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Abstract

In traditional event-driven strategies, spike timings are analytically given or calcu-

lated with arbitrary precision (up to machine precision). Exact computation is possible

only for simplified neuron models, mainly the leaky integrate-and-fire model. In a re-

cent paper, (Zheng et al., 2009) introduced an approximate event-driven strategy, named

voltage-stepping, that allows for the generic simulation of nonlinear spiking neurons.

Promising results were achieved in the simulation of single quadratic integrate-and-
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fire neurons. Here, we assess the performance of voltage-stepping in network simula-

tions by considering more complex neurons (quadratic integrate-and-fire neurons with

adaptation) coupled with multiple synapses. To handle the discrete nature of synap-

tic interactions, we recast voltage-stepping in a general framework, the discrete event

system specification (DEVS). The efficiency of the method is assessed through simu-

lations and comparisons with a modified time-stepping scheme of Runge-Kutta type.

We demonstrated numerically that the original order of voltage-stepping is preserved

when simulating connected spiking neurons, independently of the network activity and

connectivity.

Keywords: simulation, spiking neural networks, adaptive integrate-and-fire, voltage-

stepping, local event-driven, time-driven.

1 Introduction

Computer simulations have become essential to understand the complex dynamics of

the brain. Recently, large-scale simulations of realistic cortical networks have been

undertaken (Izhikevich et al., 2008; Migliore et al., 2006). However, biophysically de-

tailed neuron models have a high computational cost and the difficulty to tune their nu-

merous parameters makes them inefficient for spike timing prediction (Gerstner et al.,

2009). Simpler spiking neuron models of integrate-and-fire type are more suitable for

efficient large-scale neural network simulations. The leaky integrate-and-fire (LIF) is

computationally attractive and amenable to mathematical analysis. Yet, it is too sim-

ple and two key elements have to be incorporated into the model to reproduce the

large range of spiking dynamics exhibited by cortical neurons: nonlinear spike gener-

ating currents that allow for an accurate description of the membrane potential near the

threshold (Fourcaud et al., 2003), and adaptive currents that keep track of the past ac-

tivity of the neuron yielding a considerable increase in neuro-computational properties

(Izhikevich, 2003; Brette et al., 2005). Recently, a class of adaptive nonlinear spiking

neuron models that captures both characteristics has been proposed (Izhikevich, 2003;

Brette et al., 2005; Toubloul, 2008). If v is the membrane potential and w an adaptation

variable, then the time-evolution of the neuron is given by

2



C
dv

dt
= f(v)− w + I + Isyn(t), (1)

dw

dt
= a (b(v − vrest)− w) (2)

with the reset condition v ← vreset and the update rule w ← w + d at firing times

obtained when v reaches a threshold value vth. The parameter d > 0 represents the

spike-triggered adaptation. In (1), C is the membrane capacitance, f is a nonlinear

current-voltage function, I is an external constant input current, and Isyn is the synap-

tic current. In (2), parameter a describes the time scale of the adaptation current, b

describes the sensitivity of w to the subthreshold membrane potential fluctuations and

vrest is the resting potential. The LIF model is obtained using a relaxation function

f(v) = −v. More realistic models include nonlinear spike-generating currents like the

adaptive quadratic model (Ermentrout, 1996; Izhikevich, 2003) obtained for f(v) = v2,

the adaptive exponential model (Fourcaud et al., 2003; Brette et al., 2005) for which

f(v) = −v + ev or the quartic model (Toubloul, 2008) obtained for f(v) = v4 + 2αv.

The class of models described by (1)-(2) has recently attracted a lot of attention mainly

because of its relative simplicity (Izhikevich, 2004), its ability to reproduce a large va-

riety of firing patterns (Izhikevich, 2003; Toubloul, 2008) and its predictive abilities

(Brette et al., 2005). However the relative computational efficiency of the model is

affected by the highly nonlinear dynamics. The numerical errors associated to the dis-

continuities of the membrane potential v at firing times can have severe consequences

on the numerical integration and spurious dynamics can be generated (Hansel et al.,

1998). At the the same time, the addition of an adaptation current can lead to a high

sensitivity to the cutoff value vth (Toubloul, 2009). An accurate numerical scheme

requires a precise estimation of the membrane potential and the adaptation current at

firing times. It is therefore necessary to develop specific integration schemes that treat

correctly the numerical errors at the discontinuities without compromising the compu-

tational efficiency of the model.

