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Piecewise linear differential equations and integrate-and-fire neurons: Insights from
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We derive and study two-dimensional generalizations of integrate-and-fire models which can be found from
a piecewise linear idealization of the FitzHugh-Nagumo or Morris-Lecar model. These models give rise to new
properties not present in one-dimensional integrate-and-fire models. A detailed analytical study of the models
is presented. In particulafi) for the piecewise linear FitzHugh-Nagumo model, we determine analytically the
bistability regime between stationary solutions and oscillations, that is, typical for class-1l m@delis.the
piecewise Morris-Lecar model, we find a noncanonical class-I transition from a stationary state to oscillations
with logarithmic dependence similar to that found for leaky integrate-and-fire mddels-urthermore, we
establish a relation to the recently proposed resonate-and-fire model and show that a short input current pulse
can trigger several spikes.
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[. INTRODUCTION monitor other dynamic variables, such as gating variables.
Therefore, it is valuable to have a direct expression for the
Neuronal activity is the result of a highly nonlinear dy- membrane potential
namic process that was first described mathematically by
Hodgkin and Huxley(1952 with a set of four coupled dif-
ferential equations. Precise descriptions of neuronal activity v(t)= *E p(t=t*) +R(t,1(1)), )
involve an extensive number of variables and parameters et

1,2], which often prevent a clear understanding of the un- . . . .
[1.2] P g which stands for a generalized version of the spike-response-

derlying dynamics. Hence, a simplified description of neu- . .
ronal activity is desirable and has been the subject of numerrpOOIGI [17,18. Expression(1) allows a clear understanding

ous works. A pioneering work dates back to LapicdGe of the neuronal behavior: the function is the invariant
who pro oéedpa sin Ie—?/ariable threshold model ?or the de§pike form including the spike afterpotential, the Sede-

0 prop gle- . . scribes the spike events that are to be taken into account, and
scription of neuronal spike dynamics. Simple models of neu

| activity h b ) lar i I R models the subthreshold response of the cell to an external
ronal activity have become quite popular in neural networ inputl(t). A spike event occurs if(t) crosses a thresholdl

modeling[4,5]. Phenomenological descriptions based on &;om pelow. The motivations for the formulatiofl) come
reduction of detailed models has been attempted by manysm the well-known experimental observations th
authors using low-dimensional differential equati¢pés-11]. spikes are generated by some type of threshold process and
Facing the lack of standardized descriptions, some author@) spikes have an approximately invariant form.
have proposed a generic description of neuronal activity us- |n this paper, we suggest modeling a simple spiking neu-
ing concepts of bifurcation theory for dynamical systemsron with piecewise linear differential equations. We show
[12—14. Despite the large number of biophysical mecha-that this framework allows a qualitative description of excit-
nisms, there are only two majors dynamic mechanisms oéble systems through bifurcation analysis but also a quanti-
excitability for nonbursting cells reported as excitability of tative analysis of neuronal behavior through an explicit inte-
class | and 1l[12,15,18. Excitable properties of a cell are gral representation of the membrane potential. We mainly
determined according to the emerging frequency of repetitivéocus on two-dimensional membrane models but our analysis
firing. Class | is obtained when repetitive action potentialscan be applied to higher-dimensional systems. Piecewise lin-
are generated with an arbitrarily low frequency, whereas irear systems are introduced as a first-order approximation of
class-1l action potentials emerge at a nonzero frequencyhe nonlinear neuronal dynamics. In particular, our models
Typically, class | and Il are related to a saddle node on a limican be derived as a piecewise linear idealization of the
cycle bifurcation and a fold limit cycle bifurcation, respec- FitzHugh-Nagumo model introduced by McKefd®] or as a
tively. piecewise linear version of the Morris-Lecar modig]. At

Most models of neuronal activity use nonautonomous dif-each level, we derive an integral representation equivalent to
ferential equations. Alternatively, integral representations othe differential formulation. We analyze the behavior of these
the cell activity have been formulatdd7]. Experimenters models under an external curreiit) and we emphasize new
typically measure the membrane potential which stands fofeatures not present in one-dimensional integrate-and-fire
the observable variable, while it is usually impossible tomodels. We discuss more specifically two input scendiijos

a single-short current pulse affiil) a constant bias current.
Our analysis uses the classical tools of differential equation
*Email address: Arnaud.Tonnelier@epfl.ch theory but also an equivalent integral formulation.
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We will consider piecewise linear differential equations v(t)=9=te Fandv(t™)=v,, (5)
with a discontinuous right-hand side

where 9>0 is the thresholdF the firing set,u, the reset

dX value, and ™ =lim__ .-t + €. In this paper, we assume for
=F(X), (2 o >0, : X .
dt simplicity that the firing set is a countable discrete [$&t.,

I(t) is bounded and the threshold line is crossed trans-
whereF is expressed as a linear combinationXaf R" with  versely. In the standard IF model the action potential is not
the Heaviside step functidm(x). In order to define precisely described explicitly and spikes are reduced to formal events
a solution of Eq(2), we need to extend the differential equa- t' e 7, wheret' is the firing time.

tion to a differential inclusior}20,21] Alternatively to the modeling with differential equations
one may work with an integral representation of the neuronal

dX eF(X), 3) activity. For the standard IF model, it is straightforward to

dt derive the integral formulatiofl7]. Let us suppose that a

first spike has occurred at timié Fort>t' the formal result

where the right-hand side of E(B) is defined with the set- ¢\ o integration of Eq(4) is

valued Heaviside function

~ _if
(1}, x>0 v(t):u,e-“-”)/mclf‘ Y dmi(t—s)ds.  (6)
0
h(x)=14 [0,1], x=0
Expression(6) is valid up to the moment of the next thresh-
{0}, x<0.

old crossing and when(t) =4, the integration must restart.
A solution of Eq.(2) is an absolute continuous function de- The formulation(6) is obtained if the reset condition is in-
fined on an interval e R, which satisfies Eq(3) for aimost ~ troduced as an initial condition. From another point of view,
all tel. We will mainly use planar systems of piecewise if one treats the reset conditions as a current pul¢g =
linear differential equations with a line of discontinuity and — (9 —v,)d(t—t") [17], the integration yields
we refer to Ref[22] for precise results on the uniqueness for
the ini_tial-value p_roblem. In a previous papg23], a particu- v(=> - nr(t_tfHlewe—s/Tll (t—s)ds, (7)
larly simple special case of EQ3) has been analyzed. Here, der 0
we generalize our methods so as to study more realistic
piecewise linear approximations of the FitzHugh-Nagumowhere 7, (t)=(%-v,)e "™ if t>0 and O otherwise. The
and Morris-Lecar models. This paper is organized as followsfiring timest’ e 7 are given by Eq(5). In contrast to Eq(6),
In Sec. II, we recall the standard integrate-and-fire model an@xpressior{7) has not to be rewritten when a new firing time
its equivalent integral representation. In Sec. lll, we intro-is defined. The formulatio(7) allows a clear understanding
duce two-dimensional membrane models as a generalizati®¥f the IF dynamics; the neuron acts as a convolution filter
of integrate-and-firéIF) models including a smooth recov- that emits a reset pulse when the threshold is reached.
ery process. We focus on two particular recovery dynamicghe convolution is described by the kerned;(s)
that reveal the main qualitative properties of our two-=Cc;exp(—s)h(s) and functions,(s) describes the reset

