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McKean caricature of the FitzHugh-Nagumo model: Traveling pulses in a
discrete diffusive medium
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This paper investigates traveling wave solutions of the spatially discrete reaction-diffusion systems whose
kinetics are modeled by the McKean caricature of the FitzHugh-Nagumo model. In the limit of a weak
coupling strength, we construct the traveling wave solutions and obtain the critical coupling constant below
which propagation failure occurs. We report the existence of two different pulse traveling waves with different
propagation speeds. Analytical results on the wave speed are obtained. Earlier results on propagation in the
bistable medium are found as a limiting regime of our analysis.
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[. INTRODUCTION els of species invasion8]. A recent biological experiment
has emphasized a direct observation of propagation block as
Reaction-diffusion equations are widely used in variousthe coupling is reducefB]. In view of these and other ap-
fields from biology and image processing to material sci-plications, we study the infinite system of ordinary differen-
ences. They model the activity of so-called active media andial equations on the one-dimensional latti¢e
an extensive literature is available on this topic-3]. In
most studies the underlying kinetics are bistable, i.e., the dvn

isolated system has two stable fixed points. However, many gt ~4@n+1m2vnFton-1) +f(vn) =Wy, neZ

systems are excitable in the sense that the activity does not 2
persist indefinitely but rather is transient in nature. A realistic dw,
description of excitable media needs the inclusion of a re- T: =bv,, b>0.

covery process. A simple description of a one-dimensional

excitable medium is given by the set of partial differential The diffusion coefficiend plays a crucial role and in contrast
equations to the continuum mode(l), it is not possible to scald to
unity by rescalingx. Theoretical works on propagation and
v J%v its failure in spatially discrete models have dealt mainly with
E_dﬁjL fv)—w, the bistable medium, that is, when recovery is ignored
i [10-14 or does not allow a return to the low-activity state
oW [17]. Keenel{10] showed that there exists a critical coupling
—=bv, b>0, value below which wave front fails to propagate. This propa-
at gation failure is associated with the existence of nonuniform
steady states. Zinn¢t2,11] demonstrated that there exists a
stable traveling wave front for sufficiently large coupling.
Erneux and Nicoli$13] carried out an asymptotic analysis to
determine the behavior of the wave near the pinning transi-
tion. Excitable kinetics have retained less attention and ana-
Iytical results are virtually nonexistent with the exception of

wherev (x,t) e R is the activity at spatial point at timet,
w(x,t) e R is a recovery variabled>0 is the coupling
strength, and>0 monitors the time scale of the recovery.
The reaction functiorf has a cubiclike shapéor S shape
which allows for a bistability regime when inhibition is

blocked. System(1) has been introduced by FitzHud#l  the work of Booth and Erneuki8]. They investigated by
and Nagumo, Arimoto, and Yoshizawa] as a simplified  45ymptotic methods the role that the diffusion consint
description of the excitation and propagation of nerve iM-plays in pulse propagation. Their mathematical analysis fo-

pulses(28]. _ _ cused on the propagation failure for a limited chain of three
Recent studies have shown that spatially continuous modsyitable cells in the limib—0.

els do not always adequately describe structures composed |, this paper, we study traveling pulse solutions of Egs.

of discrete elements and differential-difference models argy) for f the piecewise linear reaction function introduced by
more appropriate if the coupling between cells is weak. 'nMcKean[19 29

deed, the space discreteness can lead to effects not present in

continuum models. The most important example is the phe- f(v)=—v+h(v—a), O<a<l, (3

nomenon of propagation failuf@r pinning which appears

in the description of the myelinated axons of neurfBisin  wherea s a so-called detuning parameter dnid the Heavi-

chemical reactors coupled by mass exchamjer in mod-  side step functiorh(x)=1 if x>0 and 0 otherwise. The
study of traveling pulses appears to be considerably more
difficult than traveling fronts. As we will show, the use of the

*Email address: arnaud.tonnelier@epfl.ch piecewise linear idealizatio(8) allows for a deeper under-
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standing of propagation and its failure in the spatially dis-(6), in L(R), continuous and piecewise of clagd such
crete systent2). For a coupling strength greater than a criti- that there exist two real numbeég> &; that satisfy
cal value, we report the existence of two traveling pulse

solutions of Eqs(2) and we give some analytical properties o(&)=a, =01
of these waves. At the same time, we investigate the effects (H):1 e(§)>a if éelép,&l
of the recovery parametéron propagation. e(d)<a if £e]—o,&[U[E,+.