Traditional time-stepping methods have to be modified to prevent the loss of accuracy

at the firing times (Hansel et al., 1998; Shelley et al., 2001; Rangan et al., 2007). How-

ever an efficient treatment at the firing times cannot avoid a fundamental limitation

of generic time-stepping methods that is imposed by the smoothness of synaptic in-
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teractions (Shelley et al., 2001) and relatively small time steps, usually smaller than

0.01ms, have to be used in numerical methods limiting the size of the network that

can be simulated accurately. To illustrate our purpose, let us consider the commonly

used exponential synaptic current I i
s = we−t/τiH(t), where w is the synaptic weight,

τi the synaptic time constant and H the Heaviside step function. Exponential synaptic

currents can be reformulated to give an efficient implementation as

τi
dI i

s

dt
= −I i

s (3)

with the jump condition I i
s ← I i

s + w whenever the neuron receives a spike. Due

to the discontinuous nature of the exponential currents, a time-stepping method falls

into an accuracy of O(∆t) and, therefore, a sufficiently small time step has to be used

to correctly simulate the network. This drawback is illustrated in Figure 1.A where a

time step of ∆t = 0.1 ms leads to a spurious synchronous propagation along a synfire

chain of adaptive quadratic integrate-and-fire neurons. The linear interpolation com-

bined with the recalibration of the membrane potential cannot restore the accuracy of

the second order Runge-Kutta methods (RK2) scheme. Artificial synchronizations are

created, leading to an incorrect propagating activity. The correct behavior is however

retrieved for ∆t = 0.05 ms. The choice of a fixed time step for network simulations

causes an antinomic problem. On the one hand, the time step is probably too small for

slowly varying neurons. On the other hand, it may be too large for neurons sharply

increasing their membrane potential near the threshold.

To overcome the crucial problem of determining the correct time step, event-driven

strategies have been proposed (Brette, 2006, 2007; Tonnelier et al., 2007). Event-driven

algorithms naturally deal with the discontinuities in the dynamics and do not require

smooth postsynaptic changes. However they are limited to a small class of spiking neu-

ron models, mainly the LIF and some variants for which exact computation of spike

timings is possible. In a recent paper (Zheng et al., 2009), a new integration method,

the ’voltage-stepping’ scheme, has been proposed for the generic simulation of spiking

neurons. The technique originates from the local approximation of the nonlinear neu-

ron model with a LIF model that allows for event-driven computation where the events

adapt to the voltage variation of the membrane potential. In (Zheng et al., 2009) the

authors have evaluated the efficiency of voltage-stepping for the simulations of single
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neurons. In this note we extend this previous work by considering network simulations

and more complex neurons (nonlinear integrate-and-neurons with adaptation). We pro-

pose a network implementation of voltage-stepping using the Discrete Event System

Specification (DEVS) (Zeigler et al., 2000) and assess its performance through simula-

tions and comparisons with a modified time-stepping scheme of Runge-Kutta type.

2 Voltage-stepping for network simulation

The basic idea of the voltage-stepping approach is to approximate locally the nonlinear

part of the neuronal dynamics by a linear variation so that a local event-driven algorithm

can be used. The approximation is achieved using a discretization of the voltage state

space with a fixed voltage step ∆v. The numerical integration is performed through

successive computations of timings at which a voltage step is achieved. As seen in

Fig. 1.B, this approach induces local events that could be seen as implicit and adaptive

time steps leading to a precise approximation of the firing time. The voltage-stepping

scheme iterates between the following two steps: i) approximate the original nonlinear

neuron model near the current voltage v0 with a leaky integrate-and-fire (LIF) neuron

and integrate formally the equations, and ii) search the exit time at which the membrane

potential reaches v0 ± ∆v and advance the simulation at that time. These steps are

detailed below.