dimensional modeling. We conclude with a discussion. pulse related to the reset conditi®). In Fig. 1, we show the
voltage v (t) of the standard IF model driven by an input
Il. ONE-DIMENSIONAL MODELS OF NEURONAL currentl (t). Note that the summation in E€Y) is not related
ACTIVITY to an adaptation and one has to emphasize that IF models

have no memory beyond the last spikehich is not clear
As a starting point, we recall the standard leaky IF modelfrom Eq. (7)].
The IF model is one of the simplest description of the neu- et us now consider a simple input scenario which reveals
ronal activity given by a single variabke(t), which stands the basic behavior of the standard IF model. We suppose that
for the membrane potential. The behavior of the neuronthe IF neuron is stimulated by a constant input curtgty)

driven by a current (t), is given by a linear differential =|. An interesting property is how repetitive firing arises in
equation the system. It is easy to show that the IF neuron fires regu-
larly if the input current is larger than a critical value
do(t) __ ﬂﬂ: I(t) 4) =(cy7) 19 . In this case, the firing rate of the IF model is
dt R given by
where 7;>0 is the membrane time constant ao;il is a ciml \ 7
capacity. This model is represented byR@ circuit, where V= TlInC1T1| _ ,3) ®

r=(RC) ! andc,=C 1. To keep the mathematical formu-

lation as simple as possible, we take the resting potential dflote that the transition is marked by arbitrarily low frequen-
the membrane to be 0. It is obvious that a linear evolution ixies and, thus, the excitability is reported as being class |.
not a realistic model of neuronal activity. In order to accountFrom Eq.(8), the frequency in the transition to repetitive
for spikes one defines the threshold process firing is proportional to 1/In(—1,).
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FIG. 1. Voltagev (t) (b) of the standard integrate-and-fire model 9V W) =010~ Gu, WG, (D
(4) and (5) driven by the input currenit(t) (a). Parameters are; wherei=1 whenv<d andi=2 otherwise. In other words
=1, 9=1, andv,=—0.2. Inputi(t) consists of a superposition of ¢ is 3 piecewise linear function and we allow for a discon-
fou.r S|nu.50|dal components plus a positive bias curtgrt0.94, tinuity at v="9. Parameters, ; ,g,;, andg, are positive
which drives the membrane potential towards the threshold. constants and we talg =0. The sfgn of parameters is mo-
tivated by the inhibitory role ofv and the requirement of a
stable resting state at the origin. A complete study of Egs.

There are two major drawbacks of models based on one9)—(11) is not the goal of the present work; rather we would
dimensional differential equationst) subthreshold oscilla- like to study some simple configurations that illustrate the
tions cannot be reproduced afid) the reset condition is a qualitative behavior of two-dimensional excitable membrane
nonrealistic recovery process. Firstly, damped oscillations ofmodels. We will emphasize those features of the two-
membrane potential are reported experimentally for manglimensional models that go beyond those of the one-
biological neurong24] and in biophysically detailed neural dimensional IF models discussed above. Graphical or geo-
models[25]. This dynamical property is assumed to play anmetrical representation of the dynamics in the phase plane is
important role in the neuronal information processing and® classical tool for the study of neural excitability and oscil-
reveals the sensitivity of neurons to the fine temporal struclations[12]. Here, our analysis is completed by the analytical
ture of input spike traif26]. Secondly, the reset process in description of the neuronal activity through an equivalent
the one-dimensional modeling of neuronal activity is a badntegral formulation.
approximation of a biologically realistic smooth recovery
process. In this section, we introduce a two-dimensional A. The piecewise linear FitzHugh-Nagumo(PFN) model
model which addresses these probllems..Let us consiQer @ First, we explore the simple case, wheyés the linear
recovery variablev(t) e R. The two-dimensional system is  ¢,nction

Ill. TWO-DIMENSIONAL MODELS

,W)=b(v— , 12
O _ o0y wity+ 140, 9(v.W)=b(v—yW) (12)

wherey=0 andb>0. Since we are interested in qualitative
©) properties, we consider for simplicityy = 7,= 7. Hence, we

dw(t
MO _ g (0,wb)), study

T do(t) __o(t) h[o(t)— 9]—w(t)+14(t)
wheref(v) is the piecewise linear function given by o« T .
13
v dw(t)_b -
f(v):_q-_v)Jr,uh(v—ﬁ), (10 e o

One recognizes the piecewise linear version of the FitzHugh-
where 7(v)=7, if v<9 (subthreshold regimeand 7(v) Nagumo model introduced by McKedd9]. Nuliclines of
= 7, otherwise(superthreshold regimel o(t) is an effective  the piecewise linear syste(h3) are shown in Fig. 2. In Ref.
current, i.e.l¢(t)=cqI(t) if v(t)<¥ andc,l(t) otherwise. [23], we focused our study on the existence of periodic so-
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lutions of Eq. (13) for y=0 without input current, i.e., 3
l¢(t)=0. In the present study, the nullcline has a finite

positive slope so as to allow the analysis of the phase tran- 2|
sition and the bistability with, as a bifurcation parameter. i

1. Integral formulation of the PFN model

In this section, we show that the two-dimensional model oL
(13) admits an equivalent integral formulation. This repre-
sentation allows a direct comparison with expressions previ- @ t
ously obtained for one-dimensional IF models. Based on the
integral formulation, we determine some properties of the It
neuronal activity. ()

We define the two sefR7]

d
b(t)= 9 andd—li(t’)>O:>teJ-',

G\,z/Ts 8 10

t

(b)

FIG. 3. Kernels of the PFN model in the leaky integrator con-
. o figuration. (@) shows kernely and (b) kernel e. Function has a
where @v/dt)(t") denotes the left-hand side derivative.  giohal maximum at = 1/w arctanh2,~ and its global minimum is
is the firing set analogous to the one that we have already parameters are =3, =10, andb=2.

encountered in Sec. Il an® the resetting set. The jump
conditions result from the discontinuity of the vector field ,nctions: trigonometric or hyperbolic ones. To make our
and indicate that a firing timea reset timgis defined when i \;ssion as clear as possible, we take0 in Eq. (13).

the threshold line is crossed from left to righight to left). Most of the results are directly generalizable for 0.
We assume that the two setsandR are countable discrete Leaky integrator. The casa>0, i.e., b2<1, is re-

sets. Hence, sliding solutiori20] are not considered in our foqreq 10 as the leaky integrator case, and we will explain this

analysis; some comments are available in the Appendices.t inol later. Wi o= 1/21/2—4b and f AD-
We demonstrat€Appendix A that the PFN model is peerrr:zjlir:(OAogv)\//eig:/'e © s 7 and from Ap

equivalent to

d
v(t)=7 and d—li(t*)<0:>teR,

> _ M —t2rg
()= 2 gy(t—th— X g (t—t)+ J €(s)l(t=9)ds, 7= e Fsinhat,
tfe}' trer 0
(14)
1
_ a—ti27 ;
where 7¢(s), 7,(s), ande(s) are given in Appendix A. By e(t)=e""? coshot—5—sinhwt (15

abuse of notation, we have chosen the same symbols for the
IF and PFN kernels. From the Appendix, we hayf(t) o t~0 ands(t)=e(t)=0 otherwise. The functiom has a

