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Abstract. We have considered infinite systems of nonlinear ODEs on the one-dimensional
integer lattice which describes the activity in an excitatorily coupled network of excitable
cells. For an ideal nonlinearity, we calculated the speed of propagation of an activity and
derived the condition for its existence. We also studied the existence and stability of the trav-
eling wave solution and gave, in the simplest case, its explicit expression. We established
that some unstable traveling waves lead to propagation with an enlarging profile defined by a
front velocity and a wake velocity. We generalized some results to inhomogeneous medium
and network with long range connections.

1. Introduction

In neurophysiology, mathematical models use ordinary differential equations to
describe the behavior of an isolated neuron or a network of connected neurons
through synapses or gap-junctions. The model developed by Hodking and Huxley
[12] is an example of such an ODE system which is thoroughly used and studied.
Since then, many other models have been developed, based on the biological de-
scription of specific electrical currents in cellular structures, or on a mathematical
simplification of complete systems. In the present paper, we study a neural network
whose neurons are described by a simplified model motivated by biological data on
piriform cortex [3]. Our model is composed of interconnected pairs of excitatory
and inhibitory neurons described by :

v = =0 + o @) (U — ) + i Pu) (Ul — v)

U = —u-+ cei@(v)(uﬁg —u)

1)
wherev andu denote the activity of the excitatory and inhibitory neurons, re-
spectively; the positive coefficients,, c;e, cei desc‘ribe t_he synaptic connections
between excitatory and inhibitory neurons augfl, u,, ug, denote the Nernst po-
tential of ions involved in the synaptic current. We assume iffat> 0, u§; >

0, u’jj < 0 (throughout this paper, numerical simulations were carried out with

u¢y = ugl, = 100 andul¢ = —20). The functiond will be clarified later. Model
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(1) is derived from the study of spatially homogeneous solutions of a cortical net-
work model [21]. Such a model is known as a neural oscillator where each neuron
stands for a local population of neurons [13].

We were interested in the activity of the neural network composed of neural oscilla-
tors described by equation (1) connected through synaptic coupling. The equations
are:

v = —v + (Cee,k(pk(vk) + ZCj,k‘Pk(vj))(uif,,k — )

J#k
+Cie ke Pre (i) (g . — Vi) @
Uy = —ug + Coi k PV (UG, — ur) ke

where the parameter of tit¢" component is indexed byandc; ; > O describes

the synaptic connection frofronto ;. It should be noted that homogeneous media

is obtained when the* component does not dependioiWe connect neural oscil-
lators into feed forward arrangement and thus take= 0 fori > j. This idea of
connecting the neuronal population into feed forward arrangement is motivated by
biological considerations [1], [8]. Moreover, the choice will makedowill imply

that backward connections neither affects the front of the wave nor its velocity, but,
naturally, its shape.

Our purpose is to study the propagation of an activity in the excitable medium
described by (2). More precisely, we investigated an excitatory propagation which
switchesvy from a rest potential to a subthreshold value. Sincstands for the
synchronous activity of neurons, which representsith@euronal population, our
study deals with the propagation of synchronous activity in neural network. We
were particularly interested in solutions that travel at constant velocity with fixed
shape, known as traveling wave solutions. There is a vast literature on waves in bi-
ological systems, particularly in continuous media with a diffusive coupling. Most
papers involve the study of reaction-diffusion equations like the FitzZHugh-Nagumo
[10], [17], [19], [14] or Fisher-KPP [16], [20] equations. For more references see
[18], [11] and [22] for a review of results on front propagation in reaction-diffu-
sion-advection equations. In the present work, propagation appears in a discrete
medium and the study is substantially more difficult [15], [23], [24], [5]. For a
large class of lattice dynamical systems, existence and stabilty results are obtained
in [7], nevertheless our model does not complete their assumptions. Beyond the
most elementary properties, it is generally difficult to obtain further results, partic-
ularly for heterogeneous media. One approach is to consider idealized nonlinearity
for the function® [17], [2], [5], [6]. In such a case, system (2) will support explicit
calculations which can provide some results on propagation and its failure.