2.1 Voltage-dependent LIF approximation and integration

We recall here the basic steps of the voltage-stepping method presented in (Zheng et al.,

2009) and extend the formalism for networks with multiple synapses. Let us consider

that a given neuron in the network has a membrane potential, v, in the voltage interval

v ∈]v0 − ∆v, v0 + ∆v[ (for convenience we use a voltage step of 2∆v). The original

nonlinear function f(v) is replaced by f̃(v) = −g(v − E), a linear approximation of

f on the interval v0 ± ∆v where g is a voltage-dependent conductance and E a local

resting potential obtained from the linear interpolation (see Appendix A.2). Replacing

f by f̃ in (1) and using (3) lead to the linear differential system

dX

dt
= AX + B (4)
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where X = (Xnew Xsyn)t is the local state vector composed of two blocks

Xnew =



v

w



 and Xsyn =





I1
s

I2
s
...

In
s





describing, respectively, the state of the neuron and the exponential currents with the

different synaptic time constants, τi (note that a change of variable Is ← Is/C has been

made), n is the number of synaptic inputs. The matrix A is a block matrix and B a

vector given by

A =



Anew Asyn

0 Aexp



 , B =



Bnew

0





where the index neu is related to the neuron, syn to the inputs and exp to the exponential

synaptic currents. Here, Anew is a matrix of order 2, Asyn is a 2× n matrix and Aexp a

diagonal matrix of order n, given by

Anew =



−g −1/C

ab −a



 , Asyn =



1 . . . 1

0 . . . 0





Aexp = diag(−1/τ1,−1/τ2, . . . ,−1/τn)

and Bnew is a vector with 2 entries

Bnew =



gE + I/C

−abvr





The formal resolution of the differential system (4) is detailed in appendix A.2 where

the approximation of v(t) and w(t) are analytically given.

2.2 Computation of the events

The second stage of voltage-stepping is to compute the exit time t∗, i.e. the time at

which the membrane potential trajectory reaches the threshold value v0±∆v and enters

a new voltage interval. The voltage-dependent approximation of the dynamics previ-

ously derived can be formally integrated using standard techniques of linear differential

equations and the threshold crossing is rewritten as a root finding problem. The numer-

ical integration is reduced to the computation of roots that define the local adaptive
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time steps of the neuron. However, a standard root-finding algorithm, of Newton-

Raphson type for example, may not converge or converge to a wrong value because

of the non monotonicity of the membrane potential v on the considered interval. We

use here a technique coming from the event detection in hybrid systems (Girard, 2002).

The method is based on the computation of two sequences of lower-approximation and

upper-approximation, ti and ti, of t∗. The method is described in the appendix A.3 and

gives two sequences such that:





ti ≤ t∗ ≤ ti

ti → t∗

ti → t∗

(5)

It has been shown that the rate of convergence of the sequences is quadratic (Girard,

2002) and therefore the computation is very efficient. If the neuron stays in the current

voltage interval, the sequences diverge and there is no exit time, indicating that a steady

state is reached.

2.3 Network discrete-event specification

Several frameworks have been applied to the design of event-driven algorithms for spik-

ing neurons, among them, MVASpike (Rochel et al., 2003) which is based on the DEVS

formalism (Zeigler et al., 2000). The DEVS formalism describes the evolution of sys-

tem components (here, neurons or populations) through 3 main functions :

• δint : update function that returns a boolean indicating if the state of the com-

ponent has changed. For a neuron, it returns true when the membrane potential

reaches the threshold value. δint takes the update time as parameter and performs

the vLIF integration. This function is used to update the state of the neuron after

the reception of a spike or after a local event.

• δext() : external function that manages the incoming external outputs (incoming

spikes). δext takes the incoming spike time and synaptic port as parameters. It

updates the state of the neuron (by calling δint()) before updating the synaptic

currents.
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• ta() : advance function gives the time to the next internal transition. In the case of

the local event driven scheme, it performs the new vLIF approximation (see A.1)

and returns the next local event time (by taking voltage stepping into account).

