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Abstract. We have considered infinite systems of nonlinear ODEs on the one-dimensional
integer lattice which describes the activity in an excitatorily coupled network of excitable
cells. For an ideal nonlinearity, we calculated the speed of propagation of an activity and
derived the condition for its existence. We also studied the existence and stability of the trav-
eling wave solution and gave, in the simplest case, its explicit expression. We established
that some unstable traveling waves lead to propagation with an enlarging profile defined by a
front velocity and a wake velocity. We generalized some results to inhomogeneous medium
and network with long range connections.

1. Introduction

In neurophysiology, mathematical models use ordinary differential equations to
describe the behavior of an isolated neuron or a network of connected neurons
through synapses or gap-junctions. The model developed by Hodking and Huxley
[12] is an example of such an ODE system which is thoroughly used and studied.
Since then, many other models have been developed, based on the biological de-
scription of specific electrical currents in cellular structures, or on a mathematical
simplification of complete systems. In the present paper, we study a neural network
whose neurons are described by a simplified model motivated by biological data on
piriform cortex [3]. Our model is composed of interconnected pairs of excitatory
and inhibitory neurons described by :

v′ = −v + ceeU(v)(uee
eq − v) + cieU(u)(uie

eq − v)
(1)

u′ = −u + ceiU(v)(uei
eq − u)

wherev and u denote the activity of the excitatory and inhibitory neurons, re-
spectively; the positive coefficientscee, cie, cei describe the synaptic connections
between excitatory and inhibitory neurons anduee

eq, uie
eq, uei

eq denote the Nernst po-
tential of ions involved in the synaptic current. We assume thatuee

eq > 0, uei
eq >

0, uie
eq < 0 (throughout this paper, numerical simulations were carried out with

uee
eq = uei

eq = 100 anduie
eq = −20). The functionU will be clarified later. Model
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(1) is derived from the study of spatially homogeneous solutions of a cortical net-
work model [21]. Such a model is known as a neural oscillator where each neuron
stands for a local population of neurons [13].
We were interested in the activity of the neural network composed of neural oscilla-
tors described by equation (1) connected through synaptic coupling. The equations
are :

v′
k = −vk +

(
cee,kUk(vk) +

∑
j 6=k

cj,kUk(vj )
)
(uee

eq,k − vk)

+cie,kUk(uk)(u
ie
eq,k − vk)

(2)
u′

k = −uk + cei,kUk(vk)(u
ei
eq,k − uk) , k ∈ Z

where the parameter of thekth component is indexed byk andci,j ≥ 0 describes
the synaptic connection fromi ontoj . It should be noted that homogeneous media
is obtained when thekth component does not depend onk. We connect neural oscil-
lators into feed forward arrangement and thus takeci,j = 0 for i ≥ j . This idea of
connecting the neuronal population into feed forward arrangement is motivated by
biological considerations [1], [8]. Moreover, the choice will make forU will imply
that backward connections neither affects the front of the wave nor its velocity, but,
naturally, its shape.
Our purpose is to study the propagation of an activity in the excitable medium
described by (2). More precisely, we investigated an excitatory propagation which
switchesvk from a rest potential to a subthreshold value. Sincevk stands for the
synchronous activity of neurons, which represents thekth neuronal population, our
study deals with the propagation of synchronous activity in neural network. We
were particularly interested in solutions that travel at constant velocity with fixed
shape, known as traveling wave solutions. There is a vast literature on waves in bi-
ological systems, particularly in continuous media with a diffusive coupling. Most
papers involve the study of reaction-diffusion equations like the FitzHugh-Nagumo
[10], [17], [19], [14] or Fisher-KPP [16], [20] equations. For more references see
[18], [11] and [22] for a review of results on front propagation in reaction-diffu-
sion-advection equations. In the present work, propagation appears in a discrete
medium and the study is substantially more difficult [15], [23], [24], [5]. For a
large class of lattice dynamical systems, existence and stabilty results are obtained
in [7], nevertheless our model does not complete their assumptions. Beyond the
most elementary properties, it is generally difficult to obtain further results, partic-
ularly for heterogeneous media. One approach is to consider idealized nonlinearity
for the functionU [17], [2], [5], [6]. In such a case, system (2) will support explicit
calculations which can provide some results on propagation and its failure.
This paper is organized as follows. In section (2), we consider a simple network
with nearest neighbor coupling which allows us to introduce some definitions and
derive some basic properties. We find the conditions for the existence of propa-
gation and derive an analytical expression for its velocity. Specifically, we study
traveling waves and give some stability results in a few simpler cases. In section (3)
and (4) we extend some results to inhomogeneous media and long range connection
respectively. Section (5) is devoted to a discussion.
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2. A simple architecture

We consider a network composed of identical neural oscillators which we will
call the components of our network. The components are coupled with their near-
est neighbor with the same synaptic connection. We study the infinite system of
coupled differential equations:

v′
k = −vk + (ceeU(vk) + crU(vk−1))(u

ee
eq − vk) + cieU(uk)(u

ie
eq − vk)

(3)
u′

k = −uk + ceiU(vk)(u
ei
eq − uk) , k ∈ Z

The lattice differential equation (3) is a nonlinear infinite-dimensional problem and
it is generally difficult to obtain rigorous results, apart from elementary properties,
for such systems with a general nonlinear functionU. One approach, is to consider
idealized nonlinearities which retain the essential feature of our model. Specifically,
we chose:

