas are:

vi,1 =
√

3 − 1
2
√

3
vi+1 +

√
3 + 1
2
√

3
vi

vi,2 =
√

3 + 1
2
√

3
vi+1 +

√
3 − 1
2
√

3
vi

based on which, the linear interpolation of f (v) can be
described as follows:

f!v(v) = vi,2 − v

vi,2 − vi,1
f
(
vi,1

)
+ v − vi,1

vi,2 − vi,1
f
(
vi,2

)

Over each Vi, the local error (approximation of exit
time) is of order O

(
!v5). The estimate error on the

exact spike time is obtained considering the exit times
over the entire voltage-space that gives a global error
of O

(
!v4). This error estimate agrees exactly with the

results of the numerical simulations.
It should be noted that this method requires one-

dimensional neural models. The major reason is that
Eq. (17) cannot be always fulfilled in high dimensional
case. Moreover the methods also failed for neural
network simulation. Assume that we can estimate the
incoming spikes generated by presynaptic neurons to
an accuracy of O

(
!v4). Therefore a fourth order error

is introduced in Eq. (17) and the error can be no better
than O

(
!v4) which makes impossible to calculate the

exit time with a fifth-order accuracy.
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