An additional function : ’reset’ is used to reset the state of the neuron after the emission

of a spike (v ← vreset, u← u + d for adaptive models).

MVASpike handles the events with an event-driven simulation algorithm which sorts

the events, updates the neurons and propagates the spikes. The general event-driven

simulation is sketched in algorithm 1 below where we also incorporate possible con-

nection delays between neurons:
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enumeration EventType {δint event; δext event;};

structure Event {Neuron neuron; double time; EventType type;};

PriorityQueue pq ;

for each neuron n in the network do
Event e(n, n.ta(), δint event);

pq.insert(e);
end

while (!pq.isEmpty()) do
Event e1 = pq.dequeue() ;

if (e1.type == δint event)/*in the case of a local event*/ then

if (e1.neuron.δint(e1.time))/*check if e1.neuron triggered a spike*/ then

for each post-synaptic neuron n connected to e1.neuron do
Event e2(n , e1.time + connection delay, δext event);

pq.insert(e2);
end

reset (e1.neuron);
end

else
e1.neuron.δext(e1.time, event port);

/*reception of a spike*/
end

Event e3(e1.neuron.ta(), e1.neuron, δint event);

pq.insert(e3);
end

Algorithm 1: General event driven algorithm for the simulation of networks of spik-

ing neurons.

In traditional event-driven simulations of spiking neural networks, the events corre-

spond to the reception or the emission of a spike (Mattia et al., 2000; Brette, 2006,

2007; Tonnelier et al., 2007). In our scheme, the events are not only firing times or

spike receptions but also the times t∗ at which the voltage v reaches a new voltage

interval v0 ± ∆v. Therefore the DEVS approach can be used to design spiking neu-

ral network simulators and one has to distinguish between two types of events: global

events associated to spike emission or reception and local events corresponding to a sig-

nificant variation of the membrane potential of the neuron. Note that this event-based
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formalism easily handles the discrete nature of synaptic interactions and allows an ef-

ficient treatment of the discontinuities. The membrane fluctuations due to presynaptic

spikes are directly treated within the current voltage interval unlike modified Runge-

Kutta methods where spike-spike interactions are not considered1. As noted in (Rangan

et al., 2007), the first spikes computed within a large time step may jeopardize the sim-

ulation via spike-spike interactions in a way that the remaining spikes within the time

step are spurious.

3 Numerical results

The local event-driven method resulting from a linear interpolation of the nonlinear

spike-generating current at the boundaries of a voltage interval (section 2.1) induces

a second order numerical scheme VS2 (Zheng et al., 2009). We compare the perfor-

mance of VS2 to a standard fixed time step integration scheme of order 2. The modified

Runge-Kutta method with linear interpolation of the spike time and a recalibration of

the membrane potential after the reset (mRK2 hereafter) is a second order scheme for

the simulation of neural networks with smooth synaptic interactions (Shelley et al.,

2001; Hansel et al., 1998). The simulations are done with an extended version of the

MVASpike software that incorporates the local-event driven method using DEVS. The

MVASpike implementation of VS2 and mRK2 can be downloaded at

http://webloria.loria.fr/∼kaabimmo/index.php?n=Main.Software.

We simulate two networks of N = 101 all-to-all coupled neurons. The inhibitory

(resp. excitatory) network has inhibitory (resp. excitatory) connections randomly dis-

tributed in [−2, 0[ (resp. ]0, 2]). The neurons are adaptive quadratic integrate-and-fire

neurons given by (1)-(2) with f(v) = k(v − vr)(v − vt) and the following parameter

values : k = 0.7, vr = −60, vt = −40, vreset = −50, vth = 35, C = 100, I = 70,

a = 0.03, b = −2, d = 100. The neurons are coupled with exponential synapses

given by (3); each neuron receiving 50% of fast synapses, τ1 = 5ms, and 50% of slow

synapses, τ2 = 30ms.
1In Runge-Kutta methods, the spikes produced within the current time step are taken into account at

the beginning of the next step, thereby neglecting possible interactions.
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We evaluate the efficiency, i.e. accuracy versus time cost, of the algorithms as fol-

lows. The two networks are simulated for 2 seconds of biological time. The exact spike

times are approximated using a time-stepping simulation with a very small time step of