U(x) = H(x − uth)

whereH denotes the Heaviside function :

H(x) =
{

0, x < 0,

1, x > 0

anduth is a so-called "detuning" or threshold parameter. SinceU is discontinuous,
it must be stated what is meant by a solution of equation (3). As described in [5],
we considerU as a set-valued function :

U(v) is a singleton set ifv 6= uth

U(uth) is the compact interval [0, 1]

By a solution of (3), we mean(v(t), u(t)) ∈ l∞(Z, R
2) for which each coordi-

nates function(vk(t), uk(t)) is absolutely continuous, and satisfies the differential
inclusion :

v′
k(t) ∈ −vk + (ceeU(vk) + crU(vk−1))(u

ee
eq − vk) + cieU(uk)(u

ie
eq − vk)

u′
k(t) ∈ −uk + ceiU(vk)(u

ei
eq − uk)

A traveling wave solution, denoted t.w.s, with velocityc > 0, is a bi-infinite se-
quence{(vk(t), uk(t))}+∞

k=−∞, solution of (3), for which there is a couple(Se, Si) ∈
(C0(R, R))2 such that :

vk(t) = Se(k − ct)

uk(t) = Si(k − ct)
(4)

The conditions at∞ will be considered later. We denoteξ = k − ct . Substitution
of (4) into (3) yields :

−cS′
e(ξ) = −Se(ξ) + (ceeU(Se(ξ)) + crU(Se(ξ − 1)))(uee

eq − Se(ξ))

+cieU(Si(ξ))(uie
eq − Se(ξ))

(5)−cS′
i (ξ) = −Si(ξ) + ceiU(Se(ξ))(uei

eq − Si(ξ))
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This equation may be considered as a differential equation with a delay. One can
make a corresponding characterization of a solution as we did for equation (3). For
ξ such thatSe(ξ) = uth (or Si(ξ) = uth) , the derivativeS′

e(ξ) (S′
i (ξ)) has a jump

discontinuity; elsewhere the solution isC1 and satisfies equation (5) in the classical
sense.
We suppose that∀k, (vk, uk) = (v0, u0) and(vk, uk) = (v1, u1) are two asymptot-
ically stable fixed points for system (3) (possibly the same). We impose boundary
conditions : lim

ξ→−∞
Se(ξ) = v1 and lim

ξ→+∞
Se(ξ) = v0; similar conditions hold

for Si . In the phase plane(Se, Si), these solutions correspond to an heteroclinic or
homoclinic orbit.
To determine the fixed points of equation (3), we define four configurations,E0,
E1, E2, E3 which represent a possible fixed point for a given component. Each
state stands for a point inR2:

E0 : (0, 0)

E1 :




(
ceeu

ee
eq

1+cee
,

ceiu
ei
eq

1+cei

)
(

ceeu
ee
eq+cieu

ie
eq

1+cee+cie
,

ceiu
ei
eq

1+cei

)
E2 : (

cru
ee
eq

1+cr
, 0)

E3 :




(v1a, u1a) =
(

(cee+cr )u
ee
eq

1+cee+cr
,

ceiu
ei
eq

1+cei

)

(v1b, u1b) =
(

(cee+cr )u
ee
eq+cieu

ie
eq

1+cee+cr+cie
,

ceiu
ei
eq

1+cei

)
We give a specific notation forE3 since it plays an important part in t.w.s charac-
terization. Let us define three boolean conditionsC1, C2, C3 associated with the
statesE1, E2, E3 which ensure the existence of the corresponding fixed point:

C1 :




ceeu
ee
eq

1+cee
> uth if cei <

uth

uei
eq−uth

ceeu
ee
eq+cieu

ie
eq

1+cee+cie
> uth otherwise

C2 :
cru

ee
eq

1+cr
< uth

C3 :

{
v1a > uth if cei <

uth

uei
eq−uth

v1b > uth otherwise

The predicate "Ci=true" means "Ei could be taken as a possible fixed point for
the component in the chain". Let us consider the graph G depicted in Fig. 1.
Given an initial states0 ∈ G, we call a trajectory of graphG a double infinite
sequence(. . . , s−k, . . . , s−1, s0, s1, ..., sk, ...) obtained as follows : according to
conditions(Ci)i=1,2,3, increasing indexes in the sequence are given by following
the black arrows and the decreasing indexes in the sequence are given by following
the reverse way in Fig. 1. The following proposition holds:

Proposition 1. A fixed point of system (3) is a trajectory of graph G. All fixed points
are stable.



Wave propagation in discrete media 5

Fig. 1. Graph G to calculate fixed points.

Proof. TakingU(x) = H(x − uth) in equation (3) yields the first part of the prop-
osition. Near a fixed point, the system (3) is :

v′
k(t) = −vk(t) + αk(u

ee
eq − vk(t)) + βk(u

ie
eq − vk(t))

u′
k(t) = −uk(t) + γk(u

ei
eq − uk(t))

where(αk, βk, γk) ∈ R
3+. Hence, the result follows. �

Before investigating t.w.s, we studied the general case of the propagation of
an excitatory activity. Initially the system (3) is in its resting state defined as :
∀k, (vk(0), uk(0)) ∈ E0 which readsvk(0) = uk(0) = 0. It can be seen that the

domain
{
[
cieu

ie
eq

1+cie
, uth] × [0, uth]

}
k

belongs to the domain of attraction of{0, 0}k.
We prove the following result:

Theorem 1.A necessary condition for a propagation of excitatory activity is

cr >
uth

uee
eq − uth

(6)

If cei <
uth

uei
eq−uth

, this condition is sufficient.