= 7:(t) and we refer to both kemels simply agt). We  , ise shape without negative péfig. 3a)]. The terme* |

emphasize the existence of a memory effect, i.e., the pOSSiz £q (14) is the response of a convolution filter with im-

_bility to emit several spikes in response t_o a single-shorbmsive response. Its typical shape is depicted in Fig(i8.
input currentl (t) =qod(t—to). This property is related 10 & Nt thate(t) presents an exponential convergence to the

memory process caused by the smooth recovery dynamiog iate with a short negative bump. Let us remark that this

We will derive a precise analysis of this PFN feature in thefilter is stable, i.e.ecLL(R), and realizable, i.e., supg\

following section. =R™. To understand more closely the sensitivity of the neu-
. ron to the input frequency, we calculate the transfer function
2. Leaky integrator versus leaky resonator of the filter £ the Fourier transform of

Depending on the stability of the resting st&dtable node

or stable focus the PFN model presents two qualitatively 2imé

different behaviors, i.e., leaky integrator versus leaky reso- &&= . (16)
nator. Such a distinction implies some differences in the neu- b— 4722+ 2i 7.,§

rocomputational properties of neurdr&6] and would not be T

possible for one-dimensional IF models since they always

exhibit an exponential convergence to the resting state. In th€he resonance frequencies are clearly illustrated by the plot
PFN model, the stability of the resting state is monitored byof the energy spectrur€(£)|? (Fig. 4). High frequencies
A=1/4(1/r+ yb)?>—b (see Appendix A and depending on (|¢| large are destroyed and the energy spectrum has a
its sign the two kernelg) and e are expressed with different maximum at the frequency
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FIG. 4. Spectrun{16) of the subthreshold response of the piece-
wise linear FitzHugh-Nagumo model. Parameters aré=3 and )1
b=2. et
0.5
fp:ﬂ' (17) \/ 5. 10 15 20
-0.5 t
_ ) o ) o (b)
which points out a privileged frequency. The filter gain is 15
zero, i.e.,£(0)=0, and thus filter responses have a zero
mean valudfor y=0). 1
The sensibility to a single-incoming pulse has already &)
been studied in Ref23] and will not be repeated here. The 0.5
main result is that the neuron emits a single spikey f
> 4. Moreover, in the limiting situatioto— 0 the behavior 0 % 10 15 2%
is very similar to the one-dimensional IF moddkee the t
discussion justifying the designatiomeaky integrator] 28]. -0.5
Leaky resonator. We now investigate the other situation, ()

. 2 - .
that is, when 4°b>1. We find (Appendix A FIG. 5. Kernels of the piecewise linear FitzHugh-Nagumo

model in the leaky resonator configuratida) Plot of the kernely

Mmoo ) for 7=0.5, =10, b=3. The maximum is reached at

n(t)= P "sinwt, =1/w arctan 7. The impulsive responseis shown forb=2 and
(19 =2 (b), 7=0.4(c).

1
—at2 _ ; w .
e(t)=e "7 coswt 5-gSinot 0 _(coswpt— Coswqt) if wo wp

e 1(t)=
for t>0 and(t) = e(t) =0 otherwise. In Eq(18), we have —sinw.t if on=aw..
setw=1/2\/4Ab— 1/72. The functiony has a spike shape that 2 P o
includes an hyperpolarization peripiig. 5a)]. The afterpo- . ) .
tential is amplified by the resetting pulsgt—t'). In this  FOr @o=wp, @ resonating phenomenon occurs which yields

configuration, a dynamical threshold that includes the rese@" Unstable system. This limiting behavior explains the des-
ting pulse is a reasonable approximation of neuronal activitygnationleaky resonatar .

(see the discussion in the last secliohhe terme*| is the In the leaky resonator case, the neuron prefers periodic
response of a convolution filter with an impulse response thafiPuts of a frequency that is equal to the frequency of the
shows damped oscillations. The damping is monitored by th&ubthreshold o§C|IIat|ons. Moreover, the s_plke solution is

parameter [Figs. 5b), and 5c)]. The filter is still stable and MOré complex in the sense that a short stimulesod(t)

its transfer function is the sangsince the transition from the May elicit a spike trairi23]

integrator to the resonator states when 1/2\/1/72— 4b be-

comes iméaginar)y The limiting sitqationr>1 is a special v(t)= 2 pt—th— > 7,(t—t)+qoe(t).

case of 4“b>0 and asr—«, we find ther treRr

The brief current pulseyyé(t) leads to an instantaneous
shifting of v (t) from the resting state and the spike solution
is a trajectory that spirals around the resting stage Fig.

for t>0, wherew,= Jb. Therefore, for a sinusoidal input 6). The number of emitted spikes depends on the proximity
[ (t)=sinwgt h(t), we find the leading approximation of the of a fold limit cycle bifurcation. The study of this bifurcation
convolution part of the activity is left to the following section.

€(t)=coswpt+O(1/7)
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creases, the PFN presents tnmnsmoottsaddle-node bifur-
cations att =1, andl,, where
1
Il: 1+ —]— 1,
Y
[L,=39|1+ !
2 y .

The nonsmooth term indicates that the saddle point appears
or disappears along the line of discontinuity. It is a singular
fixed point and a precise mathematical formulation requires
: the notion of differential inclusionfg21].

-0.18f A For 0<I<I, the system has a single stable fixed point,
a) 0.162 0.1635 0.165 for 1,<1<I, two stable fixed points and a singular saddle
point and forl>1, a high activity fixed point. We show
(Appendix B that for I<I, the effect of a constant input
current is to decrease the effective threshold following the

\ NN '
v(t)
2 W W NG - 0%
\/ 10\/ 10/ 30 40 F=9——oI.
F 1+y
-1+ -
i t

The situationl >1, is described in the Appendix. Thus, for
the analysis of the effects of a constant input, we consider
(b) I=0. In one-dimensional IF models oscillations are obtained
by shifting, throughl (or equivalently through?), the low-

FIG. 6. Spike solution of the piecewise linear FitzHugh- activity fixed point in the superthreshold region. In the PFN
Nagumo model in the leaky resonator case. The neuron is excitethis procedure yields the appearance of a stable fixed point in
from its resting potential by a single-short current pulse the superthreshold regime and, therefore, does not involve
=0od(t). Panel(a) shows the trajectory in the-w phase plane. oscillations. Here, we have to investigate another mechanism
The nuliclines are shown in thin lines. The enlarged figure showgor the appearance of oscillatiofwhen they exist
the trajectory in the V|C|n|ty of the thresholﬂ)) shows the time A periodic solution is related to a periodic Configuration
coursev(t) of the membrane potential. The threshold is shown inof the two setsF andR. In other words, the existence of a
thin line.  Parameters arer=1, p=2, §=0.1639,b=1,  ariodic solution is related to the existence of two rdaisid
y=0.08, qp=08. ¢ such that' =ty = — ¢+ kT andt’ =ty ;= {+KkT. Thus, a
periodic solutiorv,, is given by

[ay

(=]