Our approach is based on an integral representation of

traveling waves equivalent to the differential formulation of \ne are thus excluding any solutions which cross the value

traveling wave solutions. However, beyond numerical SIMU-, £y = a more than twice. Translation invariance of the trav-

lations, the integral formulation does not lead to a tractablee”ng wave solution allows us to takg=0. Note that the
description of waves. In the limit of a weak coupling boundary conditions '

strength, traveling pulses are constructed. Based on these ap-
proximations, we obtain necessary conditid@§] for the
existence of pulse waves and derive some scaling laws of the
Wa'\ll'ﬁesgfge;r?i.zation of the paper is as follows. In Sec. Il were satisfied from the requirement LY(R). With the nota-
derive the intearal ' ft i I. Wi s i ?ons previously introduced, we have

gral expression of traveling pulses. We restric
our attention to small diffusion coefficients and give analyti-
cal results on the existence, the shape, and the speed of pulse
traveling waves. Next, we focus on particular valuesbof
which allow explicit calculations. In Sec. Ill, we emphasize
some links between single-pulse traveling waves an
multiple-pulse traveling waves including periodic waves. Fi-
nally, we summarize and discuss the main results of our_
analysis.

e(—»)=¢(+*)=0

fle(£)=—e(§) +h(= &) —h(&—8). )

Substituting Eq(7) into Egs.(5), the system now takes the
éorm of the linear nonautonomous difference-differential
equation

co'(§)=dle(é+1)+(§-1)]-(1+2d)e(&) +h(—§)

—h(&1— &) — (),
Il. PULSE TRAVELING WAVE

—cy' (§)=be(f), ®

By a traveling wave, with velocitg>0, we mean a so-
lution {v,(t),wn(t)}+”_.. of Egs.(2) for which there exists

(¢.4) such that which can be solved with transform methods. Let us consider

the Fourier transform of a functiope L1(R),
vn(t)=e(n—ct), X _
(4) p(s)=f e 27Xy (x)dx.

Wy (t)=¢(n—ct), R

which satisfies the boundary conditiopg—)=¢()=0  Taking the Fourier transform of both sides of E(®.yields
and (—o) = (0)=0. Substituting the form of Eq44)

into Egs.(2), we obtain the equations —2imesp(s)=d(e? ™S +e 278 o(s)— (1+2d) o (S)
—co'(é)=d +1)-2 +e(é-1)]+f i -
ce'(§)=dle(é+1)—2¢(§) + (- 1) ]+ f(e(§)) e (1e ) (s),
— (&),
—cy (§)=be(é), (5) —2imesi(s) =bg(s)

where§=n—ct is the traveling wave coordinate. In the fol- for s#0 and¢(0)=0, ¢(0)=—&,. We obtain
lowing, we focus our attention on the state variabl@nd
hence onp. Recall that is the observable variable that can

. . ; - -c
be obtained from experimental measurements, whils an P()=—> . .
additional variable which mimics some recovery process. Al- 4m?c?s’— b+ 2imc 1+ 4d sif(7s)]
ternatively to Eqs(5), one may work with the equation X (1— e 2imstr) 9

—Cco'(H)=dle(é+1)—20(H)+ e(E—1) ]+ (e(£)) . o
Clearly ¢(s) e LY(R)NL?(R) and so by the Fourier inver-

sion theorem, we find that the pulse wave is given by

bre¢
+Ef_mqo(t)dt (6)
e(&)=n(&)—n(é—§&1), (10

for the study of nonstanding waves, i.e#0. By a pulse
wave, we mean a solution of Eq$), or equivalently of Eq.  where
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n(é)= Lezngg(x)dx,

0.8F E
—C 0.6 .
X)= . (11
0= bt 2imon Lt ddsit(m0] ny® |

0.4

We directly emphasize some basic properties of pulse waves.
Remark.From Egs.(11), we havege L!(R) and using 0.2r

7(&)=g(— &) the functione given by Eq.(10) satisfies

OS5 25 20 15 10 5 0 5
eeCR) and ¢(—=)=¢(+»)=0. g

Remark.From the above proof, we ha@dO)=O. FIG. 1. Plot of the zero-order approximation of the superthresh-
Remark. From Eq. (10) and g(c,x)=—g(—c,—X) old part of the traveling pulsey(¢) (for b=0.2). The speed acts as
(where we explicitly report the dependende we obtain the a scale parameter and we take 1. The zero-order approximation

symmetry property (J)rf(;tz;traveling pulse is obtained from(&) = 70(&) — 7o(§— &1)
p-&mc)=e(d0) where we used the change of variakle-27cx in the inte-

for the solutiong (&)= ¢(&,¢). In other words, the leftward gral. From Ref[20], we have

and the rightward traveling waves coexist.