When propagation occurs, the speed of the propagation is :

c = 1 + cr

ln
(

cruee
eq

cr (uee
eq−uth)−uth

) . (7)

Proof. An activity emerges in the network if there is a timet∗ and an indexi such
that vi(t

∗) > uth. We may assume, without loss of generality, thatt∗ = 0 and
i = 1. Let t1 ∈ R+ be such that :

∀t ∈ [0, t1], v1(t) > uth

Through the synaptic couplingcr , this component excites a second one. Letv2
be the activity of this second component such that(v2(0), u2(0)) = (0, 0). The
excitation propagates if there ist̃ = inf {t, v2(t) > uth}.
For t < t1 and whilev2(t) < uth, we have:

v2(t) = cru
ee
eq

1 + cr

(1 − e−(1+cr )t )

Then a necessary condition for propagation is
cru

ee
eq

1+cr
> uth which gives the condition

(6). Under this condition, we obtaiñt = 1
c

which yields (7). The propagation of the
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excitation is achieved ift1 ≥ 1
c
. This condition is still fulfilled when the excitatory

activity is greater thanuth in the wake of the front. If (6) holds and ifcei <
uth

uei
eq−uth

,

we havev1a > uth which implies thatE3 is a fixed point. Then a solution which
connects(0, 0) to (v1a, u1a) satisfies the conditiont1 ≥ 1

c
. In the next paragraph,

we give an explicit expression for such a solution which corresponds to a particular
t.w.s . �

Remark(1) : From the proof, the quantity1
c

represents the necessary time for an ex-
citatory population to reachuth. Moreover, for a t.w.s, we have :uk(t+ 1

c
) = uk−1(t)

for all k andt .
Remark(2) : If we excite the excitatory population through an external input,is ,
we find the same condition (6) by changingcr into is .
Remark(3) : In the casecr <

uth

uee
eq−uth

, no propagation can occur all over the net-

work ; this phenomenon is reported as "propagation failure" [15].
Note that the velocity of a propagation does not depend on its shape; solitary pulse
or multiple pulse wave have the same speed. Moreover the velocity is given by
initial excitation front and is independent of the inhibition. For large connection
strength, expression (7) yields to a linear relationship between speed and synaptic
strength. A simple calculation gives:

c = 1+cr

ln
(

uee
eq

uee
eq−uth

) − uth

(uee
eq−uth)

(
ln
(

uee
eq

uee
eq−uth

))2 + ε( 1
cr

)

where lim
cr→+∞ ε( 1

cr
) = 0

For smallcr an asymptotic expansion is not relevant since no propagation occurs.
We then turn to t.w.s . First, we define more precisely the boundary conditions. We
suppose thatcr satisfies (6). Then the conditionC3 is still fulfilled if cei <

uth

uei
eq−uth

.

From graph G (Fig. 1), the two configurationsE0 andE3 are of particular interest
since only these two configurations are directly connected to themselves. These
states define spatially homogeneous elements(vk, uk)k ∈ l∞(Z, R

2) by :

vk = uk = 0 ∀k ∈ Z

and

vk =
{

v1a if cei <
uth

uei
eq−uth

v1b elsewhere
, uk = ceiu

ei
eq

1+cei
, ∀k ∈ Z

which are stable equilibrium solutions of (3). Then it is natural to impose the
boundary condition

lim
ξ→+∞

Se(ξ) = 0

lim
ξ→+∞

Si(ξ) = 0
(8)

The existence of two stable homogeneous states, incites us to consider two types
of t.w.s specified in the following statement:
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Definition 1. Wave of type I is a t.w.s such that :




lim
ξ→−∞

Se(ξ) = 0

lim
ξ→−∞

Si(ξ) = 0

Wave of type II is a t.w.s such that :




lim
ξ→−∞

Se(ξ) = v1a or v1b

lim
ξ→−∞

Si(ξ) = u1a or u1b

One expects to find wave of type II in bistable medium. More precisely, from
theorem 1, the following proposition holds:

Proposition 2. A wave of type II exists ifcei <
uth

uei
eq−uth

. Otherwise a necessary and

sufficient condition for its existence isv1b > uth

We recall that the condition that there be a wave of type I is that the time during
whichSe > uth is greater than1

c
, with c given by (7). Let us examine some simple

waves which verify the following property :

Property 1.There are at most two values ofξ such thatSe(ξ) = uth.