3. Constant input and oscillations

In this section, we study some input scenarios that empha- V()= limuv,(1),
size the major differences between the two-dimensional PFN n—ee
model and the one-dimensional IF models. We go back to the . . . .
casey>0 in Eqg. (12 so that a constant input qualitatively Whereu, is the spike solution defined from E(L4)

acts on the dynamics by shifting tlhenulicline [29]. Before n
starting the study, we note that the change of variables v,(t)= 2 7(t—1to) — (t—toes1),
k=-n
~~~~~~~ v t o o Y | ) ] )
(v,w,t,9,b,y,1)=| —,—,—,—,7b,— — where for convenience we rewrite the summation as a sym-
KT KT RT TH metric one. Parametere N monitors the number of spikes.

allows us to taker=pu=1. Recall that the requirement on We show thatAppendix Q

the threshold is &9<<1. Without external inputs, we avoid
an additional stable fixed point in the superthreshold regime
fixing y and ¥ such that

Uoo(t):U—oc+ nm(t+§)_ ﬂm(t—fﬁ

whereu_m=2y§/[(1+ v)T] is the mean value of.(t) and

y 7.(t) has an expression given in Appendix C. The existence

<9, (190  of periodic solutions is obtained from the matching condi-
1+y tions

In this configuration the spike dynamics, in the superthresh- v(0)="1,

old regime, is driven by the virtual fixed pointy(1

+79)71(1+v)"1]. For y#0, as the input current in- Vo(—0)="1,
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30 - - . stable fixed point and, thus, when a limit cycle exists, the
¥=0 system presents a bistable behayieig. 7(b)]. A brief cur-

rent pulse can switch the system from the resting state to the
201 ¥=0.01 ] oscillatory response and vice versa. The separatrix between
b these two regimes is described by an unstable limit cycle.
10 Y=0.1 Such behavior has been reported for many models and ob-
served in biological experimentsee Ref[12]). Moreover,
for certain values of ¢,b,y) the system is tristable, that is,
' ' there coexists two stable steady states and a stable oscilla-
) ' ' tion. This behavior might be critical for the occurrence of
complex bursting behavior.

The advantage of our piecewise linear version of the
FitzHugh-Nagumo model is that the problem of the existence
of oscillations has been analytically reduced to a solution of
transcendental equations which has not been possible in pre-
vious works[12].

;1

B. The piecewise linear Morris-Lecar model

0% o7 o 0F 0% The linear evolution(12) of the recovery variablev over
(b) ) ) Ty the whole phase plane is the S|mples_t dynamic. As for the
membrane potential an abrupt evolution w(t) near the
FIG. 7. (a) Locus of existence of periodic solutioffimside the  threshold is conceivable. In this case, the recovery function
solid lineg for different values ofy. The dotted lines represent the has the form
nonsmooth saddle-node bifurcations which yield an additional
stable fixed poinfto the left side of the line From left to right, _ _ _
these lines are obtained fgr=0.01, y=0.1, andy=0.15. For a 9(v,W)=b[fv = yw+ah(v==9)], (22)
value of y=0.1, the shaded area indicates the region of the coex- . . . .
istence between a stable limit cycle and two stable fixed points. Th¥/here «>0. The goal of this section is to illustrate some
long-dashed line represents the critical threshold valtieabove ~ NeW aspects of the dynamics induced by the new recovery
which there is no oscillation. Pan@) shows in the phase plane the function (21). When the origin is a focuthecessarily stable
bistable behavior of the piecewise linear FitzHugh-Nagumo modepecause of the sign of paramefeitsis possible to obtain
for 7=1, u=1, 9=0.1,b=2, andy=0.1. oscillations through the same mechanism as in the PFN
model; the trajectories spiral “enough” around the origin to
which amounts to the resolution of a system of two transcengive rise to a stable limit cyclgfor a sufficiently small
dental equationgAppendix O threshold. In this configuration the model still exhibits
class-Il excitability. Since we are interested in a new situa-
tion, we consider for simplicity3=0 (the origin is a node

F(X,y)+ y—y_ﬁzo, and we will show that this situation give rise to a new be-
X(1+7) havior. We study the system
(20)
124 do(t) v(t)
F(X,x—y)— ————+9=0, =_ 7 S
X=Y) = ST+ ) n —Huhlv() = 9] —wH1 (D),
: : : (22
where we write for the notational convenience T/2 and
y=/{. The existence of periodic solutions is related to the dw(t)
existence of solutions@y<x of the transcendental system —gr~ Plahlv(t) = 9] -w(t);.

(20). In Fig. 7(@), we depict in the plane,b) the locus of
existence of periodic solutions for different values1ofin
the terminology of bifurcation theory, the curvgsig. 7(a)]
are fold limit cycle bifurcationg30]. Oscillations appear
with a nonzero frequency that indicates a class-Il excitability.
Figure 1a) shows a nontrivial dependence of the oscillations
upon the threshold. For example, the shaded region gives, for The Morris-Lecar equation is a quantitatively accurate
v=0.1, the regime of the coexistence between limit cyclesnodel of neurophysiological activity, specifically, the bar-
and fixed points. The special cage=0 has already been nacle muscle fibef8]. The model incorporates two chan-
analyzed in[23], where an asymptotic valu8* =1/ was nels: a calcium channel that monitors the spike process and a
found above which no oscillations are possible. Note that fopotassium channel that defines the recovery process. Equa-
a steady applied current the PFN system still presents @ons are

This system can be obtained as a piecewise linear reduction
of the Morris-Lecar model, as we show now.

1. Piecewise linear reduction

021908-7
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1.5 : . , T : 2. Integral formulation of the PML
w As for the PFN model, we introduce the two sétsand
1r ammmmmemmmne R. The integral formulation of the PML is given lAppen-

dix F)

v()= 2 p(t—th— > n,<t—tf>+fme(s>l<t—s>ds,
tfef trer 0 (25)

(@) v where

w E(t):eftlr

and »;, n, are given in Appendix F. Using the integral for-
mulation of the PML mode(25), an analysis similar to that

for the PFN model can be performed. The kera) is the
same as that of the IF model and hence, the PML neuron is
) termed leaky integrator. A simple description of the spike
is obtained in the limiting situation— 0. A fast phase given
(b) v by
_ —t/T
FIG. 8. () Nullclines of the Morris-Lecar model antb) its n()=pr(l-e ")

piecewise linear reduction to a single-threshold system. Parametelrg followed by a slow phase
in (@ are V;=-1.2, V,=18, V3=12, V,=17, gc.=4.4, gk y P
=8.0,0,=2, Vy=-84,V =-60, V= 120. p(t)=7(u—a)+ are bt