This paper is organized as follows. In section (2), we consider a simple network
with nearest neighbor coupling which allows us to introduce some definitions and
derive some basic properties. We find the conditions for the existence of propa-
gation and derive an analytical expression for its velocity. Specifically, we study
traveling waves and give some stability results in a few simpler cases. In section (3)
and (4) we extend some results to inhomogeneous media and long range connection
respectively. Section (5) is devoted to a discussion.
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2. A simple architecture

We consider a network composed of identical neural oscillators which we will
call the components of our network. The components are coupled with their near-
est neighbor with the same synaptic connection. We study the infinite system of
coupled differential equations:

v = —Vk + (CeeP(WR) + € PWr—1)) (Ul — V&) + Cie P(ur) (uly — i)

. 3
—up + cei(b(vk)(uzi —uy) L keZ ®)

uj

The lattice differential equation (3) is a nonlinear infinite-dimensional problem and
it is generally difficult to obtain rigorous results, apart from elementary properties,
for such systems with a general nonlinear funcior©ne approach, is to consider
idealized nonlinearities which retain the essential feature of our model. Specifically,
we chose:

D(x) = H(x —um)

whereH denotes the Heaviside function :

0, 0,
H(x)z{l 1= 0

andu,, is a so-called "detuning” or threshold parameter. Sihégdiscontinuous,
it must be stated what is meant by a solution of equation (3). As described in [5],
we consider as a set-valued function :

®(v) is a singleton set i # u,y,
®(u,p,) is the compact interval [L]

By a solution of (3), we meatw(r), u(r)) € [°(Z, R?) for which each coordi-
nates function(vg (¢), ux (¢)) is absolutely continuous, and satisfies the differential
inclusion :

V(1) € =k + (Cee P(k) + ¢ P(vk-1)) UGy — Vi) + Cie P(uk) (1l — Vi)
up(t) € —ug + cei P(vi) (ugy — )

A traveling wave solution, denoted t.w.s, with velocity> 0, is a bi-infinite se-
quence (v (1), uk(t))},;fioo, solution of (3), for which there is a coupl§,, S;) €
(CO(R, R))? such that :

Vi (1) = Se(k — ct)

ui(t) = Sk — cr) )

The conditions ato will be considered later. We denaje= k — ct. Substitution
of (4) into (3) yields :
—¢Sy(E) = —Se(§) + (Cee P(Se(§)) + ¢ P(Se (6 — 1)) (ugy — Se(§))
+eie D(Si (§)) (ulf, — Se(§))

. 5
—cS{(E) = =Si(§) + cer P(Se(§)) (g, — Si (&) ©)
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This equation may be considered as a differential equation with a delay. One can
make a corresponding characterization of a solution as we did for equation (3). For
£ such thatS, (§) = us;, (or S;(§) = us;,) , the derivatives, (&) (S!(£)) has a jump
discontinuity; elsewhere the solutionGé and satisfies equation (5) in the classical
sense.
We suppose thatk, (vg, ux) = (02, u%) and(v, ux) = (v1, ul) are two asymptot-
ically stable fixed points for system (3) (possibly the same). We impose boundary
conditions :S lim S,(&) = v? andé_ Iier S.(¢) = v° similar conditions hold

——00 —+00

for S;. In the phase planes,, S;), these solutions correspond to an heteroclinic or
homoclinic orbit.

To determine the fixed points of equation (3), we define four configuratiéss,

E1, E2, E3 which represent a possible fixed point for a given component. Each
state stands for a point iR?:

Eo: (0,0)

cgeugfl cg,-uﬁz
1+C(’E ’ 1+Cei
El ' . opee y .. e —
cggueq+c,eueq Ceillgy
I+ceetcie  1+cei
) cruee
Ez: (52,0)
(Ula Mla) _ (Cee+cr)ug; Ceiuzi
’ I4ceetcr ° 14coi
E3: ) ) )
(vlb ulb) _ (CeetCr)Ugg+Ciellg  Ceillgg
’ 1+Cee+cr+cie ’ 1+Cei

We give a specific notation faE3 since it plays an important part in t.w.s charac-
terization. Let us define three boolean conditiahs C», C3 associated with the
statesE1, E2, E3 which ensure the existence of the corresponding fixed point:

Ceell®S

eq H . Uth
Cr - 1+cee = Uth if Cei < ugfi—u,h
1 cgeugg-'rc;euéf[ th .
TFcootcn > Urh otherwise
C . Ct‘”gg
2 T+c, < Uth .
v >y, if cpj < =k
Cs: Ueg —Uth
v >y, otherwise

The predicate C;=true" means E; could be taken as a possible fixed point for
the component in the chain". Let us consider the graph G depicted in Fig. 1.
Given an initial statesg € G, we call a trajectory of grapliy a double infinite
sequence...,s ,...,S_1, 50, 51, ..., Sk, ...) obtained as follows : according to
conditions(C;);=1,2,3, increasing indexes in the sequence are given by following
the black arrows and the decreasing indexes in the sequence are given by following
the reverse way in Fig. 1. The following proposition holds:

Proposition 1. A fixed point of system (3) is a trajectory of graph G. All fixed points
are stable.
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Fig. 1. Graph G to calculate fixed points.