When property 1 is fulfilled, three cases are possible : standing wave (there is no
value forξ such thatSe(ξ) = uth), traveling front (one value such thatSe(ξ) = uth)
and traveling pulse (two values such thatSe(ξ) = uth). We define(ξe

max, ξ
e
min) ∈

[−∞, +∞]2 such thatξe
max = min{ξ : Se(ξ) = uth} and ξe

min = min{ξ :
ξ > ξe

max andSe(ξ) = uth}. Because of the translation invariance of t.w.s we may
chooseξe

max = 0. Then, type II wave is obtained whenξe
min = −∞. However, the

condition that there be a type I readsξe
min < −1. To go further, we see that the

wave front is given by :

ξ ≥ 1 :

{
Se(ξ) = 0
Si(ξ) = 0

; 0 ≤ ξ ≤ 1 :

{
Se(ξ) = (uth − cru

ee
eq

1+cr
)e

1+cr
c

ξ + cru
ee
eq

1+cr

Si(ξ) = 0
(9)

where we assume thatξe
min ≤ −1; otherwise there is no wave since the continuity

of the solution atξ = ξe
min + 1 cannot be to obtained. Such a wave is reported as

a traveling excitation of sharp type sinceS′
e(1

+) = 0 andS′
e(1

−) 6= 0. Using the
continuity ofSe at ξ = 1 and writingSe(0) = uth, we again find formula (7) for
the wave speed and the necessary condition of existence (6).c is evaluated from the
wave front and its value does not depend on(v1, u1). Relations (9) give the general
expression for an excitatory propagation even if it does not correspond to a t.w.s
{Se(j − ct), Si(j − ct)}j .
We explicitly calculate in the appendix all possible cases for the t.w.s which verify
property 1. This is illustrated in Fig. 2a–f.
Remark(1) : For waves of type I, the retrieval time is parameterized by the wave
speedc. More precisely, the time for halving the activities isc ln 2.
Remark(2) : The different expressions found for the wave equation in the appendix
underline the importance of the potential parametersuee

eq, uie
eq, uei

eq associated with
the weight into the following combinations:(cr , u

ee
eq), (cee, u

ee
eq), (cee + cr , u

ee
eq),
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Fig. 2a–f. The different shapes of t.w.s(vk(t), uk(t)) = (Se(k − ct), Si(k − ct)). The dot-
ted lines represent the characteristic points underlined in the wave analysis. The threshold,
uth, is equal to 30 and parameters(cr , cee, cie, cei) are equal to(1, 0.4, 0.4, 0.4) (a andb),
(1, 1, 1, 1) (c), (1, 1, 0.3, 1) (d), (4, 0.5, 15, 3) (e), (10, 2, 15, 3) (f). These wave patterns
correspond to the different kinds of t.w.s obtained from equation (5). The derivation of these
solutions is given in the appendix.

(cei , u
ie
eq), (cei , u

ei
eq) and(1, 0) (the last one corresponds to the relaxation dynam-

ics). The difference between the barycentre of some of them anduth give the
classification of the different wave behavior obtained in the appendix.
From the appendix, we note that although cases 1 and 2 are exclusive, subcases
1.1 and 1.2 or 2.1, 2.2 and 2.2 may occur simultaneously (see Fig. 2a and Fig. 2b).
This means that bistable medium supports traveling front, which is not surprising,
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Fig. 3a, b. Traveling wave solution with:U(x) = 1
1+eλ(x−uth) ; uth = 30 ,λ = 0.2. Parameters

(cr , cee, cie, cei) are equal to(5, 6, 10, 10) (a), (1, 0.4, 0.4, 0.4) (b). This figure illustrates
continuous t.w.s similar to those depicted Fig. 2a.

but it also supports traveling pulse. It is also noted that for waves of type II (i.e
ξe
min = −∞) the traveling wave is not necessarily monotone (see Fig. 2c).

One may wonder what happens in a more regular case for the functionU. Numer-
ical simulations show that similar t.w.s occurs. In Fig. 3a, Fig. 3b, we depicted the
wave of type I and type II, respectively, obtained forU(x) = 1

1+eλ(x−uth) . It can be
shown that these solutions areC∞.

Depending on initial conditions and parameters, more complex waves may ap-
pear. Such waves do not verify property (1) since there are more than two values for
ξ such thatSe = uth (or Si = uth). In these configurations, an oscillatory behavior
in the wake of the wave (Fig. 4a) or multiple pulses (three pulses in Fig. 4b) occur.
In Fig. 4a the excitation of the inhibitory population allows it to reachuth. How-
ever, sincecei is close to uth

uei
eq−uth

, the inhibitory population does not retain a high

activity level and cannot inhibit the excitatory population enough. Therefore no
second pulse occurs. In Fig. 4b, inhibition is strong enough to produce wave trains
and other numerical simulations reveal periodic wave trains. The relative strength
of the parametercie implies a fast recovery time which gives birth to complex wave
patterns.

Moreover, apart from the cases studied, there are propagations which are not
t.w.s. Such propagations present a profile that evolves during time. We obtain the
following results :

Proposition 3. – For cei <
uth

uee
eq−uth

, wave of type I is unstable. In this case, there is

a propagation of a "growing pulse" such that (i) the velocity of the front is given
by (7) and (ii) the velocity of the wake is asymptotically given by :

c̃ = 1 + cee

ln
(

v1a−v1c

uth−v1c

) (10)

wherev1c = ceeu
ee
eq

1+cee



10 A. Tonnelier

Fig. 4a, b. Complex wave pattern. Parameters(cr , cee, cie, cei) are equal to :(1.5, 1, 4, 0.43)
(a), (3, 1, 10, 1.5) (b). In a, the equalitySi = uth is verified ten times, forξ ∈ [−24, −15].
We only represent the ones whereS ′

i > 0. In b, there are six values forξ such thatSe = uth

(andSi = uth). We represent three of them, 0, ξ e
max,2, ξ

e
max,3, which correspond toS ′

e > 0.

– For cei >
uth

uee
eq−uth

, there isc∗
r such that :∀cr > c∗

r , wave of type I does not exist .