v — _ _ Note that our analysis concerns a particular reduction of the

C gt = 9cd(v)(vea—v) +gxW(vk—v) + (v —v) +1, Morris-Lecar model for which the subthreshold regime has a
very simple dynamic. This special choice reveals a great
similarity with one-dimensional IF models. We will demon-

, (23)  strate that this similarity also exists in the birth of oscilla-
tions.

dw_ W, (v)—W
H_f Tw(V)

where functionsn..(v), w.(v), andr,(v) are given in Ap-
pendix E. In Eq(23), v denotes the membrane potential and ) .
w is the fraction of open potassium channels. The Morris- Just as for the PEN equations, a change of variables al-
Lecar model is more realistic than the FitzHugh-Nagumo©OWs Us to takeu=7=1. Without input current, we avoid an
model and thus has been increasingly popular for theoretic@dditional fixed point in the superthreshold regime if

studies of single cell or network behavidi2,31,32.

The first step of the reduction is obtained by taking the
high gain limit for m,,(v) and setm.(v)=h(v—v4). We
applied the same procedurewg,.(v) and findw.,(v)=h(v
—v3). Taking vy=v;=7, a constant relaxation time
mw(v) =7 and rescaling, we obtain

3. Constant input and oscillations

a>1-9

and we still have the requirement on the threshold®
<1. Depending on the input strength, different fixed points
exist. As| increases, two nonsmooth saddle-node bifurca-
tions appear at

dv — —
Ca:gCah(U_ﬂ)(UCa_U)+gKW(UK_U)
VB (o)t I=l,+a—1=1,.
(29 For 1<l,, one may demonstrate thalt,Q) is a globally at-

tractive fixed point. Due to the stability of the fixed point

(negative real eigenvalues of the Jacobian maptaxfold

limit cycle bifurcation cannot occur since the trajectory can-
As a further simplification, we approximate thenulicline  not spiral around it. In this regime, the qualitative effect of a
by a piecewise linear function. Rescaling parameters andonstant input is to decrease the threshold value of the iso-
shifting the resting state to the origin we obtain the piecewisdated system. Folr; <I <l ,, the system can be rewritten as a
linear system(22) that we call the piecewise linear Morris- piecewise linear version of a lnard equation for which a
Lecar (PML) model. Geometrically, our reduction is limit cycle exists. The periodic solution is given #xppen-
sketched in Fig. 8. dix G)

dw
H=e[h(u—ﬂ)—w].
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0.5
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25 FIG. 10. Frequency(l) of repetitive firing as a function of
W ) current for the(class-) piecewise linear Morris-Lecar model. The

dashed line shows the logarithmic law near the first critical current
l1; v(I)~—=21bIn(I-1,). Parameters are=1, u=1, 9=1, b

1 =0.5, anda=2. Hence, the value of the two critical currents is
;=1 andl,=2, respectively.

1.5

0.5
0 IV. DISCUSSION
033 0 05 1, 15 Two-dimensional differential equations are often seen as a
(b) useful compromise for a more realistic modeling of the neu-

ronal activity; systems with less than two dimensions incor-
porate some unrealistic reset behaviors and do not reveal all
the excitable properties of neurons. Higher-dimensional sys-
tems are difficult to analyze and often do not present signifi-
cant novel effects. Two-dimensional models of neuronal ac-
tivity have been widely used and studif@-10,13. In this
paper, we present two-dimensional systems in the framework
_ of piecewise linear differential equations. Classically, piece-
Vo) =00t 7 (14 0) = 7 (1= 0), wise linear systems have been introduced as an idealization
of smooth nonlinearities in order to analyze and to discuss
aspects of neural dynami¢$9,34,33.

Alternatively, our equations may be introduced as a gen-
eralization of the leaky integrate-and-fire model with the aim
to define the simplest nonlinear dynamics. The relation be-
tween the standard IF model and the two-dimensional mod-
els is clearly illustrated by introducing a one-dimensional IF

FIG. 9. Trajectory of the piecewise linear Morris-Lecar model
for a constant currenta) | =0.4 and(b) | =0.6. Initial conditions
are (pg,wg)=(0.6,0) and parameters are=1, 4=0.5, u=1,
b=0.3, «=2. In panel(a) the input current is below the saddle-
node bifurcation (<1,) and the resting state is globally attractive.
Panel(b) shows the onset of repetitive firing.

wherev,,=2¢/T(1—«a)+1 and »., is given in Appendix G.

By abuse of notation, we do not distinguish with the nota-
tions for the PFN and the PML model. The two unknowns
T=2x and =y are solutions of the transcendental system

I=11+F(xy)=0, model with a spike descriptiofiFS)
do(t t
2= 1+F(X,x=y)=0, l;(t)=—¥+ﬂh[v(t)—ﬁ]+le(t), (26)

monitored by the distance ¢fto the two bifurcations points \where the positive constani drives the spike towards a
I, andl,. Forl>1, the limit cycle disappears via a saddle stable fixed pointvs=7,u>9. This equation is formally
node on a limit cycle and the new fixed poiri{ 1—1,a) is  equivalent to thes dynamics in Eqs(13) and (22) of two-
globally attractive. Note that there is no bistable behaviordimensional models. However, instead of a smooth recovery
(Fig. 9). process via the dynamics of a recovery variakleve simply

The transition to repetitive firing is marked by arbitrarily define a reset process when the potential reaches a given
low frequencies and the model presents a class-I excitabilitsuperthreshold valug®® that is,
More precisely, foll near the critical current the frequency is
proportional to 1/Ii—I*| (I*=I, or I*=1,) as for the v(t) =9y (tT)=v,, (27
integrate-and-fire moddAppendix G (see Fig. 10 When
I=1* the limit cycle has an infinite period, it is a saddle whered< 973y . Models(26) and(27) is a natural gen-
node on a limit cycle bifurcation. The PML model presents aeralization of the standard IF model; the subthreshold and the
noncanonicakransition in the sense that the repetitive firing superthreshold dynamics are both describedRIy circuits
does not follow the classicall —1* law obtained in the (for simplicity, we keep the same relaxation constant in the
smooth cas¢33]. Note that the logarithmic law is obtained subthreshold and superthreshold reginide superthreshold
in smooth dynamical system when the limit cycle appears viaegime has an intrinsic drift monitored by and a reset
a saddle loop33]. condition control byd”®® We could, for example, relate the
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15 ' ' ' ' wheretf is the most recent firing time. However, some re-
ductions or approximations have to be made in order to de-
10 rive Eq. (29 from Eq.(28). Basically, these transformations