Proof. Taking®(x) = H(x — u,;) in equation (3) yields the first part of the prop-
osition. Near a fixed point, the system (3) is :

V() = —vr(t) + g (ugy — vi(0) + Bl — v (1))

uj (1) = —ur(t) + vy — ux(0))

where(ag, Br, vk) € Ri. Hence, the result follows. O

Before investigating t.w.s, we studied the general case of the propagation of
an excitatory activity. Initially the system (3) is in its resting state defined as :
Vk, (v (0), ux (0)) € Eo which readsu;(0) = ux(0) = 0. It can be seen that the

domain{[ =, u,] x [0, us]}, belongs to the domain of attraction {f, 0.

We prove the following result:

Theorem 1. A necessary condition for a propagation of excitatory activity is

Uth

— 6
cr > prr— (6)
If coi < # this condition is sufficient.
q 1
When propagation occurs, the speed of the propagation is :
1
c= tor . (7)

In (—prtea
cr (UGG —ush)—Ush

Proof. An activity emerges in the network if there is a timfeand an index such
thatv; (+*) > u,,. We may assume, without loss of generality, that= 0 and
i = 1. Letr; € Ry besuchthat:

vt € [0, 11], v1(t) > usp

Through the synaptic coupling., this component excites a second one. et
be the activity of this second component such that0), u2(0)) = (0, 0). The
excitation propagates if therefis= inf{¢, vo(t) > us}.
Fort < r1 and whileva(¢) < u;,, we have:
Cruzg —(14c
1) = 1 _ ( +Cr)t
v2(t) 7 Cr( e )

Then a necessary condition for propagatio%ﬁ%f— > us, Which gives the condition
(6). Under this condition, we obtafn= % which yields (7). The propagation of the
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excitation is achieved ify > % This condition is still fulfilled when the excitatory
activity is greater than,,, in the wake of the front. If (6) holds anddf; < - Mtk

L
eqg —Uth

we havev® > u,;, which implies thatEs is a fixed point. Then a solution which
connectg0, 0) to (v14, u1%) satisfies the condition > % In the next paragraph,

we give an explicit expression for such a solution which corresponds to a particular
t.w.s. U

Remark(1) : From the proof, the quantiélrepresents the necessary time for an ex-

citatory population to reaak . Moreover, forat.w.s, we have;;(t+%) = up_1(t)

for all k andz.

Remark(2) : If we excite the excitatory population through an external infut,

we find the same condition (6) by changifginto i;.

Remark(3) : In the case, < uﬁz“j'uth, no propagation can occur all over the net-
work ; this phenomenon is reported as "propagation failure" [15].

Note that the velocity of a propagation does not depend on its shape; solitary pulse
or multiple pulse wave have the same speed. Moreover the velocity is given by
initial excitation front and is independent of the inhibition. For large connection
strength, expression (7) yields to a linear relationship between speed and synaptic
strength. A simple calculation gives:

14, u 1
= ugg a - "55} 2 + e(a)
In ( ) uée —u (In ( ))
wtg ) g Gee 2

where lim e(é) =0

cr—>+00

For smallc, an asymptotic expansion is not relevant since no propagation occurs.
We then turn to t.w.s . First, we define more precisely the boundary conditions. We
suppose that, satisfies (6). Then the conditiary is still fulfilled if c,; < —*

uﬁg —up "
From graph G (Fig. 1), the two configuratioRs and E3 are of particular interest
since only these two configurations are directly connected to themselves. These

states define spatially homogeneous elemeantsi;); € [°°(Z, R?) by :

v=u,=0 VkeZ
and

Urh

usl —uth Ceiugii
eq Uk = Toos Yk € Z

V1 if o <

vl elsewhere

Vg =

which are stable equilibrium solutions of (3). Then it is natural to impose the
boundary condition

lim S,(6) =0
§—+o0

lim S;¢)=0 ®
E—>+o00

The existence of two stable homogeneous states, incites us to consider two types
of t.w.s specified in the following statement:
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: lim Se(s) =0
L . ——00
Definition 1. Wave of type | is a t.w.s such that : lim S;(€) =0
E——o00
lim S,(¢) = v or v

. E£——00

Wave of type Il is a t.w.s such that * lim $:() = ul or u®®

E——00

One expects to find wave of type Il in bistable medium. More precisely, from
theorem 1, the following proposition holds:

Proposition 2. A wave of type |l exists if,; < ug,.”ihu . Otherwise a necessary and
eq

sufficient condition for its existenceid” > u;),

We recall that the condition that there be a wave of type | is that the time during
which S, > u,, is greater thar%, with ¢ given by (7). Let us examine some simple
waves which verify the following property :

Property 1.There are at most two values ®&uch thatS, (§) = uyy.