In this case, there is a propagation of a "growing pulse" such that (i) the velocity
of the front is given by (7) and (ii) the velocity of the wake is asymptotically given
by :

c̃ = 1 + cee + cie

ln
(

v1b−v1d

uth−v1d

) (11)

wherev1d = ceeu
ee
eq+cieu

ie
eq

1+cee+cie

Proof. We are interested in propagation corresponding to a single pulse. Let us
introduce1k the time during whichvk(t) > uth. First, we note that for a wave of
type I, one must have∀k, 1k = 10. Let tk be the time at whichvk returns touth.
From theorem 1, we have :

tk = 1k + k

c

Let us consider the casecei <
uth

uee
eq−uth

. The inhibitory population does not affect

the excitatory one and we have :

for t ∈ [ k
c
, tk−1], vk(t) = (uth − v1a)e−(1+cr+cee)(t− k

c
) + v1a

for t ∈ [tk−1, tk], vk(t) = (uth − ceeu
ee
eq

1+cee
)e−(1+cee)(t−tk) + ceeu

ee
eq

1+cee

Such a propagation exists if
ceeu

ee
eq

1+cee
< uth. The continuity ofvk at tk−1 gives the

recurrence formula :
1k = f (1k−1)

where:

f (x) = x + 1

1 + cee

ln


 (uth − v1a)e−(1+cr+cee)(x− 1

c
) + v1a − ceeu

ee
eq

1+cee

uth − ceeuee
eq

1+cee


− 1

c
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for a given10 > 1
c

andk ≥ 1. As already mentioned, no propagation occurs when
10 < 1

c
.

Let

1∗ = 1

c
+ 1

1 + cee + cr

ln


 (1 + cee)(v

1a − uth)

(ceeuee
eq −(1+cee)uth)e

1+cee
c +(1+cee)v1a−ceeuee

eq




Note that1∗ is well defined and one has1∗ > 1
c
.

Taking 10 = 1∗ yields ∀k, 1k = 1∗. This solution corresponds to a wave of
type I. It remains to be checked that this solution is unstable. Consider the function
g(x) = f (x) − x. It is seen thatg is strictly increasing andg(1∗) = 0. This
implies:

Let 10 = 1∗ + δ

if δ > 0, lim
k→+∞

1k = +∞
if δ < 0, lim

k→+∞
1k = −∞

Then the wave of type I is unstable. Ifδ > 0, a propagation with a profile that
evolves during time occurs. To be more precise, letsk = g(1k−1). This quantity
represents the increase of excitation duration from componentk − 1 to component
k. We have

lim
k→+∞

sk = s̃ = 1

1 + cee

ln
(v1a − ceeu

ee
eq

1+cee

uth − ceeuee
eq

1+cee

)
− 1

c

The speed of the recovery is asymptotically given byc̃ = 1
s̃+ 1

c

.

The point (i) follows from theorem 1.
We consider the casecei >

uth

uei
eq−uth

. With the same notations, we have :

1k = 1k−1 + g(1k−1)

where:

g(x) = 1

1 + cee + cie

ln

(
µe−(1+cr+cee+cie)x + v1b − v1d

uth − v1d

)
− 1

c

with:

µ=
(

v1a−v1b+(uth − v1a)(1 − uth

u1b
)

1+cee+cr
1+cei

)
e
(1+cr+cee+cie)(

1
c
+ 1

1+cei
ln u1b

u1b−uth
)

We assumed thattk−1 − k
c

> 1
1+cei

ln( u1b

u1b−uth
) (the other case is similar). This

condition ensures that the inhibitory population of thekth component is excited
before the excitatory population of componentk − 1 returns belowuth.
Let 1∗ be such thatg(1∗) = 0 (this case corresponds to a t.w.s). Then1∗ verifies:

µe−(1+cr+cee+cie)1
∗ = (uth − v1d)e

1+cee+cie
c + v1d − v1b
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Sinceµ > 0 andv1d − v1b < 0, 1∗ does not exist for largecr . Therefore, there is
c∗
r such that forcr > c∗

r , t.w.s of type I do not exist. Moreover, from the variation of
f it can be obtained that: lim

k→+∞
1k = +∞. Taking the limits ofg gives expression

(11) �
Remark(1) : Let us examine the case wherecei >

uth

uei
eq−uth

and1∗ exists. We

calculate :

g′(1∗) = −1 + cr + cee + cie

1 + cee + cie

(
1 + v1d − v1b

uth − v1d
e− 1+cee+cie

c

)

Since−2 < g′(1∗) < 0, therefore1∗ is a stable fixed point of the discrete
iteration.
Remark(2) : From the above proposition, and given a timet > 0, the number of
excited components is given by :E(ct) − E(c̃t), whereE(x) is the integer part of
x.
We note that the inhibitory population allows a stable type I wave. However, when
the effect of the inhibitory population is absent, or for a large synaptic connection,
propagation with an enlarging profile appears. In other words, traveling pulse tends
toward a stable traveling front.

