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Abstract

A classification of spiking neurons according to the transition from quiescence

to periodic firing of action potentials is commonly used. Nonbursting neurons

are classified into two types, type I and type II excitability. We use simple phe-

nomenological spiking neuron models to derive a criterion for the determination

of the neural excitability based on the afterpotential following a spike. The

crucial characteristic is the existence for type II model of a positive overshoot,

i.e. a delayed afterdepolarization, during the recovery process of the membrane

potential. Our prediction is numerically tested using well known type I and type

II models including the Connor et al. model and the Hodgkin-Huxley model.

1 Introduction

Despite the large number of ionic mechanisms underlying the initiation of ac-

tion potentials, a broad class of non-bursting neurons presents two types of

excitability (Hodgkin, 1948; Rinzel & Ermentrout, 1998; Izhikevich, 2000). The

properties of membrane excitability are determined according to the emerging
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frequency of repetitive firing. Type I is obtained when repetitive action poten-

tials are generated with an arbitrarily low frequency, whereas in type II spike

trains emerge at a nonzero frequency. The frequency response of a single cell

is crucial since it models the input-output relation, i.e. the gain function, com-

monly used in firing rate description of neural networks. The dynamics of the

membrane excitability determines the spike train statistics (Gutkin & Ermen-

trout, 1998) and is fundamental to understand how non-trivial dynamics emerge

when neurons are coupled in networks (Hansel et al., 1995).

Previous works on the classification of excitability used the bifurcation the-

ory (Ermentrout, 1996; Rinzel & Ermentrout, 1998; Izhikevich, 2000). The

bifurcation resulting in the apparition of a stable limit cycle determines the

type of excitability. Typically, type I and II are related to a saddle node bifur-

cation on an invariant circle and an Andronov-Hopf bifurcation, respectively.

However this classification is not perfect and one has to distinguish between the

bifurcation of the resting state and the bifurcation of the limit cycle leading to

a complex classification (Izhikevich, 2000).

The purpose of the manuscript is to derive a simple criterion for the classi-

fication of neural excitability. In an earlier paper (Tonnelier & Gerstner, 2003)

the authors showed that type I and type II neurons can be obtained as a general-

ization of integrate-and-fire neurons. However, the question of the classification

based on the firing rate was not addressed and the neural mechanisms that

distinguish between the two types of excitability was not established. In this

note, we present an easy and intuitive way to characterize the neural excitability

of spiking neurons using the analytical framework of the spike-response model.

The result is surprisingly simple: type I is obtained when the afterpotential
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following a spike has a monotonic recovery process whereas type II membranes

present a small depolarization during the recovery. We check the validity of this

classification on more complex models and derive some qualitative and quanti-

tative predictions.

2 Type I vs. Type II Excitability of the Spike-

Response Model

The spike-response model allows for a phenomenological description of spiking

neurons (Gerstner & Kistler, 2002). This model approximates the dynamics of

biophysical detailed models with a great accuracy (Kistler et al., 1997; Jolivet

et al., 2004) and yields to a transparent discussion of various neural dynamics

(Gerstner et al., 1996). In this model, the membrane potential v(t) in response

to a constant stimulation is given by

v(t) =
∑

tf∈F

η(t − tf ) + ustat(I)

where η(t− tf ) describes the form of a spike and the afterpotential following it.

The second term ustat(I) models the response of the membrane potential to a

constant input current I, i.e. the steady-state I − V relationship of the model

(to simplify the notations, we will drop the dependence on I). It is convenient

(Tonnelier & Gerstner, 2003) to split the kernel η into two parts

η(t − tf ) = ηf (t − tf ) − ηr(t − tr)

where ηf and ηr are two pulse-shaped kernels. The first term ηf describes

the spike, i.e. the abrupt depolarization of the membrane potential, and −ηr

models the recovery period that follows the spike, i.e. the spike-afterpotential.
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The action potential is triggered at time t = tf ∈ F where the set F gives

the spike events that are to be taken into account. A spike event occurs if the

membrane potential crosses a threshold ϑ from below. The recovery kernel acts

at the so-called resetting time tr = tf + ∆ where ∆ includes the spike duration

and an absolute refractory period. The kernel ηf operates on a fast time scale

and we approximate it by a Dirac delta function. Since the membrane trajectory

during a spike reflects the membrane properties and not the input, the kernel

ηr is independent of the input.