When property 1 is fulfilled, three cases are possible : standing wave (there is no
value foré such thafS, (¢) = u,), traveling front (one value such th&t(¢) = u,;)

and traveling pulse (two values such tSat¢) = u,,). We define¢;, .. &...) €

[—o0, +00]? such thatgt,,, = min{é : S.(&) = u,} and&’, = min{g

& > &7, andS,(§) = u,,}. Because of the translation invariance of t.w.s we may
choosé€,, . = 0. Then, type Il wave is obtained whef), = —oo. However, the

condition that there be a type | reags, < —1. To go further, we see that the
wave front is given by :

cruss

&
+ 1+L‘(r]

Cr”g; 4cr
: Zl{i((g)):g L 0<g <15 == e

Si(6)=0

)
where we assume thgf. < —1; otherwise there is no wave since the continuity
of the solution at = &7 . + 1 cannot be to obtained. Such a wave is reported as
a traveling excitation of sharp type sinsg(1*) = 0 andS,(17) # 0. Using the
continuity of S, até = 1 and writingS,.(0) = u,;, we again find formula (7) for
the wave speed and the necessary condition of existenceg¢@valuated from the
wave front and its value does not dependon u1). Relations (9) give the general
expression for an excitatory propagation even if it does not correspond to a t.w.s
{Se(j — 1), Si(j — en)}.

We explicitly calculate in the appendix all possible cases for the t.w.s which verify
property 1. This is illustrated in Fig. 2a—f.

Remark(1) : For waves of type I, the retrieval time is parameterized by the wave
speect. More precisely, the time for halving the activitiescim 2.

Remark(2) : The different expressions found for the wave equation in the appendix
underline the importance of the potential parametégsu’;fj, u‘ef; associated with

the weight into the following combinationgc;, Ugg), (Cee, Ugg), (Cee + Cr, Ugy),
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Fig. 2a—f. The different shapes of t.w(;(¢), ux(¢)) = (S.(k — ct), S;(k — ct)). The dot-

ted lines represent the characteristic points underlined in the wave analysis. The threshold,
u,, 1s equal to 30 and parametess, c.., c;., c.;) are equal tql, 0.4, 0.4, 0.4) (a andb),
1,1,1,1) (c), (1,1,0.3,1) (d), (4,0.5,15,3) (e), (10, 2, 15, 3) (f). These wave patterns
correspond to the different kinds of t.w.s obtained from equation (5). The derivation of these
solutions is given in the appendix.

(Ceis ui,f]), (Ceis ugf]) and(1, 0) (the last one corresponds to the relaxation dynam-
ics). The difference between the barycentre of some of themugndive the
classification of the different wave behavior obtained in the appendix.

From the appendix, we note that although cases 1 and 2 are exclusive, subcases
1.1and 1.2 or 2.1, 2.2 and 2.2 may occur simultaneously (see Fig. 2a and Fig. 2b).
This means that bistable medium supports traveling front, which is not surprising,
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Fig. 3a, b. Traveling wave solution with®(x) = 5 ug = 30,1 = 0.2. Parameters

1
Ax—ugp

(cr» Cee» Cies Coi) @re equal tab, 6, 10, 10) (a), (1, 0.4, 0.4, 0.4) (b). This figure illustrates
continuous t.w.s similar to those depicted Fig. 2a.

but it also supports traveling pulse. It is also noted that for waves of type Il (i.e
&, = —o0) the traveling wave is not necessarily monotone (see Fig. 2c).

One may wonder what happens in a more regular case for the furetidnmer-

ical simulations show that similar t.w.s occurs. In Fig. 3a, Fig. 3b, we depicted the
wave of type | and type I, respectively, obtained @) = m It can be
shown that these solutions aré&°.

Depending on initial conditions and parameters, more complex waves may ap-
pear. Such waves do not verify property (1) since there are more than two values for
& such thatS, = uy, (or S; = uyy,). In these configurations, an oscillatory behavior
in the wake of the wave (Fig. 4a) or multiple pulses (three pulses in Fig. 4b) occur.
In Fig. 4a the excitation of the inhibitory population allows it to reagh How-
ever, since,; is close to—**— the inhibitory population does not retain a high

usy, —ush
activity level and cannot ﬂilnhibit the excitatory population enough. Therefore no
second pulse occurs. In Fig. 4b, inhibition is strong enough to produce wave trains
and other numerical simulations reveal periodic wave trains. The relative strength
of the parametet;. implies a fast recovery time which gives birth to complex wave
patterns.

Moreover, apart from the cases studied, there are propagations which are not
t.w.s. Such propagations present a profile that evolves during time. We obtain the

following results :

Proposition 3. — Forc,; < uee“ﬁ’uth , wave of type | is unstable. In this case, there is
eq

a propagation of a "growing pulse" such that (i) the velocity of the front is given
by (7) and (i) the velocity of the wake is asymptotically given by :

1
C = _ Lt Ce (10)

n vla—yple
ugp—vle

whereple = e
v = 1+cee
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Fig. 4a, b. Complex wave pattern. Parametérs c.., c;., c.;) are equalto¢1.5, 1, 4, 0.43)
(@), (3,1, 10, 1.5) (b). In a, the equalityS; = u,, is verified ten times, fof € [-24, —15].
We only represent the ones whefle> 0. Inb, there are six values f@rsuch thatS, = u,;,
(andS; = u,,). We represent three of them, & . », &, which correspond t§’, > 0.

max,3?