3. Inhomogeneous excitable medium

From the above study, we generalized some of the results to a network composed of
disparate components connected through different synaptic connections strength.
The integerk indexes the parameters of thekth component and we noteck the
connection strength fromk −1 ontok. We studied the infinite dimensional system:

v′
k = −vk + (cee,kUk(vk) + ckUk(vk−1))(u

ee
eq,k − vk)

+cie,kUk(uk)(u
ie
eq,k − vk)

(12)
u′

k = −uk + cei,kUk(vk)(u
ei
eq,k − uk) , k ∈ Z

whereUk(x) = H(x − uth,k) and∀k, (vk(0), uk(0)) = (0, 0).
The constraints on parameters areuie

th,k < 0, 0< uth,k < uee
eq,k anduth,k < uei

eq,k.
We easily generalize proposition 1 by indexing the parameters in the definition of
Ei andCi and we note(v1a

k , u1a
k ) , (v1b

k , u1b
k ) the two points previously introduced.

The following theorem can be proved:

Theorem 2.A necessary condition for an excitatory propagation to exist reads :

∀k, ck >
uth,k

uee
eq,k − uth,k

(13)

If ∀k, cei,k <
uth,k

uei
eq,k−uth,k

this condition is sufficient.

When propagation occurs, the necessary time to crossn components{1, .., n} is :

tn =
k=n−1∑
k=1

1

1 + ck

ln
( cku

ee
eq,k

ck(u
ee
eq,k − uth,k) − uth,k

)
(14)
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Proof. This can be obtained following a method similar to that given in theorem 1.
We note that the timetk for the component indexed byk for reachinguth,k is given
by :

cku
ee
eq,k

1 + ck

(1 − e−(1+ck)tk ) = uth,k

and thentn =
k=n−1∑
k=1

tk. �

Looking for t.w.s is not relevant since the medium is nonhomogeneous. We then
generalize definition 1:

Definition 2. A propagation of type II is a propagation of an excitatory activity
which connects{(0, 0)}k to {(v1

k , u
1
k)}k with v1

k > uth,k

For the sake of simplicity we do not consider the case where there isk such that
v1
k < uth,k. For the two cases :

Case(a) ∀k, cei,k <
uth,k

uei
eq,k−uth,k

Case(b) ∀k, cei,k >
uth,k

uei
eq,k−uth,k

we derive the following proposition :

Proposition 4. In case (a), propagation of type II still exists; in case (b) a necessary
and sufficient condition for propagation reads :∀k, v1b

k > uth,k

Proof. Since we are interested in propagation of type II, let(k − 1) be a compo-
nent such that∀t > 0, vk−1(t) > uth. In the proof of theorem 2, we have shown
that there istk such thatvk(tk) = uth,k (with vk(0) = 0). We shall show that
∀t > tk, vk(t) > uth,k; and proposition 4 will then follow by induction.
For t ≥ tk and whileuk(t) < uth,k, thekth component verifies :

v′
k(t) = −vk(t) + (cee,k + ck)(u

ee
eq,k − vk)

u′
k(t) = −uk(t) + cei,k(u

ei
eq,k − uk)

which gives, by integration:

vk(t) = (uth,k − v1a
k )e−(1+cee,k+ck)(t−tk) + v1a

k

uk(t) = u1a
k (1 − e−(1+cei,k)(t−tk))

In case (a), we obtain∀t ≥ 0, uk(t) < uth,k and lim
t→+∞ vk(t) = v1a,k. Since (13)

holds anduee
eq,k > uth,k we havev1a

k > uth,k and thus we have determined a prop-

agation which connects(0, 0)k to (v1a
k , u1a

k ).
In case (b) there ist ′k such thatuk(t

′
k) = uth,k and fort ≥ t ′k, we have :

vk(t) = rke
−(1+ck+cee,k+cie,k)t + v1b

k

The continuity ofvk(t) at t = t ′k givesrk.
We show thatvk(t) is monotone on [t ′k, +∞[ and since lim

t→+∞ vk(t) = v1b,k >

uth,k, it is derived that∀t > tk, vk(t) > uth,k. We have thus determined a propaga-
tion of type II which connects(0, 0)k to (v1b

k , u1b
k )

k
. �
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4. Long range connection

In this part, we study the case where there is more than one connection from one
component to another. We go back to a homogeneous chain and we place our study
in the general framework where a component may be connected top others through
identical connection strengthsc1, c2, ... ,cp. The equations are :

−cS′
e(ξ) = −Se(ξ) + cieU(Si(ξ))(uie

eq − Se(ξ)) + (ceeU(Se(ξ))

+c1U(Se(ξ − 1)) + c2U(Se(ξ − 2))

+ . . . + cpU(Se(ξ − p)))(uee
eq − Se(ξ))

(15)−cS′
i (ξ) = −Si(ξ) + ceiU(Se(ξ))(uei

eq − Si(ξ))

For the reasons previously given, a necessary condition of wave existence reads
ξe
min < −1. For simplicity, we assume thatξe

min < −p. Such an assumption
also includes the case of type II wave which verifiesξe

min = −∞. Let us define

Sj = 1 +
p∑

r=j

cr andSp+1 = 1. The following general theorem is then proved :

Theorem 3.A necessary condition for the existence of an excitatory propa-
gation is: (

1 − 1

S1

)
uee

eq > uth (16)

If cei <
uth

uei
eq−uth

this condition is sufficient. For type II wave, the wave speed is

given by solving :

−
p∑

k=1

cku
ee
eq

SkSk+1
e

1
c
(−kSk−

k−1∑
r=1

rcr ) = uth −
(

1 − 1

S1

)
uee

eq (17)

Equation (17) admits a solution if and only if (16) holds.