10−6ms. We compute the error associated to the jth neuron as:

Ej =
1

Mj

�

f

|tf − tap|

where Mj is the number of spikes, tf are the exact spike times and tap are the approx-

imate spike times obtained by the VS2 or the mRK2 schemes. In all the simulations

the time step or the voltage step are sufficiently small so that no spike is missed. We

measure the network error of a simulation as the average error over the neurons:

E =
1

N

�

i

Ei

The network error for the two test networks as a function of the time cost of the al-

gorithms (duration of the simulation) is shown in Fig. 1. C-D. It is clear that, for a given

simulation duration, the VS2 scheme gives a more accurate description of the spiking

activity. Moreover, when a high accuracy is required, VS2 significantly outperforms the

mRK2 method. This is explained by the inherent properties of the event-driven scheme

obtained from the voltage-stepping technique where the time step is implicitly adapted

to the membrane potential fluctuations. The variable time step allows us to speed up

simulation when the neurons are at rest or weakly active, and to increase precision when

the neuron presents strong variations. Moreover, the time steps are defined individually

and independently for each neuron in the network and therefore the quickest varying

neurons do not slow down the simulation of the network.

In Figs. 1. E-F, the error is plotted as a function of the voltage step and the time step

in a logarithmic scale. The orders of the methods are estimated as the slopes of the linear

regressions in the log-log plots. We observe that VS2 maintains a second order accuracy

for the numerical simulation of connected networks. Numerically, the order is 2.06 for

the inhibitory network and 2.44 for the excitatory network. In contrast, the error of the

mRK2 scheme decreases linearly with the step-size and therefore mRK2 behaves like

an Euler scheme (order of 1.003 for the inhibitory network and 1.166 for the excitatory

network). The accuracy of the mRK2 scheme is degraded by the nonsmooth nature of
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the synaptic interactions. A classical second order Runge-Kutta scheme produces an

error having the following form :

e = 0(∆t2)� �� �
integration error

+ synaptic interaction error

The synaptic interaction error (denoted sie hereafter) is a first order error composed of a

spike detection error and a spike reception error. The latter is an error generated by the

artificial delay due to the spike propagation introduced by the time-stepping scheme.

Therefore,

sie = 0(∆t)� �� �
spike detection error

+ 0(∆t)� �� �
spike reception error

The spike detection error can be decreased by one order by using a linear interpolation

to estimate the correct spike time (Shelley et al., 2001; Hansel et al., 1998). In con-

trast, the spike reception error can be avoided by using synaptic delays (Morrison et al.,

2007) or can be decreased by several orders using sufficiently smooth synaptic interac-

tions (Shelley et al., 2001). Therefore, unlike voltage-stepping, the error after one spike

is of order ∆t and a smooth synaptic interaction or synaptic delay is required to restore

the accuracy of the scheme (here, the existence of the derivative at t = 0 is necessary to

obtain second order accuracy). For these reasons, the mRK2, and higher order schemes

of Runge-Kutta type, perform like a first-order method for the simulation of networks

with exponential synaptic currents (Eq. 3).

We then study whether the order of the methods is affected by the network activity

(average firing rate) and connectivity (probability of connection). As shown in Figs.