— Forc,; > —£—, there isc* such that ¥¢, > ¢, wave of type | does not exist .
h

In this casé? there is a propagation of a "growing pulse" such that (i) the velocity
of the front is given by (7) and (ii) the velocity of the wake is asymptotically given
by :

¢ = M (11)

n vl —yld
ugp—vid
ie

ee .
ceeueq—i-c,gueq

d _
wherev™ = — e
Proof. We are interested in propagation corresponding to a single pulse. Let us
introduceAy the time during whichy, (1) > u,,. First, we note that for a wave of
type |, one must haveék, Ay = Ag. Let# be the time at whichy, returns tou,y,.

From theorem 1, we have :
k
AV
C
Let us consider the casg;, < —2%—. The inhibitory population does not affect

ee -
ugg—ush

the excitatory one and we have :

k
fort e [%, teeal, ve() = (ugp — v~ Atertee)t=0) 4 yla
Ce Mee _ _ Ce Mee
for t € [1e—1, ti], ve(®) = (ua — gtye™ THee) (=0 4 Feed
. . CoelSS .. .
Such a propagation emststﬁcﬂ < u;. The continuity ofu, at#_1 gives the
ee
recurrence formula :
Ap = f(Ag-1)
where:
_1 _1 CoellSE,
| = vl“)e Aterteee)(x=7) 4 gla _ lic:

n
1 c Ceeuf'(.’
e Ueh — 1+CZZ

Sl

fx)=x+
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fora givenAg > % andk > 1. As already mentioned, no propagation occurs when

Ag < %
Let
A*_} 1 | (1+C£’C)(vla - Mlh)

n
14 cee tor (Ceeu (1+Cee)uth)e & +(1+Cee)v _Ceeugq
Note thatA* is well defined and one has* > 1
Taking Ag = A* yieldsVk, Ay = A*. This solution corresponds to a wave of
type I. It remains to be checked that this solution is unstable. Consider the function
g(x) = f(x) — x. Itis seen thak is strictly increasing ang(A*) = 0. This
implies:

LetAg = A*+ 4

if§ >0 Ilim A=+

k—+00
if§ <0, Iim Ay=-00
k——+o00
Then the wave of type | is unstable.df> 0, a propagation with a profile that
evolves during time occurs. To be more precisesjet g(Ax—1). This quantity
represents the increase of excitation duration from compdadnerit to component
k. We have

la _ Ceelley

. - 1 v T 1

lim s =5= In( +C§§>——

k—+o0 1+ cee Wy — Ceelleg c
th l+CLe

The speed of the recovery is asymptotically givertby s—&-%
The point (i) follows from theorem 1. ‘
We consider the casg; > —**—. With the same notations, we have :

ei
eq " Uth

A = A1+ g(Ak—1)

where:

1 Me_(1+c;"+cee+cie)x + vlb — vld 1
g(x) = In -

1+ coe + Cie uy — vl c

with:

Lt oot 1, 1 ulb
Uth 7+‘ec cr (l+cr+cee+c,'e)(;+rcel_ln T )
1b) e th

n= <v1“—v1b+(u,h — -

k

We assumed that—1 — ¢ > 1+C In(-5—— ) (the other case is similar). This

condition ensures that the inhibitory populatlon of #i& component is excited
before the excitatory population of componént 1 returns below:,,.
Let A* be such thag (A*) = 0 (this case corresponds to a t.w.s). Taenverifies:

— (e eeeteio) A* _ 1y, Tethe | 1d 1

ue (ugp —v“e ¢ + v —v
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Sinceu > 0 andv — v!? < 0, A* does not exist for large.. Therefore, there is
¢} suchthatfor, > ¢, t.w.s of type | do not exist. Moreover, from the variation of
f itcan be obtained thal;[: limA; = +o0. Taking the limits ofg gives expression

—+00
(11) O
Remark(1) : Let us examine the case whetg > ue,.”’hu - and A* exists. We
eq Mt
calculate :

g(A") =~

14+ ¢ + Cee + Cie (1 n vl _ 1 _l+(‘gi+fl‘e>
1+ cee + cie

Since—2 < g'(A*) < 0, thereforeA* is a stable fixed point of the discrete
iteration.

Remark(2) : From the above proposition, and given a time 0, the number of
excited components is given byE(ct) — E(ct), whereE (x) is the integer part of

X.