Proof. Let 1, . . . p + 1 the indexes of the components such that

∀i ∈ {1, . . . , p}, ∀t > 0, vi(t) > uth andvp+1(0) = 0

While vp+1(t) < uth :

vp+1(t) = (1 − 1

S1
)uee

eq(1 − e−S1t )

Then, there istp+1 such thatvp+1(tp+1) = uth if and only if (1 − 1
S1

)uee
eq > uth

this gives (16). Ifcei <
uth

uei
eq−uth

, we have :

∀t > tp+1, vp+1(t) = (uth − (1 − 1

S1
)uee

eq)e−S1(t−tp+1) + (1 − 1

S1
)uee

eq

and then∀t > tp+1, vp+1(t) > uth. By induction, it is proved that a propagation
of type II still exists.
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For the second part, we turn to equation (15) and calculate the wave expression for
ξ ≥ 0 :

for i − 1 ≤ ξ ≤ i :

Se(ξ) = λie
1+ci+···+cp

c
ξ + ci+···+cp

1+ci+···+cp
uee

eq

wherei ∈ {1, .., p}
The continuity ofSe at i leads to the recurrent formula forλi :

λp = − cpuee
eq

1+cp
e− 1+cp

c
p

λi = − ciu
ee
eq

SiSi+1
e− Si

c
i + λi+1e

− ici
c

and we deduce:

λ1 = −
p∑

k=1

cku
ee
eq

SkSk+1
e

1
c
(−kSk−

k−1∑
r=1

rcr )

UsingSe(0) = uth, we infer that the wave speedc is given by solving the equation:

f (
1

c
) = −

p∑
k=1

cku
ee
eq

SkSk+1
e

1
c
(−kSk−

k−1∑
r=1

rcr ) = uth − (1 − 1

S1
)uee

eq

The functionf is strictly increasing, continuous and satisfies∀x, f (x) < 0,
lim

x→+∞ f (x) = 0. Usingck = Sk − Sk+1, we calculate :

f (0) = −uee
eq

p∑
k=1

1

Sk+1
− 1

Sk

= −uee
eq(1 − 1

S1
)

this impliesf (0) < uth − (1− 1
S1

)uee
eq . Thenc exists if and only ifS1−1

S1
uee

eq > uth.
In this case,c is unique. �

We note that the front of the wave is monotone since, from the proof of theorem 3
∀i ∈ {1, . . . , p} , λi < 0.

5. Discussion

Our study was devoted to excitatory propagation in a neural network with discrete
components. Specifically, we investigated traveling wave solutions which leads to
a nonlinear differential difference equation. For a general nonlinearity, our mod-
el appears to be mathematically intractable and we then considered an idealized
nonlinearity. We derived conditions for the existence of propagation and found the
general expression for its velocity. In some simple cases, we gave the explicit ex-
pression of traveling wave solutions and the necessary and sufficient conditions for
their existence. We found that traveling pulse and traveling front can coexist in a
bistable medium. Moreover, under some conditions, we showed that some traveling
pulses are unstable and lead to a propagation with two distinct velocities: one for
the front and one for the wake. Asymptotically, such a wave solution tends towards
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a traveling front. We found other interesting phenomena such as: (i) a sharp initial
profile which did not allow further propagation, (ii) an inhibitory population which
allowed stabilization of the traveling wave solution in some conditions. We gener-
alized some results for inhomogeneous medium and long range connections.
Although much work has been done on continuous models, some results are already
known concerning traveling waves for discrete equations. Most of them concern the
discrete Nagumo equation [15], [23], [24]. Discrete models present a much richer
and more complex set of dynamical phenomena than would occur in the continuous
counterpart. Specifically, they give rise to : (i) propagation failure, (ii) threshold
properties and (iii) bounds for the propagation velocity. Analytical results can be
obtained following different techniques : (i) averaging or perturbation method [6],
[9], which allows a reduction of a complex system into a simpler one, (ii) use of
an idealized nonlinearity (typically the Heaviside function) , which allows direct
calculations and (iii) a specific form for the synaptic gating variables. In our work,
we used a Heaviside function and an analogous approach is to take a synaptic gating
variables of the formsk(t) = χ[ k

c
, k
c
+α](t), wherec is the velocity of the wave,α its

duration andχ is the characteristic function. All these approaches show that the ve-
locity is well approximated by the initial excitation front and is rather independant
of the inhibition [9]. We reported similar results and have shown that the velocity
of the propagation depends on the integration rise time from resting potential to
threshold and does not depend on the global shape of the wave. As already reported
[15], [9], [4], we showed that (i) propagation occurs if the synaptic weight of neu-
ronal interactions exceeds some threshold, (ii) for strong coupling, velocity scales
linearly with the coupling strenght , and (iii) multiple wave patterns can propagate
for the same set of parameter values.
The study of traveling wave on a discrete lattice leads to a mixed type differential
equation. Development of the theory of such equations may provide insight into
the study of traveling wave for a smooth nonlinearityU.

Appendix

We give the explicit expression of t.w.s which verifies property 1. We derive neces-
sary and sufficient conditions for their existence. Following the definition ofξmin

e ,
we defineξ i

max, ξ
i
min which verifySi(ξ) = uth andξ i

max > ξi
min.