. . . . . -2 é
Rather than working with the difference-differential equa- = h( — &)eé%sin [1—4b 12
tion (5), we will make use of the integral representation of 70(8) V1—4b (=8 hZ_C 12

traveling wave solutions given by E@10). Note that this

expression is not completely explicit because of the two unwhere y1—4b varies in the complex plangwhen b is
known valuesé; and c. More precisely, the existence of greater than 1/4, the hyperbolic function in HG2) is re-
pulse waves is given by the existence of these two valuewritten as a trigonometric ojeFrom Eq.(10), the zero-
which are obtained from the requiremenig0)=¢(¢;)  order expansion of a pulse traveling wave is given by
=a. Unfortunately, in the general case, we cannot derive

tractable expressions sineg(&) cannot be expressed with ¢(&)=po(§)+0(d)=10(£) = 70(§— £1) + O(d).
known functions. We will consider the limd—0 and then (13

specialize our analysis on the onset of propagation. We W'”This first approximation reveals the simple structure of trav-

demonstrate that this limiting situation allows the capturee“ng waves. Their amplitudes do not dependoothat only

acts as a scale paramefeee Eq.12)]. The zero-order ap-
proximation (13) describes the behavior of an isolated cell
A. Small diffusion coefficient (i.e., d=0) in the traveling wave coordinate. It has been
In this section, we investigate analytical results from theShown[21] that a self-oscillatory dynamics can be obtained
propagation of pulse waves and determine some scaling Jawehen b>_ 1/4. Since we are interested on excitable kln_etlcs,
of the wave speed. Effects of parametefsa, andb are W€ restrict our e_ltter?uon to the case whdre 1/4.. In this
analyzed by exploring the smatl limit. We organize our ~€@Se, we show in Fig. 1 the shape of the functign The
analysis into three subsections. In Sec. Il A, we obtain a firsEXistence of a traveling pulse solution is related to the exis-
approximation of pulse traveling waves and derive a first€nce ofc and&; such that
condition for propagationd=0(a). In Sec. IlA2, we de-

and description of the propagation of waves.

termine a more accurate estimate of a traveling pulse and ¢(0)=a,
give results on its existence and its velocity. To complete our B (14)
analysis, we investigate the role of the recovery parameter e(é)=a.

studying the limitb small andb— 1/4, which are the two

bounds for the validity of our analysis. From Egs.(12) and (13), the first requirement vyields the

following necessary condition for propagation:

1. Zero-order approximation of the wave d=0(a), (15)
For small d, we write g(x)=gq(x)+0O(d) and 7(¢§) o . _ . .
=9o(£€)+0(d) and, from Egs.(11), we have gyo(x)= similar to the result obtained in the bistable medi{ib3].
—c/(4m%c?x?— b+ 2i wcx). Thus Expression(15) clearly shows that for smatl a propagation
is possible only ifa is small enough, at least of the same
-1 el é(x/c) order thand. Thus, we introduce the asymptotic expansion
=——| ——dx,
70(8) ZWIR x2—b+ix d=d,a+0(a?). (16)
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Note that the second requirement yields

&
&1/2¢ _ —
et S|nh2—C\/l 4b=0(a)
which gives a first approximation faf;:

£,=0(Ina). (17

Not surprisingly, the zero-order expansid8) does not pro-
vide a full description of the pulse traveling wave. In particu-

lar, it does not provide information on the wave speed. A 20 15 10 g N 0

more accurate description of pulse waves is thus desirable.

FIG. 2. Plot of the first-order correction,(£) (for b=0.2), due
2. First-order approximation of the wave to the coupling, of the traveling pulse. The speed acts as a scale

; ; _ + parameter and we choose=1. The first-order approximation of
Wez introduce ihe expansionsg)(x) ZQO(X) dg:(x) the traveling pulse is obtained adding(¢), d»,(£), and expres-
+0(d%) and #(£)=no(¢) +dny(£) +O(d"). From Egs. sions including subthreshold dynamigerms express with respect
(11), we calculateg,(x) = 8imx sinz(rrx)gg(x). Using 71(¢)

i . A - > to é—¢&,).
= [re? ™*g,(x)dx, we find after some trivial manipulations £-4)