We note that the inhibitory population allows a stable type | wave. However, when
the effect of the inhibitory population is absent, or for a large synaptic connection,
propagation with an enlarging profile appears. In other words, traveling pulse tends
toward a stable traveling front.

———
Uh — Uld

3. Inhomogeneous excitable medium

From the above study, we generalized some of the results to a network composed of
disparate components connected through different synaptic connections strength.
The integerk indexes the parameters of thé component and we noig the
connection strength from— 1 ontok. We studied the infinite dimensional system:

U]/g = —v + (Cee,k¢k(vk) + Ck‘pk(vk—l))(”iz,k — %)
+Cie,k¢k(uk)(ufzi1,k — V)
up = —up + Cei,k(pk(vk)(”g],k — uk) keZ

wheredy (x) = H(x — usp,x) andvk, (v(0), ux(0)) = (0, 0). _
The constraints on parameters aff, < 0,0 < uk < ug, , andum x < ug,

s eq.k*
We easily generalize proposition 1 by indexing the parameters in the de?inition of
E; andC; and we notév®, ui®) , (v, ui’) the two points previously introduced.

The following theorem can be proved:

(12)

Theorem 2. A necessary condition for an excitatory propagation to exist reads :
Uth,k

Vk, k> (7
Ueg k — Uthk

(13)

If Vi, ceir < -5 this condition is sufficient.

uz;,k_”th.k

When propagation occurs, the necessary time to ctossmponent$l, .., n} is :
k=n—1

h= 3 ——in( Koyt ) (14)

= lt+a Calug  —wmi) —umk
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Proof. This can be obtained following a method similar to that given in theorem 1.
We note that the timg. for the component indexed layfor reachingu, « is given
by :

ck“i;,k

Th e A= =g

k=n-1
andtherr, = > . O
k=1

Looking for t.w.s is not relevant since the medium is nonhomogeneous. We then
generalize definition 1:

Definition 2. A propagation of type Il is a propagation of an excitatory activity
which connect$(0, 0)}x to {(vi, ub)}x with vi >

For the sake of simplicity we do not consider the case where théreush that
v} < ugp k- For the two cases :

Uth k
Case(a) Vk, ceik < . ’_u
eq.k th,k

Caseb) Yk, ceix > -k —
eq.k Uthk

<

we derive the following proposition :

Proposition 4. In case (a), propagation of type Il still exists; in case (b) a necessary
and sufficient condition for propagation readsk, v,%b > Ush k

Proof. Since we are interested in propagation of type Il (ket- 1) be a compo-
nent such tha¥s > 0, vg_1(¢) > uyy,. In the proof of theorem 2, we have shown
that there is; such thatvi(fx) = usm i (With v (0) = 0). We shall show that
Vi > t, ve(t) > un ; @and proposition 4 will then follow by induction.
Fort > # and whileu (t) < ush i, thek’® component verifies :
V() = —ve(1) + (Coek + i) (g 1 — V)
(1) = —ug (1) + coi (Ul — ur)
which gives, by integration:
vk (1) = (uepx — v]%a)e—(l+c..»e.k+6k)(t—tk) + v/}a
up(t) = u,%”(l _ e—(1+cm'.k)(t—tk))
In case (a), we obtaivir > O, ur(t) < um i andt IiJrrn ve(t) = v1¢k. Since (13)
—+00
holds andﬁ;k > Uy f WE havev,}“ > u;, , and thus we have determined a prop-

agation which connect®, 0) to (v;*, u}®).
In case (b) there ig such that (7;) = u.;, x and forr > 1;, we have :

Vk ([) — Vke_(1+ck+Cee’k+Cie’k)t + U]}h

The continuity ofvg (¢) atr = t,i givesry.
We show thatu(7) is monotone ont|, +oo[ and since Ii+m ve(t) = vk >
—>—+00

usn k., itis derived thav's > #, vk (¢) > usp . We have thus determined a propaga-
tion of type Il which connects0, 0); to (v, u3”), . O
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4. Long range connection

In this part, we study the case where there is more than one connection from one
component to another. We go back to a homogeneous chain and we place our study
in the general framework where a component may be connecgedtteers through
identical connection strengtlag, c», ... ,c,. The equations are :

—cS,(8) = —Se(§) + ¢ie P(S; (S))(uiil — Se(§)) + (Cee P(Se(£))
+c1P(Se(§ — 1)) + c2P(Se (6 — 2))
oo+ pP(Se(E — p))) gy — Se(§))
—cS{(§) = =S (&) + Ceiq"(Se(S))(uﬁﬁ, — Si(§))
For the reasons previously given, a necessary condition of wave existence reads

&, < —1. For simplicity, we assume thgf,, < —p. Such an assumption
also includes the case of type Il wave which verifigs, = —oo. Let us define