follow two steps:(i) reduction of the twop summations into
v(t) I one and(ii) reduction of the single summation into a single
51 I term. One possible approach is to assume a constant spike
durations=t"—t", wheret’ andt" are two related firing and
reset time ands>0 satisfiesy(d)= 9. This approximation
ol e e is useful if we assume that the input is shunted in the super-
0 5 10 15 20 . . . S
t [ms] threshold regime. In this case, the effective current is given
by

FIG. 11. Voltagev(t) of the integrate-and-fire model with a
spike-description driven by the input currertt) shown in Fig. lo(t)=pr(D)I(1), (30)
1(a). Parameters in the subthreshold regime are the same as Fig. 1

. peak . .
and for the superthreshold regime parameters grel, wherep ;- is the cutoff function

=10, andu=30.
superthreshold driff. to the sodium current of the Hodgkin- pAt)=1— 2 Xt i+ 5 (1)
Huxley model and 4 to the sodium equilibrium potential. In ther

Appendix H1, we give the integral representation of the IFS
model and emphasize the differences with the standard ISince the reset tim¢ is directly obtained from the firing
model. We present in Fig. 11 the time course of the IEgimet’, the two summations are reduced into one summation
model for the same input as in Fig. 1. In the same Appendixof 7(t) = 7(t) — 7,(t— 8). Usually 7(t) has an exponential
we also show that our two-dimensional piecewise lineardecay so that we approximate the single summation by its
models have, in the limit of a slow recoveby—0, a fast most recent term and we obtain §Q9).
regime with nearly identical kernels as the IFS models. It has been shown that E€R9) provides an accurate de-
Another point of view is to consider neurons as “bimo- scription of some conductance-based modi8&. Here, we
dal” systems defined by two different linear behaviors, i.e.,have shown that the integral representati@8 can be ob-
subthreshold and superthreshold dynamics. The main asained analytically from two-variable simplifications of de-
sumption for this modeling is to consider neurons to operateailed conductance-based models. These simplifications are
in two modes with a transition from one mode to the otherthe piecewise linear versions of the FitzHugh-Nagumo
that is taken as instantaneous. In other words, the time scalaodel and the Morris-Lecar model. Based on this formula-
of the transition is much smaller than the scale of the dynamtion, we have shown that integrator models have a typical
ics of individual modes. kernel given by
The geometrical treatment of low-dimensional models al-
lows to see more clearly the underlying qualitative structure e(t)y=e V7.
of models[12]. However, a deep understanding needs the

addition of some analytic methods or analytic descriptions opgpular examples are the integrate-and-fire model and the
solutions. Our approach provides an exact correspondengfiecewise linear version of the class-l1 Morris-Lecar model.
with the integral representation of neuronal activity given byResonator models with damped oscillations have a kernel
B given by
— f r
v(t) Ef ne(t—t") ER 7 (t—t")+ fo €(s)l(t—9)ds, €(h)=e-""cosot.
(28)

] ] A typical example is the FitzHugh-Nagumo model. There is
where the kernelsy¢, 7., ande characterize the spike pro- a|so an interesting relation to resonate-and-fire moi8%
cess and the spike generation. The seendR describe the | addition, the superthreshold process is described by the
transitions betwgen the two regimes of the neuron. Note thaternel 5. Like the kernele, this kernel presents to qualita-
Eqg. (28) can be introduced independently as a model for thejyely different shapes which yield two different laws for the
neuronal activity assuming thé) neurons behave as thresh- frequency of the emerging oscillations. A kernglwithout
old elements that fire when the VOItage membrane reaCheS(ﬁmped oscillation y|e|ds an emerging frequency propor-
threshold,(ii) the spike has an invariant shape, did the  tional to 1/In(1—1*)|, wherel* is the value of the critical
subthreshold part of the dynamics is well approximated by &yrrent. This case is refered as class-I neural excitability. For

linear evolution. _ a kernely with damped oscillations, the model has a class-II
It is obvious that Eq(28) presents an analogy with the npeyral excitability and presents a nontrivial emerging fre-
standard form of the spike-response-model quency. The mathematical analysis of class Il yields non-
trivial conditions for the existence of oscillations, while os-
v(t):n(t_ff)Jrme(S)'(t_s)ds, (29) cillations in class-l models are ea_sily described from the

0 analysis of the saddle-node bifurcation.
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calculations but does not present a particular interest. Using

APPENDIX A: THE INTEGRAL FORMULATION OF THE . . .
inverse Laplace transform, the following properties:

PFN MODEL
Let us recall the PFN equations L7F(p)ePi)(t)=L F(p)l(Hh(t—t)),

do(t)  w(t) L™HFG)=L X F)*L XG),
i :——+,uh[v(t) 9]—w(t)+1(1),

(A1) and the formuldfor r{#r5,)

dw(t) B
BrTE blv(t)—yw(t)].

1
- (erlt—erzt),

A
(p—ry)(p—ry) ry—rp

For convenience, we writerather thar .. We start by trans- et
forming (A1) into a linear nonautonomous differential equa- L 1(—)( t)y=—+ ——
tion using P(P—Tr1)(p—ra) Firs rl(rl_rz)
afat
+ —1
h[v(t)— 9]= Z h(t—th— > h(t—t"), (A2 ro(ri—rp)

ter t"er
we calculate
and thus(A1l) can be solve using classical integral transform
methods. Note thafA2) holds for noncontinuous threshold o
crossing. As an initial condition, we také (0),w(0)) v(t)= 2 7(t—th)— 2 n(t—t' Hf €(s)I(t—s)ds,
=(0,0). Applying the Laplace transform ver

where
E(v)(p)=f e Pou(s)ds, . o
0 T
n(t)=Z+L+,ue‘ \/_—(1_7-T sinh /At
yields 7
yT
r — ———coshyAt A3
PLW)(P)=— L))+ o B e w2 S e T oS (A3)
p ther p trerR
—L(wW)(p)+ L(1)(p) for t>0 and O otherwise. The convolution part of the activity
' is described by the kernel
PL(W)(P)=Db[L(v)(p)— yL(W)(P)].
e(t)y=e st COSh\/Kt'Fi(b’y—S)Sinh\/Kt
Thus, we obtain JA
w(p+by) for t>0 and O otherwise, where the parameyér varies in
L(v)(p)= the complex plane. Depending on the signfofrelated to
p| p?+ by-i— p+b 1+ the stability of the resting state (0,0)], we obtain hyperbolic
or trigonometric functions. Note thatu 7/( 7+ ) represents
. the possible fixed point in the superthreshold regime.
> e Pt— ep‘r)
ter ter APPENDIX B: THE PFN MODEL WITH CONSTANT
N p+by . INPUT
1 vy (Dp). For1<l,, we define
2
p°+|by+—=|p+b| 1+ =
T T
vl
We define P01y
2s= b |
ST T Ty 071+ 0%
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which is a stable fixed point of the PFN models long as