To reproduce the recovery processes of neurons, we consider the two following

kernels

ηI
r (t) = µre

−t/τr sinh ωrt, (1)

ηII
r (t) = µre

−t/τr sin ωrt, (2)

for t > 0 and 0 otherwise, that we call type I and type II recovery kernels,

respectively. The parameter µr is a scale factor, τr is the recovery time constant

and ωr determines the global shape of the kernel. We require ωrτr < 1 for type

I recovery kernel in order to ensure a decay to 0. Note that these two kernels

could be written in a general formalism using complex values of ωr.

We will show the following result : type I and type II recovery kernels

describe type I and type II membrane models, respectively. The existence for

type II kernel of a negative part, i.e. a positive overshoot of the corresponding

membrane potential, is the main difference between the two kernels. The precise

form of ηr is not important; a similar result holds for different choices.

4



2.1 Analytical treatment

A constant input current generates an indefinite train of spikes if tf = n/ν

where n is the index of the nth spike and ν is the mean firing rate. We note

v∞(t) the membrane potential in the repetitive spiking regime. For clarity, we

take, in our analytical treatment, ∆ = 0. We calculate

v∞(t) =
∑

n

δ(t − n/ν) − ηr,∞(t) + ustat (3)

where ηr,∞ is the periodic recovery kernel that we calculate using summation

formula. We find

ηI
r,∞(t) =

µr

2(cosh T/τr − coshωrT )

(

e
T−t
τr sinh ωrt + e−

t
τr sinh ωr(T − t)

)

and

ηII
r,∞(t) =

µr

2(cosh T/τr − cos ωrT )

(

e
T−t
τr sinωrt + e−

t
τr sinωr(T − t)

)

for 0 ≤ t ≤ T where T = 1/ν is the interspike interval. The frequency of the

periodic firing is obtained from the requirement v∞(T ) = ϑ that we rewrite

F (x) = ϑe where x = ωrν
−1,

F I(x) =
sinhx

2(cosh x − coshαx)
, (4)

F II(x) =
sinx

2(cos x − coshαx)
, (5)

ϑe is the effective dimensionless threshold defined by ϑe = (ϑ − ustat)/µr and

α = 1/ωrτr. For type II kernel, α is the ratio between its oscillatory period

and its decaying time constant. Type I kernel could be expressed as a difference

between two exponentials with two time scales (a rising time τ1 and a decaying

time τ2) and α represents (τ1+τ2)/(τ2−τ1). In addition to (4),(5), the neuronal

voltage should exceed ϑ only once during one period

v∞(t) < ϑ, t ∈ (0, T ). (6)
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A necessary, but not sufficient, condition reads −dηr,∞(T )/dt > 0, i.e. the

voltage increases just before the spike.

First, we consider the type I function (4). Using the requirement α =

1/τrωr > 1 for type I kernel, it is straightforward to show that a necessary

and sufficient condition for the existence of a repetitive spiking regime is ϑe < 0

, or equivalently ustat > ϑ, that states that the stationary potential crosses the

threshold, i.e. the stationary state disappears. Note that the periodic solution

is unique since F I is monotonic increasing with respect to x. At the criti-

cal regime, ϑe → 0, periodic firing appears with an arbitrarily low frequency,

νI → 0, and from (4) we derive the following logarithmic law for the emerging

frequency

νI = (ωr − 1/τr)[ln−2ϑe]
−1. (7)

Determination of the critical current is obtained giving the dependence of the

stationary state ustat with respect to I. For instance, if we consider the steady

state I −V curve of the standard IF model, we have ustat = RI and we find the

well known critical current Ic = ϑ/R for the emergence of repetitive spiking.

Note that the logarithmic law (7) of the frequency-current relationship is closely

related to the exponential decrease of the recovery kernel ηr. A square-route

law is obtained when considering a quadratic decay of the recovery kernel.

We now investigate the type II system: F II(x) = ϑe. Using (5), we show in

Figure 1B the locus of existence of the repetitive firing regime. There exists a

critical threshold ϑ∗
e(α) > 0 such that the existence of periodic spiking solution

is obtained for ϑe < ϑ∗
e. Solutions appear by pair but one violates the condition

(6). Periodic firing appears before the vanishing of the stationary state and a

bistability regime exists for 0 < ϑe < ϑ∗ where a stationary state and a peri-
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odic solution coexist. Qualitatively, the explanation is based on the existence

of a depolarized afterpotential that drives the membrane potential into the su-

perthreshold regime and therefore repetitive firing appears before the vanishing

of the stationary state. At the critical regime, ϑe = ϑ∗
e, it is clear from (5) that

small values of ν (x infinite) are not solutions, i.e. periodic firing emerges with

a nonzero frequency.