(15)

p
S; =1+ > ¢, andS,41 = 1. The following general theorem is then proved :
r=j

Theorem 3.A necessary condition for the existence of an excitatory propa-
gation is:

1
(1 — S_1> Ugg > Uth (16)
If coi < uﬂ."fu} this condition is sufficient. For type Il wave, the wave speed is
given by scq)lving :
k=1
Pooculé  I(=kSi—Y rer) 1
- Z e =1 =y — | 1— — ) ul a7)
= SkSk+1 S1)

Equation (17) admits a solution if and only if (16) holds.
Proof. Let 1, ... p + 1 the indexes of the components such that
Vie{l,...,p},Vt >0, v;(t) > u andv,41(0) =0

While v,41(f) < ugp, -

vpsa(t) = (1 — ce(l—e M)

5"

Then, there is, 1 such thatv,1(t,41) = uy, if and only if (1 — S—ll)ugg > U,
this gives (16). lfc,; < “+huth we have :

ug'f]
1. ey, ~Sut—tpin) 1. e
Vit > tpi1, Vpta(t) = (u — (1= S—l)ueq)e U+ S—l)ueq

and therwr > 1,11, v,41(¢) > uy. By induction, it is proved that a propagation
of type Il still exists.
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For the second part, we turn to equation (15) and calculate the wave expression for
£E>0:
fori—1<é&<i:
+Ci+m+cﬁ§ ci+~~+c,,

1
Se(§) = hie™ ¢
wherei € {1, .., p}

uee
Tci+—Fc, eq

The continuity ofS, ati leads to the recurrent formula fay :

cpust Lep

— __P%q ,— P
)‘P - ltcp ¢ ¢
ci Ltﬁfl' ,ﬂi _ g
A = “55.a¢ T Aitre <
and we deduce:
k=1
P cpugy  S(—kS— X rer)

= SkSk+1

UsingS. (0) = u,;,, we infer that the wave speeds given by solving the equation:

k=1
1 Pocrull  SkS— X rer) 1,
O ==Y ot = = (A= g

= SkSk+1

The function f is strictly increasing, continuous and satisfies f(x) < O,
IirD f(x) =0.Usingcy = Sk — Sk+1, We calculate :
X—>T00

14
1 1 1
O=_p;e Tyl —
FO)y = —tieg = Sk1 Sk teq Sl)

eq

this impliesf (0) < u;, — (1— S—ll)ugg. Thenc exists if and only ifSlszlu"e > U.
In this case¢ is unique. O

We note that the front of the wave is monotone since, from the proof of theorem 3
Vie{l,...,p} , 2 <O.

5. Discussion

Our study was devoted to excitatory propagation in a neural network with discrete
components. Specifically, we investigated traveling wave solutions which leads to
a nonlinear differential difference equation. For a general nonlinearity, our mod-
el appears to be mathematically intractable and we then considered an idealized
nonlinearity. We derived conditions for the existence of propagation and found the
general expression for its velocity. In some simple cases, we gave the explicit ex-
pression of traveling wave solutions and the necessary and sufficient conditions for
their existence. We found that traveling pulse and traveling front can coexist in a
bistable medium. Moreover, under some conditions, we showed that some traveling
pulses are unstable and lead to a propagation with two distinct velocities: one for
the front and one for the wake. Asymptotically, such a wave solution tends towards
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a traveling front. We found other interesting phenomena such as: (i) a sharp initial
profile which did not allow further propagation, (ii) an inhibitory population which
allowed stabilization of the traveling wave solution in some conditions. We gener-
alized some results for inhomogeneous medium and long range connections.
Although much work has been done on continuous models, some results are already
known concerning traveling waves for discrete equations. Most of them concern the
discrete Nagumo equation [15], [23], [24]. Discrete models present a much richer
and more complex set of dynamical phenomena than would occur in the continuous
counterpart. Specifically, they give rise to : (i) propagation failure, (ii) threshold
properties and (iii) bounds for the propagation velocity. Analytical results can be
obtained following different techniques : (i) averaging or perturbation method [6],
[9], which allows a reduction of a complex system into a simpler one, (ii) use of
an idealized nonlinearity (typically the Heaviside function) , which allows direct
calculations and (iii) a specific form for the synaptic gating variables. In our work,
we used a Heaviside function and an analogous approach is to take a synaptic gating
variables of the form (r) = X[k & 4] (1), wherec is the velocity of the wavey its

duration and is the characteristic function. All these approaches show that the ve-
locity is well approximated by the initial excitation front and is rather independant
of the inhibition [9]. We reported similar results and have shown that the velocity
of the propagation depends on the integration rise time from resting potential to
threshold and does not depend on the global shape of the wave. As already reported
[15], [9], [4], we showed that (i) propagation occurs if the synaptic weight of neu-
ronal interactions exceeds some threshold, (ii) for strong coupling, velocity scales
linearly with the coupling strenght , and (iii) multiple wave patterns can propagate
for the same set of parameter values.