I<I,). We consider the change of variabiésu—vo and
w=w-—Ww,. Then the PFN equations rewrite

dov(t)
dt

=—v+h(v+vg—9)—W,

dw(t -~
¥=b(v—yw).

Introducing the new threshol@=9—uv,, we find the iso-

PHYSICAL REVIEW E57, 021908 (2003

and formal calculations lead to

©

v (t)= 1Tyy S h(-KT+0)—h(t-—kT=)

+ k;_w P(t—KT+{)—7t—kT-¢), (CD

that we write

V(D) =02 ()+02(1).

lated PFN system. Note that we still have a positive thresh-

old valued>0.
For1>1,, we note

I+1
V1=V

I+1
Wl_l-i—'y'

and we consider the change of variablesv,—v andw
=w;—Ww. Usingh(x)=1—-h(—x), we have

do(t)

g = vth(+u—v)-w,

dw(t) - -
S by,

and consideringd=v,— 9, we find the isolated PFN sys-
tem.

APPENDIX C: PERIODIC SOLUTIONS OF THE PFN
MODEL

The first termv2(t) reads

vi()=2, Scrxi-¢,a(t),

where y is the indicatrix function and the shift operator.
This is aT-periodic function such that

Y
U?C(t):]_TyX[*{vﬂ(t) on [—T/Z,T/Z],

which has a Fourier series expansion given by

2imki - 2imke

e — Y e e
t)y=v.,.+ -

V()= 2imk

Q2 mkUT
1+ %0

where we notev.,.=27y/[T(1+7)]. We have7eL(R)
and then the Poisson formula gives

+

1 S ) _
vg(t): T k;m n(k/T)(eZIwktﬂ/T_ e2|»rrkt7§/T)_

) . o From Eq.(A3) (written with trigonometric functions since
We consider the spike solution in the leaky resonator casg <), we calculate

(the leaky integrator neuron can only emit a single spike

P Sy 1
_ S N _qr )=(1— )
v(O= 2 (t=t)= 2 7(t=t)+dee(t), e 1ty —am?@ 1 2im(1+by)E+b(1+ )
We are interested on periodic solutions and, therefore, we do Y 1+yb+4iné

not consider the transient regime monitoreddyy A peri-
odic solution is obtained as the limit of the spike solution for
an infinite number of regular interspike intervals, which
reads

T 2(1+79) —4n22+42im(1+by)é+b(1+y)’
and then we rearrange. andvg, into

L V() =00t 7(t+ ) = 7t =), (C2)
va(D=lim > y(t=KT+0) = n(t-KT-{),

Aol where 7., has a Fourier series expansion
where we use the notations previously introduced. We note

[see Eq(A3)] ﬂw(t)Zg %Ykeziwkt/r,

’y ~
n(t)= mh(t) + (1), such that
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byt 27K 2 0)+—2 -0
1 7+T 7:(2Y) — 7ec( )+m— =0,
T=KTT Sk 4miE 2imk ' , (DY)
T T2 T ( 7) ( 7) ﬂw(o)_nw(_zy)+ Y _19:0_
(3 (1+y)x

Note that the Fourier coefficient of, is given by From 7..(—2y) = 7-[2(x~y)], we write (D1) as

Vo = 1, (@2ITKUT _ o= 2imkeITy. .

K= 70kl ) F(x,y)=0 T
Alternatively, one can find this result using the Fourier series
transform on the differential formulation of the PFN. Now let Yy
us analytically derive the expression gf(t). Starting from F(X,x—y)=—9+ T+ %’
(C3), we split the fraction into simple elements and we use Y
the two formula whereF (x,y) = 7.(2y) — 7..(0).

eikt i
2 eV for te [0,27], APPENDIX E: THE MORRIS-LECAR MODEL

©x k—ic :sinr’(a-rc)

The differential equations are
with ce R* and

dv — _ _
1 1 C—= (UV)(Vea—v) +O0xW(vk—v)+ g (v, —v)+I,
E Esinkt=§(7r—t) for tc[0.27]. dt JcdNos (V) (Vea—v) + gxW(vk—v) + g (v —v)
k>0

dw  w,(v)—w
We obtain(details not shown = @)

e
dt Tw(V)
4 t .
7,(1)= 1T7 5 T) where thev-dependent functions are
L (0)= = 1+ tantt =22 _vl)
— st R _ my(v)= = an ,
* 2r(coshsT—cosrT) {e”"fcysinr(T—1) 2 U2

—ccosr (T—t)]+eST Y[ ¢ sinrt + ¢ cosrt ]} 1 v—vs
Wx(v)=§(1+tanh—),
for te[0,T], wherer=+—A, ¢c;=1+sy/(1+vy) andc, va

=ryl/(1+ vy). Functionz.(t) is defined orR by periodicity.

Conversely, by construction the solution given by Eep) is and
a periodic solution of PFN.

Note that our analysis captures periodic solutions that T.(v)= )
crossv = two times(over one period Periodic solutions coshv_v3
that remain on the line of discontinuity over a nonempty time 204

interval are sliding motion solutiorf®0] and are not charac-

terized by our analysigbecause of the definition af and  AppENDIX F: THE INTEGRAL FORMULATION OF THE

t"). In our system, periodic solutions with sliding motions PML MODEL

are unstable and appear with a bigger stable periodic solution

without a sliding motion. Therefore, stable solutions are still As for the PEN model, we transform the PML equations

detected by our analysis. into a nonautonomous linear differential system. Applying
the Laplace transform, we find

APPENDIX D: EXISTENCE OF PERIODIC SOLUTIONS

OF THE PFN EQUATIONS pL(v)(p)=— L(Uj(p) +% fE e > ept’)
We notex=T/2 andy={¢. The existence of periodic so- ver ver
lutions is related to the existence xfandy such that +L£(1)(p),
vw(Y) =4, ab f r
PLW)(P)=—bL(W)(p)+—| X e P'= 2> e P
Vo(—Y) =1, P ldcr feR
which reads We obtain
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uptb(u—a) —ptf —pt'
L = - §
(U)(p) p(p+b)(p+7_l)(t§fe tgne )
+ —L()(p).
T

Using inverse Laplace transform, we have

vﬂﬁ=§:nﬂ—ﬂ%-§:nﬂ—ﬂﬂir}wﬂﬂ—ﬁd&
tfe.'F t"eR 0 (Fl)

where

n()=1(pu—a)+

Note that we do not consider the special chsel/r.

APPENDIX G: THE PERIODIC SOLUTION OF THE PML
EQUATIONS

PHYSICAL REVIEW E57, 021908 (2003

for 0<t<T and 7..(t) is defined onR by periodicity. The
periodic solutions are related to the existenc& aind{ that
satisfy

Vo({)=va(— =1
and we obtain a system of two transcendental equations
I—1;+F(x,y)=0, (G
l,—I+F(x,x—y)=0, (G2

wherex=T/2, y=¢, and

b(a—1)+11—e %
FxY)=—7= pe

a 1—e 20y
+ .
b—1 1_672bx

Parameters,, |, are related to the two saddle-node bifurca-
tions. Note that there is no periodic solutions with a sliding
motion since a periodic trajectory cannot meet tangentially
the line of discontinuity.

Forl—1 (orl,—1) a small positive constant, one expects
to find a large period valuésince we are close to the saddle-
node bifurcation For x>1, we defineu=e~2* if b>1 or
u=e 2**if b<1. Asu—0, we have

F(x,y)=ci(1—e ¥)+cy(1—e )+ 0(u), (G3

Techniques are similar to those described for the PFNvhere c;=[1+b(a—1)]/(1-b) and c;=a/(b—1). As-
model and we summarize the main steps. Applying Fouriesuming that the periodic solution spends a constant time in
series on the differential formulation of the PML or, equiva- the superthreshold regime, that ys5y,+O(u), we have

lently, the Poisson formula on the integral expression of the

PML, we find

Uw(t)zv_oc_l_ nw(t+§)_ nw(t_ g)a

where

— 2
l)w—?(l—a’)'f'h
bT(1—a)+2imwn
4772n2+2i77n
T2 T

Moo,n™
2i7Tnl b—

(1+b)

and therefore,

2imngIT

_e—2i7rn§/T)

Uoon= 7]oo,n(e

and

UQO’O: Uy -
We calculate

t

1 bla—1)+1 et
77oc(t)=(1—01)(§—f)+

b—-1 1—e*T

F(x,x—y)=c;+Cy,+0O(u)

andyy is given canceling the right-hand side of EG.3). We
havec,+c,=1—« and usingl,=1,+a—1, the require-
ment (G2) leads to the necessary conditibr-1;,=0(u),
that is,| is near the first-saddle-node bifurcation. The other