The exponential decay of the recovery kernel implies that the summation

over the firing time is dominated by the most recent firing event. Hence, the

periodic kernel ηr,∞ is well approximated at time t by ηr(t). This approximation,

reported as the ”short-term memory approximation” (Gerstner & Kistler, 2002),

leads to an accurate determination of the emergence of repetitive firing given by

−ηr(ν
−1) = ϑe (see Figure 1B) and fits the exact periodic solution (see Figures

1C, 1D). In this approximation, the frequency of the emerging periodic firing

for type II kernel is given by

νII =
[

∆ + ωr
−1(π + arctan(ωrτr))

]−1
(8)

In other words, the location of the delayed afterdepolarization of type II models

could be used as an approximation of the period of the emerging repetitive

spiking regime.

2.2 Type I vs. Type II Neural Excitability

Our analysis of the spike-response model suggests a simple observable criterion

for determining the excitability of spiking neurons based on the recovery process

following an action potential elicited by a brief current pulse: the afterpoten-

tial of type I models is hyperpolarized whereas type II models present a delayed

afterdepolarization (DAD), also reported as a prolonged depolarized afterpoten-
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tial. In this part we aim at establishing some connections with detailed models

and thus deriving some quantitative predictions. In Figure 1E, 1F we look at

the time-course of the action potential of popular type I and type II models.

In Figure 1E we show the action potential of models reported as type I: the

Connor et al. model and the Morris-Lecar model in the type I regime (see Er-

mentrout, 1996). Panel F shows the voltage trajectories of type II models : the

Hodgkin-Huxley (HH) model and FitzHugh-Nagumo model. A large number of

papers and books describing the equations and the dynamics of these models are

available (Koch, 1999; Gerstner & Kistler, 2002). Since they represent different

aspects of nerve cell excitability, these models are widely used as paradigmatic

models of action potential generation.

Numerically, parameters µr, τr, ωr, and ∆ are adjusted such that the kernels

(1), (2) fit the time course of the membrane afterpotential of the detailed neural

models (see Figures 1E, 1F). We see that type II kernels numerically fit the af-

terpotential of the Hodgkin-Huxley and FitzHugh-Nagumo models whereas type

I kernels approximate the afterpotential of the Connor et al. and Morris-Lecar

models. The correspondence between the kernels and the detailed models are

made near the onset of repetitive firing. Different parameter values do not af-

fect the categorization, i.e. the type of the kernels remains unchanged, provided

that we work away from the hyperexcitable regime since at highly depolarized

potentials both type I and type II models can show afterdepolarization.

Let us now numerically illustrate some quantitative predictions. We mainly

examine the Hodgkin-Huxley (HH) model but a similar analysis can be carried

out for the other models. Parameters for the recovery kernel of the HH model

are given in Figure 1. Using (5), i.e. solving F II(x) = ϑe, we find an emerging
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frequency νII = 51Hz and using (8) we find the approximate value 52Hz. These

results fit the exact value of the complete model (about 53Hz at 6.3oC). To go

further, i.e to find the critical current, one needs to elucidate (i) the steady state

I − V relationship and (ii) the threshold behavior. Despite the nonlinearity of

the full model, the steady-state membrane depolarization in the subthreshold

regime depends linearly on the applied membrane current (Koch, 1999). The

numerical fit (simulations not shown) of the steady-state I − V curve is given

by

ustat = u0 + RI where u0 = −65.0 mV, R = 0.7MΩ cm2 (9)

for ustat < ϑ (the stable branch of the I −V curve for the Connor model is also

well fitted with (9) using u0 = −68mV ). It has been observed that the Hodgkin-

Huxley equations exhibit a threshold behavior (Koch, 1999; Gerstner & Kisler,

2002). For the extraction of the threshold, we used a rapid and strong input

current, i.e. a certain amount of electrical charge is instantaneously delivered to

the membrane, and we find a voltage threshold for spike initiation given by ϑ =

−58.2mV (see also Noble & Stein, 1966). Then, we predict that the stationary

state destabilizes at I = 9.4µA/cm2 (using ustat = ϑ) whereas the critical

current of emerging repetitive firing is given by Ic = 6.6µA/cm2 (using (5)) and

Ic = 5.9µA/cm2 in the short memory approximation. Our result emphasizes the

difference between voltage-threshold and current-threshold (Koch et al, 1995).