The study of traveling wave on a discrete lattice leads to a mixed type differential
equation. Development of the theory of such equations may provide insight into
the study of traveling wave for a smooth nonlineadty

Appendix

We give the explicit expression of t.w.s which verifies property 1. We derive neces-
sary and sufficient conditions for their existence. Following the definitiaff'of,
we definet, , . & . which verify S; () = u,, andé, . > & . .

First, we note that fof > 0, the wave expression is given by equations (9).

We split the study into two parts:
1 Ifcpp < thensjn. = —oo and we have the two cases :
Ueqg—Uth in

1.1&°. = —oo. We obtain :

min

— _olay Mty | g
forgsoz{se@)—(u,h Ve +v

Coi (18)
Si(€) =ult(l—e %)

A necessary and sufficient condition for this wave to existés> u,,. When
(6) holds this condition is fulfilled. In the phase plai#, S;), this trajectory
corresponds to a heteroclinic orbit which conng&0) to (v1¢, x1¢). Such
a wave is depicted in Fig. 2a.
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12¢. €R™.Wehave:
forgy. +1<& <0: equation18)
+ Ee CeellS
S, = e § 4 Ceotley
for &6y, <& <5y, +1: { @7k AT a9
SiE) =ull—e
S( ) _Erenin
forg <2, { o) = Hine (20)
Si(§) = Bec
Wherei, — (um—l""ii"q ~Lbeege . The continuity ofS, (S;) até; ., +1 Emin)
givesé, . (B). Such a wave exists if and only§f,;, exists and;,,, < —1.
The first condition leads ta > 0 which givesc,, < uee“f’u - The second
eq 1

condition does not lead to a tractable expression. In the phase (@#lar),
such a wave is a homoclinic orbit based @ 0). The shape of such a wave is
depicted in Fig. 2b. We show, in proposition 3, that this t.w.s is unstable.

2 If coi > oz then Enax Still exists and is given by, = % In(1 —
eq
tuntber)) \We d|st|ngmsh the two cases:
eilleg
2.1 &, =—o0o,we have :
for gmax <&£<0:(18)
1+cr+ceetc;
=ye ¢ 54
fore <& Se(§) =ve T (22)

Si(&) = ulb(1— ")

The continuity ofS, at&/ givesy. This wave exists as long ad” > u,,
and corresponds to a heteroclinic orbit fréén 0) to (v1?, 1'?). Such a wave
is depicted Fig. 2c (fopy > 0) and Fig. 2d (fopy < 0).

2.2 ¢, € R™. Depending on the relative position betwegp . and&’, +

we split the study into two cases:
221 & +1>¢, . Weobtain:

min

for&°

oin +1 <& <0:equation (18)
for &), <& < &%, +1: equation (19) with a differerit

for&e,, <& <é&nay:

Cegu +Cmu m e Ceeu +Cteu
Se(§) = (un — Tﬂl:q e §~Bin 4 S 3
Coi I4c,i
Si(§) = f’+;‘f (1—e '8
Cteu le Clgu
SE(S) = (I/l[h - e mm +

. 1+ L+

for é:mtn =é=< g,f”'n . Cie ie (24)

gmt n

£
Si(§) = upe <
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£
c

Se(§) = aec
fore <& 3¢ el (25)
Si(§) = ume ¢
The continuity ofS, até;;, +1givesi(é;;,) (asafunctionofy;, ). The con-

tinuity of S, at&! _gives an equation whose solutiorgfs,, . The continuity
of S; até;,, givesg! . and the continuity of5, at&’ . givesa. Therefore,
the wave is entirely determined. The necessary and sufficient conditions of
existence are : (8" exists (i)g7" +1 < O (ii) £""+1 > Condition

ie
Cee“(,q +Ct( eUeq

(i) implies Tre. < uz, and conditions (ii), (iii) do not lead to tractable
expressions. Dependlng on the sign.@nde, four shapes for this wave may
be obtained. We depicted the case 0 anda < 0 in Fig. 2e.

max

Erlnax )

222 g, +1<Eg, . Wecalculate :
forg! <& <0: equation (18)
Icr4ceetci,
. S — — & + ol
for &6y, + 128 <&y ! EI = (26)
Si§)=u"A—e"c ")

forge, <& <é&°. +1: equation (23)
foré < &°. : equations (24) and (25)

min *
The continuity ofS, at&/, ., givesy. and the continuity &¢. +1 givest, . As

+
in 2.2.1, we derived the necessary condition of existent ”g C’“"“’ < up,.

Depending on the sign ¢of anda (see (25)) four shapes may be obtained. In
Fig. 2f, we depicted the cage> 0 anda < 0.
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