situation ( close tol,) is obtained assuming that the dura-
tion of the superthreshold reginyeand the perioc have the
same order, that iss—y=y,+O(u).

Forl—1,=0(u), we find

| —1,=ku, (G4
where k is a constant obtained canceling the leading order
expansion of. Usingu=e™ " (for b>1), we find
T~—=In(1—1,).

Note that the symmetrical situatioh ¢lose tol,) leads to a
similar logarithmic law. Wherb<<1, we have

1
T~— (i =1y).

APPENDIX H: THE INTEGRATE-AND-FIRE MODEL
WITH A SPIKE DESCRIPTION

1. Integral formulation of the IFS

The IFS model with the same relaxation time in the sub-
threshold and superthreshold regime is given by

do(t t
S et 0141400,
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v(t) =Py (th) =

Note that the threshold process can be generalized to non-
continuous threshold crossings. First, we introduce the reset

conditions as reset currents

do(t) t)
%=— %Jmh[v(t)—ﬁ]—(ﬂpeak—vr)
X > S(t—t)+14(1). (H1)
trerR
Using the definition ot" andt’, we have
h[v(t)—9]= >, h(t—th— > ht—t"), (H2)

ter t'er

where we assume that each firing titfés related to a reset

timet'. In other words, the return to the subthreshold regime

is not due to the current(t). This assumption holds when
C, is small oru is large.
Using (H2), we transform(H1) into a linear nonautono-
mous differential equation
do(t v(t
%: v(®) ) tu 2 h(t—t"

tfer

—u X h(t—t")

trer
— (9P ) D S(t—tT) +14(1).
trerR

As an initial condition, we take)(0)=0. The integration
yields

v()=u > | ht—t'—s)e ¥ds—u
Ife]: 0
X > | h(t—t'—s)e”¥7ds— (9Pe*—y,)
trer JO
X > S(t—t'—s)e ¥7ds
trer JO

+j e 97 (t—s)ds,
0

which gives
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e N —ur 3 (1-e 0
trer

v()=p71X (1-

tfer

_(ﬁpeak_v )2 e (t— t)/7'+
trer

f e 97 (t—s)ds.
We thus obtain

v(t)—E mi(t—th— X p(t—t)+

ter trer

fme(s)l(t—s)ds
0

where fort=0,
() =ur(l-e"7),

7() =" v)e T+ pur(1-e" "),  (H3)

G(t) — eft/71

and 0 otherwise. Just as for the standard IF model, the IFS
model has a resetting kernej, (t—t"), related to the reset
process. However, the IFS model provides an explicit form
of the action potentialy(t—t"), whereas in Eq(7) action
potentials where reduced to a point in time.

2. Relations with the two-dimensional models

The relations between the IFS model and the two-
dimensional models are simply illustrated considering a slow
recovery process, i.e., small values lofin Egs.(12) and
(21). Using the integral formulation of the PFN or PML
models, we calculate the leading order expansion of the two
kernels

no(t) = pr(1—e !,

(H4)

GO(t) = e_t/T.

The zero order approximation reveals the similarity with the
expressions of the IFS kerndkee Eq(H3)]. Unfortunately,
the zero-order terms are not sufficient to account for recov-
ery in the two-dimensional systems. Whimis O(1) order,
expansion(H4) becomes nonuniform and we have to con-
sider the different termtb in the expansion of;. We enter
in a new phase where the smooth recovery process operates.

[1] W.M. Yamada, C. Koch, and P.R. Adams,Nethods in Neu-
ronal Modeling: From lons to Network®nd ed., edited by C.
Koch and I. SegeYMIT Press, Cambridge, MA, 1998pp.
137-170.

[2] M.A. Wilson, U.S. Bhalla, J.D. Uhley, and J.M. Brower, in
Advances in Neuronal Information Processing Systadged
by D. Touretzky(Morgan Kaufmann, San Mateo, CA, 1989
pp. 485-492.

[3] L. Lapicque, J. Physiol. Pathol. Ge®,. 620 (1907.

[4] L.F. Abbott and C. van Vreeswijk, Phys. Rev. 48, 1483
(1993.

[5] W. Maass and C.M. BishofRulsed Neural NetworkéMIT

Press, Cambridge, 1999

[6] A.F. FitzHugh, Biophys. J1, 445(1961).

[7] 3. Nagumo, S. Arimoto, and S. Oshizawa, Proc. BE=2061
(1962.

[8] L. Morris and H. Lecar, Biophys. B5, 193(198J).

[9] J.L. Hindmarsh and R.M. Rose, Natu(eondon 296, 162
(1982.

[10] J. Rinzel, Fed. Proci4, 2944(1985.

[11] L.F. Abbott and T.B. Kepler, ifstatistical Mechanics of Neural
Networks edited by L. Garrido (Springer-Verlag, Berlin,
1990.

[12] J. Rinzel and G.B. Ermentrout, iethods in Neuronal Mod-

021908-15



A. TONNELIER AND W. GERSTNER

eling: From lons to Networks2nd ed., edited by C. Koch and
I. Segev(MIT Press, Cambridge, MA, 1998pp. 251-291.

[13] F.C. Hoppensteadt and E.M. Izhikeviciyeakly Connected
Neural NetworkqSpringer-Verlag, New York, 1997

[14] E.M. Izhikevich, Int. J. Bifurcation Chaos Appl. Sci. Entp,
1171(2000.

[15] A.L. Hodgkin, J. Physiol(London 107, 165(1948.

[16] G.B. Ermentrout, Neural Comput. 8, 979996.

[17] W. Gerstner, irnThe Handbook of Biological Physiosdited by
F. Moss and S. Giele(Elsevier Science, Amsterdam, 2001
\ol 4, pp. 469-516.

[18] W. Gerstner and J.L. van Hemmen, Neural NetwoBk<d39
(1992.

[19] H.P. McKean, Adv. Math4, 209 (1970.

[20] A.F. Filippov, Differential Equations with Discontinuous
Right-Hand Sides$Kluwer Academic, Dordrecht, 1988

[21] J.P. Aubin and A. CellinapDifferential Inclusions(Springer-
Verlag, Berlin, New York, 198y

[22] F. Giannakopoulos and K. Pliete, Nonlinearity4, 1611
(2002.

[23] A. Tonnelier, SIAM(Soc. Ind. Appl. Math. J. Appl. Math.63,
459 (2002.

[24] R.R. Llinas, Scienc®42, 1654(1988.

[25] A.L. Hodgkin and A.F. Huxley, J. PhysiofLondon 117, 500
(1952.

[26] E.M. Izhikevich, Neural Network44, 883 (2001).

PHYSICAL REVIEW E57, 021908 (2003

[27] One can easily generalize the definitions of the two sets for
noncontinuous dynamics of the membrane potential.

[28] Note that the leaky integrator neuron presents a resonant be-
havior whenb>0.

[29] The casey=0 is not interesting since a rescalingwfallows
to setl =0.

[30] An additional bifurcation occurs for a particular range of
values(not shown in Fig. Y. This bifurcation is a double ho-
moclinic bifurcation which appears when the two unstable pe-
riodic solutions with sliding motion bifurcates from an un-
stable periodic solution. These two unstable limit cycles
surround the two fixed points, respectively, and become simul-
taneously homoclinic to a degenerate saddle point along the
line of discontinuity(as the bifurcation point is reachedVe
do not analyze this situation since unstable cycles are not di-
rectly observable.

[31] A.R. Bulsara, R.D. Boss, and E.W. Jacobs, Biol. Cybém.
211(1989.

[32] X. Chen and S.P. Hastings, J. Math. Bi&8, 1 (1999.

[33] S.H. StrogatzNonlinear Dynamics and Chaos. With Applica-
tion to Physics, Biology, Chemistry and Engineering
(Addison-Wesley, Reading, MA, 1994

[34] H.G. Othmer and M. Xie, J. Math. BioB9, 139 (1999.

[35] S. Coombes, Physica P82Q 1 (2001).

[36] W.M. Kistler, W. Gerstner, and J.L. van Hemmen, Neural
Comput.9, 1015(1997.

021908-16