If we define the current-threshold, also referred as the rheobase, as the critical

value of a sustained current initiating action potentials, type II model leads to

a corresponding membrane potential (given by the steady-state I − V curve)

below the voltage-threshold ϑ whereas these two thresholds coincide for type I

models.
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3 Discussion

One possible classification of neurons uses the discontinuity of the firing rate

curve. Following this categorization and in the framework of the spike-response

model, we have shown that type I and type II recovery kernels account for the

difference between type I and type II spiking models. Regarding this result, we

state that the spike afterpotential could be used as a characteristic of membrane

excitability. Our approach has some connections with the classification based on

the bifurcation theory. Indeed, the oscillations generated by the Hopf bifurcation

produce a DAD that leads to the type II response predicted by the bifurcation

theory and by our criterion. However, we stress that the existence of a DAD

does not require the existence of subthreshold oscillations. In fact, damped

oscillations are related to the bifurcation of the resting state that can be different

from the bifurcation of the limit cycle as it is the case when bistability occurs, i.e.

the coexistence of a stable limit cycle and a stable resting state. The existence

of the DAD is related to the limit cycle bifurcation.

Our approach is highly simplified and neglects many aspect of neuronal dy-

namics. We used a threshold for spike-initiation and we neglected the other

nonlinear processes for the generation of spikes. However, our result could be

used as a criterion for the classification of neural excitability of detailed mod-

els away from their hyperexcitable regime. In conductance-based models, the

depolarized spike-afterpotential appears because of an interplay between the

subthreshold voltage-gated currents. The membrane potential during this stage

is mainly driven by the dynamics of potassium current(s). Therefore, we sug-

gest that the type I or type II excitability is mainly determined by the voltage-

dependent potassium current(s). This intuition is corroborated by the transition
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between type I and type II excitability when changing the potassium dynam-

ics of the Morris-Lecar model (Rinzel & Ermentrout, 1998). More precisely, it

can be shown that the transition from type I to type II Morris-Lecar model

can be monitored only by changing the potassium activation curve. Therefore,

as suggested by our analysis, the neural excitability of the Morris-Lecar model

could be characterized observing its spike recovery. Note also that the main

difference between the Hodgkin-Huxley model and the Connor et al. model

is the existence of an additional A-type potassium current leading to a type I

response in the Connor et al. model. We stress that other mechanisms can be

put forward to explain excitability changes, such as the existence of a transient

calcium conductance, but the potassium currents are probably the most com-

monly encountered mechanism that determines the neural excitability.
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Figure caption.

Figure 1. (A), (B) Locus of existence of periodic solutions obtained for (A)

the type I and (B) the type II recovery kernel of the spike-response model

in the (ϑe, α) plane. In (B), the dotted lines indicates if −ηr(t) crosses the

effective threshold (left part). Parameter αHH is derived from Hodgkin-Huxley

model (see below). Panels C and D show the periodic subthreshold potential of

the spike-response model (solid lines) that approximates (C) the Connor et al.

model and (D) the Hodgkin-Huxley model. The dotted lines represent the short

term memory approximation. The neuron fires a spike (vertical line) when the

voltage membrane hits the firing threshold (filled line). The stationary state

(dashed line) is shown. Note that in panel (D), the model exhibits bistability

between a stable steady state and stable oscillation.(E), (F) Action potential

corresponding to (E, left) the Connor et al model; (F, right) the Morris-Lecar

model; (F, left) the Hodgkin-Huxley model and (F, right) the FitzHugh-Nagumo

model. These models have been stimulated by a short, but strong, current pulse

before t = 0. A subthreshold DC current has also been applied. The horizontal

line represents the stationary potential. Models of panel E are known as type I

models whereas model of panel F are reported to as type II models. We idealize

the spike (dotted lines) with a Dirac delta function and we fit (dashed lines) the

recovery part with two generic kernels (see the text). The recovery part acts

after a delay ∆. Numerical values are (E, left) µr = 17mV, τr = 0.1985ms, ωr =

4.691MHz,∆ = 9.5ms, (E, right) µr = 40mV, τr = 6, ωr = 0.1MHz,∆ =

40ms and (F, left) µr = 28mV, τr = 6ms, ωr = 0.3MHz,∆ = 5ms, (F, right)

µr = 0.88, τr = 12, ωr = 0.11,∆ = 20.5 (dimensionless units).
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