1. G-H, the second order of the VS2 method does not depend on the network firing

rate and the level of connectivity. The mRK2 method behaves as a first order method

independently of the network activity (Fig. 1 H). We note however that the order of

mRK2 increases for low probabilities p of connection (Fig. 1 H), as mRK2 is a second

order method for uncoupled neurons. For low level of connectivity, the number of

synaptic events decreases and the contribution of the first order synaptic interaction

error becomes less important. Nevertheless, mRK2 is not a second order method for the

simulation of connected networks.
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4 Conclusion

Recent efforts have been made to develop efficient schemes for the numerical simula-

tion of spiking neural networks. Exact methods (Brette, 2006, 2007; Tonnelier et al.,

2007) where the spike timings are found exactly (up to machine precision) and fast

methods (Rangan et al., 2007) have been proposed. On the one hand, these methods are

based on some analytic expressions for the state variables and are therefore limited to

simple models (leaky or quadratic integrate-and-fire). On the other hand, the accuracy

of generic time-stepping methods (Hansel et al., 1998; Shelley et al., 2001) are severely

limited by the smoothness of synaptic interactions and are not computationally efficient

in network simulations due to unnecessary updates of inactive neurons.

An alternative technique, the voltage-stepping method, has been recently proposed for

combining the genericity of time-stepping schemes and the efficiency of event-driven

approaches (Zheng et al., 2009). Promising results were achieved for the simulation of

single neurons. Nevertheless, performance comparison on network simulations was still

lacking. Here, we assessed the performance of voltage-stepping by considering network

simulations and more complex neurons (quadratic integrate-and-fire neurons with adap-

tation, coupled with multiple synapses). For network simulations, the discrete event

system specification formalism was applied to voltage-stepping. We demonstrated nu-

merically that the method outperforms time-stepping schemes of Runge-Kutta type in

terms of speed and accuracy. The original order of voltage-stepping is preserved in

network simulations, independently of the network activity and connectivity. This out-

come results from the efficiency of the activity-dependent time discretization implicitly

generated by the voltage-stepping scheme for each neuron in the network.

The numerical integration is reduced to root-finding methods for which efficient tech-

niques exist. Although the complexity increases with the number of synaptic currents,

it is still manageable in practice as most neural network models do not use as many

as four types of synaptic currents. Finally, our work can be extended to conductance-

based synaptic currents that are more biologically plausible. This extension could be

done through a complete linearization of the differential system and will require a con-

ductance step in addition to the voltage step.
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A Appendices

A.1 The vLIF model

The linear interpolation of f(v)/C at the boundaries of the voltage interval v0−∆v and

v0 + ∆v is f̃(v) = −g(v − E) where

g = −f(v0 + ∆v)− f(v0 −∆v)

2C∆v

and

E = v0 −∆v +
f(v0 −∆v)

gC
.

A.2 Formal integration of the vLIF network

The solution of system (4) is of the following form

X(t) = C∗
1(t)X∗

1 (t) + C∗
2(t)X∗

2 (t) +
n�

i=1

Ci(t)Xi(t)

X∗
1(t), X∗

2(t) and the Xi(t) are determined from the eigenvalues and eigenvectors of

A.

The solution is obtained by solving dX
dt = AX and applying variation of constants

method to solve dX
dt = AX + B (if A is invertible).

Let ∆ = (a− g)2 − 4ab
C , the eigenvalues of A , for ∆ > 0, are

λ∗1,2 = −a + g

2
±
√

∆

2
λi = −τ̄i 1 ≤ i ≤ n

for ∆ > 0, where τ̄i = 1/τi. If ∆ < 0, λ∗1 and λ∗2 are complex conjugate that we write

λ∗1,2 = α ± iβ. The eigenvectors of A are

e∗1 =





γ1

1

0
...

0





; e∗2 =





γ2

1

0
...

0





; ei =





γi
v

γi
w

0
...

1 (on the (i + 2)th element)
...