First, we note that forξ ≥ 0, the wave expression is given by equations (9).
We split the study into two parts:

1 If cei <
uth

uei
eq−uth

thenξ i
min = −∞ and we have the two cases :

1.1 ξe
min = −∞. We obtain :

for ξ ≤ 0 :

{
Se(ξ) = (uth − v1a)e

1+cr+cee
c

ξ + v1a

Si(ξ) = u1a(1 − e
1+cei

c
ξ )

(18)

A necessary and sufficient condition for this wave to exist isv1a > uth. When
(6) holds this condition is fulfilled. In the phase plane(Se, Si), this trajectory
corresponds to a heteroclinic orbit which connects(0, 0) to (v1a, u1a). Such
a wave is depicted in Fig. 2a.



Wave propagation in discrete media 17

1.2 ξe
min ∈ R

−. We have :

for ξe
min + 1 ≤ ξ ≤ 0 : equation(18)

for ξe
min ≤ ξ ≤ ξe

min + 1 :

{
Se(ξ) = λe

1+cee
c

ξ + ceeu
ee
eq

1+cee

Si(ξ) = u1a(1 − e
1+cei

c
ξ )

(19)

for ξ ≤ ξe
min :

{
Se(ξ) = uthe

ξ−ξe
min
c

Si(ξ) = βe
ξ
c

(20)

whereλ = (uth− ceeu
ee
eq

1+cee
)e− 1+cee

c
ξe
min . The continuity ofSe (Si) atξe

min+1 (ξmin)
givesξe

min (β). Such a wave exists if and only ifξmin exists andξe
min < −1.

The first condition leads toλ > 0 which givescee <
uth

uee
eq−uth

. The second

condition does not lead to a tractable expression. In the phase plane(Se, Si),
such a wave is a homoclinic orbit based in(0, 0). The shape of such a wave is
depicted in Fig. 2b. We show, in proposition 3, that this t.w.s is unstable.

2 If cei >
uth

uei
eq−uth

then ξ i
max still exists and is given byξ i

max = c
1+cei

ln(1 −
uth(1+cei )

ceiu
ei
eq

). We distinguish the two cases:

2.1 ξe
min = −∞, we have :

for ξ i
max ≤ ξ ≤ 0 : (18)

for ξ ≤ ξ i
max :

{
Se(ξ) = γ e

1+cr+cee+cie
c

ξ + v1b

Si(ξ) = u1b(1 − e
1+cei

c
ξ )

(22)

The continuity ofSe at ξ i
max givesγ . This wave exists as long asv1b > uth

and corresponds to a heteroclinic orbit from(0, 0) to (v1b, u1b). Such a wave
is depicted Fig. 2c (forγ > 0) and Fig. 2d (forγ < 0).

2.2 ξe
min ∈ R

−. Depending on the relative position betweenξ i
max andξe

min + 1,
we split the study into two cases:
2.2.1 ξe

min + 1 > ξi
max . We obtain :

for ξe
min + 1 ≤ ξ ≤ 0 : equation (18)

for ξ i
max ≤ ξ ≤ ξe

min + 1 : equation (19) with a differentλ

for ξe
min ≤ ξ ≤ ξ i

max :
Se(ξ) = (uth − ceeu

ee
eq+cieu

ie
eq

1+cee+cie
)e

1+cee+cie
c

ξ−ξe
min + ceeu

ee
eq+cieu

ie
eq

1+cee+cie

Si(ξ) = ceiu
ei
eq

1+cei
(1 − e

1+cei
c

ξ )
(23)

for ξ i
min ≤ ξ ≤ ξe

min :


Se(ξ) = (uth − cieu

ie
eq

1+cie
)e

1+cie
c

ξ−ξe
min + cieu

ie
eq

1+cie

Si(ξ) = uthe
ξ−ξi

min
c

(24)
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for ξ ≤ ξ i
min :


Se(ξ) = αe

ξ
c

Si(ξ) = uthe
ξ−ξi

min
c

(25)

The continuity ofSe atξe
min +1 givesλ(ξe

min) (as a function ofξe
min). The con-

tinuity of Se atξ i
max gives an equation whose solution isξe

min. The continuity
of Si at ξe

min givesξ i
min and the continuity ofSe at ξ i

min givesα. Therefore,
the wave is entirely determined. The necessary and sufficient conditions of
existence are : (i)ξmin

e exists (ii)ξmin
e +1 < 0 (iii) ξmin

e +1 > ξi
max . Condition

(i) implies
ceeu

ee
eq+cieu

ie
eq

1+cee+cie
< uth and conditions (ii), (iii) do not lead to tractable

expressions. Depending on the sign ofλ andα, four shapes for this wave may
be obtained. We depicted the caseλ > 0 andα < 0 in Fig. 2e.
2.2.2 ξe

min + 1 < ξi
max . We calculate :

for ξ i
max ≤ ξ ≤ 0 : equation (18)

for ξe
min + 1 ≤ ξ ≤ ξ i

max :

{
Se(ξ) = µe

1+cr+cee+cie
c

ξ + v1b

Si(ξ) = u1b(1 − e
1+cei

c
ξ )

(26)

for ξe
min ≤ ξ ≤ ξe

min + 1 : equation (23).

for ξ < ξe
min : equations (24) and (25).

The continuity ofSe atξ i
max givesµand the continuity atξe

min+1 givesξe
min. As

in 2.2.1, we derived the necessary condition of existence :
ceeu

ee
eq+cieu

ie
eq

1+cee+cie
< uth.

Depending on the sign ofµ andα (see (25)) four shapes may be obtained. In
Fig. 2f, we depicted the caseλ > 0 andα < 0.
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