0




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where

γi =
a + λ∗i

ab

γi
v =

a− τ̄i

(a− τ̄i)(g − τ̄i) + ab
C

γi
w =

ab

(a− τ̄i)(g − τ̄i) + ab
C

We define I0 = gE + I
C and R = −abvr. The membrane potential v(t) and the

adaptation variable w(t) are given by

• if ∆ > 0

v(t) = cstv + γ1C
∗
10e

λ∗1(t−t0) + γ2C
∗
20e

λ∗2(t−t0) +
n�

i=1

Ciγ
i
ve

−τ̄i(t−t0)

w(t) = cstw + C∗
10e

λ∗1(t−t0) + C∗
20e

λ∗2(t−t0) +
n�

i=1

Ciγ
i
we−τ̄i(t−t0)

where 




cstv = γ1(Rγ2−I0)
λ1(γ1−γ2) + γ2(I0−Rγ1)

λ2(γ1−γ2)

cstw = Rγ2−I0
λ1(γ1−γ2) + I0−Rγ1

λ2(γ1−γ2)

C∗
10 = v(t0)−cstv−

�n
i=1 Ciγi

v−γ2(u(t0)−cst2−
�n

i=1 Ciγi
w)

γ1−γ2

C∗
20 = γ1(w(t0)−cstw−

�n
i=1 Ciγi

w)−v(t0)+cst1+
�n

i=1 Ciγi
v

γ1−γ2

Ci = Ii
s(t0)
C

• if ∆ < 0

v(t) = cstv + eα(t−t0)

��
C∗

10

a + α

ab
+ C∗

20

β

ab

�
cos(β(t− t0)) +

+
�
C∗

20

a + α

ab
− C∗

10

β

ab

�
sin(β(t− t0))

�
+

n�

i=1

Ciγ
i
ve

−τ̄i(t−t0)

w(t) = cstw + eα(t−t0)[C∗
10cos(βt) + C∗

20sin(β(t− t0))] +
n�

i=1

Ciγ
i
ve

−τ̄i(t−t0)

where





cstv = vr − γβ+Rα
b(α2+β2)

cstw = −γβ+Rα
α2+β2

C∗
10 = w(t0)− cstw −

�n
i=1 Ciγi

w

C∗
20 = ab

β (v(t0)− cstw −
�n

i=1 Ciγi
v)− a+α

β (w(t0)− cstw −
�n

i=1 Ciγi
w)

Ci = Ii
s(t0)
C
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A.3 Computation of local events

Let d(t) be the distance from the membrane potential v(t) to the boundary of the voltage

interval [v0 −∆v, v0 + ∆v]. We have d(t) = min(dl(t), du(t)) where

dl(t) = v(t)− v0 + ∆v, and du(t) = v0 + ∆v − v(t)

A local event in our scheme corresponds to an exit time t∗, i.e. the smallest t > 0 so

that v(t∗) = v0 ± ∆v. The problem is equivalent to




d(t) > 0 ∀t ∈]t0, t∗[

d(t∗) = 0
(6)

To solve this problem, successive upper-approximations and lower-approximations, ti

and ti, of t∗ are constructed. We start with t0 = t0 and t0 = +∞. Sequences are derived

from an upper and a lower approximation of de(t) (e = l, u) on [ti, t
∗] defined by two

quadratic polynomials:

de(t) ≤ Pe(t− ti) = de(ti) + v�(ti)(t− ti) +
(t− ti)

2

2
M (7)

de(t) ≥ pe(t− ti) = de(ti) + v�(ti)(t− ti) +
(t− ti)

2

2
m (8)

where

m ≤ v��(t) ≤M ∀t ∈ [t0, t
∗].

We define the new values at the next iteration as




ti+1 ← ti + ri

e

ti+1 ← ti + Ri
e

where ri
e and Ri

e are the smallest positive roots of the polynomials pe and Pe, respec-

tively. If Pe has no positive roots, we set ti+1 = +∞. Note that two lower and two

upper approximations of the exit time are constructed (corresponding to a possible exit

at v0−∆ and at v0−∆) and a one sequence (e = l or e = u) can be removed if its lower

approximation is greater than the upper approximation of the other one. Moreover, after

an iteration, one may keep only one value for the lower (upper) approximation of the

exit time taking the minimum of the two values.

To compute the bounds, m and M , of v��(t) one may observe that

v��(t) = cX ��(t) = c(A2X(t) + AB)
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where c = (1, 0, . . . , 0). Let {x1, x2, .., xp} the 2n+2 vertices of the hyper-rectangle

containing the state-vector X(t), we can write

X(t) =
i=p�

i=1

λi(t)xi,
i=p�

i=1

λi(t) = 1, ∀iλi ≥ 0.

Consequently, we have




m = minp

i=1[c(A
2xi + AB)],

M = maxp
i=1[c(A

2xi + AB)].

The {xi}1≤i≤2n+2 are obtained using





v0 −∆v ≤ v(t) ≤ v0 + ∆v

winf ≤ w(t) ≤ wsup

min(0, I i
s(t0)) ≤ I i

s(t) ≤ max(0, I i
s(t0)) ∀1 ≤ i ≤ n

We introduce an additional parameter ∆w so that winf ≤ w(t) ≤ wsup ∀ t ∈ [t0, t∗]

with





winf = w0 −∆w

wsup = w0 + ∆w

Even if the variation on w is not important, winf and wsup are required to run the

algorithm. In practice, one chooses a large ∆w, e.g. = 10.
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Figure caption.

Figure 1:

(A) Spike raster plot of synfire chain activity. The network consists of 10 lay-

ers, each one having 50 adaptive quadratic integrate-and-fire neurons (1)-(2) where

f(v) = k(v − vr)(v − vt) and k = 0.7, vr = −60, vt = −40, vreset = −50, vth = 35,

C = 100, I = 0, a = 0.03, b = −2, τ = 5, d = 100. Successive layers are fully con-

nected with 80% excitatory (random weights in [13,15]) and 20% inhibitory (weights =

-5) synaptic connections using exponential synaptic currents. Spike times are computed

with a modified second-order Runge-Kutta (mRK2) method with ∆t = 0.05ms (plot at

the top) and ∆t = 0.1ms (plot at the bottom). For ∆t = 0.1 ms, the activity propagates

along the chain. The correct behavior is found with ∆t = 0.05ms when the activity

vanishes after the 5th layer.

(B) Schematic view, at the neuron level, of the voltage-stepping technique. The

voltage state-space is discretized with a voltage step ∆v. The state of the neuron is

updated each time that a voltage step is completed, hence producing adaptive time steps

that follow efficiently the trajectory of the neuron: time steps decrease near the firing

times and increase during slowly varying periods.

(C) Network error (ms) versus time cost (s) for the numerical simulation of the in-

hibitory network with the VS2 (∆v ∈ [0.05, 0.1]mV ) scheme (plain curve) and mRK2

(∆t ∈ [0.002, 0.05]ms) scheme (dashed curve).

(D) Same legend as in panel C but for the excitatory network.

(E) Log-log plot of the inhibitory network error as a function of the voltage step

∆v and the time step ∆t. The slopes of the regression lines indicate the orders of the

methods. The slope for VS2 (plain line) is approximately 2 indicating that VS2 is a

second order method for network simulations. In contrast, the slope for mRK2 (dashed

line) is approximately 1 revealing the loss of the original second order mRK2 scheme

when simulating a network with non-smooth synaptic interactions.

20



(F) Same legend as in panel E but for the excitatory network.

(G) Orders of the VS2 and mRK2 methods as a function of the network activity

(average firing rate). The network consists of N = 100 adaptive quadratic integrate-

and-fire neurons with parameters given in the section ’Numerical results’. The neurons

are connected all-to-all and the weights are randomly drawn from the interval [1, 2].

Simulations were performed for different input currents I ∈ [60, 150] mA so as that the

network average firing rate is within the range [50, 90] Hz. For each network activity,

the network error is plotted as a function of the voltage step for VS2 and the time step

for mRK2. The order of the method is then estimated as the slope of the linear regres-

sion in the log-log error plot. The plain and dashed curve represents the order of VS2

and mRK2, respectively.

(H) Orders of the VS2 and mRK2 methods as a function of the network connectivity

(probability of connection). Same legend as in panel G except that the input current

I = 60 and the synaptic weights w = 2. The connectivity is randomly generated with

probability p. The plain and dashed curve represents the order of VS2 and mRK2,

respectively.
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