~ ~ ~ respectively. The wave speed can be obtained from( ).
71(§)=11(E—1) = 271(§) + m(§+1), (18 Using (pl(o):",;]"l(_l)’ we have to solve
where

s(x)=2d,e”*

sinhrx —x coshrx} —r2=0,
(22

X+ —
—i Xe—ig(x/c) r

(8

=-—| ————dx
2T IR (x2—b+ix)>?
where we introduce for notational convenierce 1/2x. If
From Ref.[20], we find we assume that there existaatisfying Eq.(22), then to
show the existence of a pulse wave, we have to show that the
- 2 o] L TE 1€ 1€ requirement21) can be fulfilled for a suitable value @f.
71(€)= r—zh( —§)e| — —sinhy -+ o sinhy - Expression (21) yields 7q(£;) +ady[ 71(&;) — 7,(0)]=a.
Using d;7,(0)=1 and Eq.(17), we obtain the following
leading order approximation:

+ Zi cosh;—g) ,
c c no(£1)=2a. (23

wherer = 1-4b. The function, stands for the coupling ysing Eq.(12), we see that for a giventhere exists a unique
contrjbution to the isolgted spikg previously dgscribed by the,ajue of&,; given by Eq.(23) that satisfies E17). Note that
function 7,. More precisely, it gives the leading order cor- for a rigorous demonstration of the existence of pulse waves,
rection, due tad#0, to the expression of the pulse wave  gne has to show that the requireméid) can be fulfilled at

) any order.
@(§)=o(£) +de,(§)+0(d%), (19) Now, using Eq{(22), we show in Fig. 3 the critical value
where 2
®1(§)=11(§) — n1(§—&1). sl
Figure 2 shows the shape gf. Expressiorn(18) reflects the d}
structure of the coupling between cells described by 1+

d(v,_1—2v,+v,+1) and gives a precise description of each
cell contribution to the wave dynamics. In particular, the

induction period of the wave, obtained fér>0, is derived 0.57
from the contribution ofv,_; which readse(&)=d7,(¢
—1) for £=0. Using Eqs(19) and(16) and ¢,(0)=0, the 0

requirements af=0 andé; lead to 0 005 01 01502 025

b
dip1(0)=1, (20) FIG. 3. Plot of the critical coupling strengtlf (b) as a function
of b such that there is no propagation f«ad; , in the limit a
®o(§1) +adiei(é1)=a, (21)  —0. Ford=ad?, pulse traveling waves exist.
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5 bistable medium, the wave vanishes with a nonzero wave
speed for a given value di>0. Note also that the wave
T speed leads to a direct evaluation of the corresponding wave
34 b0 shape, since the speed acts as a scale parameter stretching
c = out a reference shape given, for example derc*. The fast
2T wave is obtained from a dilatation and the slow wave from a
contraction.
1 /L b->0.25 To complete the speed diagrafiig. 4), we provide an
] asymptotic description of the speed curves for laigelet

q 006 0.08 c; and c, denote the speed of the fast wave and the slow
~~~~~~~ wave, respectively. For larg#, one may expect to obtain a

large speed value for the faster wave. We seek an asymptotic
0.8 expansion for large; (x<<1) and from Eq.(22) we obtain
c s(x)=2d,r?x?>—r2+0(x®). Usingc=(2x) %, we find the
04l following asymptotic behavior:
: ! Jd; asd 26
L | L 1 L R
% 0005 001 4 0015 cro g At (29

FIG. 4. Variation of the speed=c(d) of a traveling pulse as a  Tq thjs order, the fast wave speed does not depertd biote
function of the diffusion couplingl for the two limiting values ob: that a parabolic law has also been obtained for the wave front
?HO a’;]d b—1/4. \é\ée, .rep(lthdzadl gor,a:dot'gfg'lﬂ_‘reh er;llargedd speed in the bistable mediuf3,15. Figure 4 emphasizes
c'g;’Vrgssar%"‘;ﬁea;pzro)'(ti'r?]g":‘ioﬁzr;’ftk?e tf?;ewave o ‘; (?c:lt; the outstanding quality of approximati¢26) and shows that
and asb—0,d—d* (0) (enlarged figure The fast solution branch g:aessfaSt wave speed is hardly affected by the recovery pro-

and the slow solution branch bifurcate at the poiit=ad;} The speet of the slow wave is bounded @ and

+0(a?) determined in Fig. 3. Note that the slow wave speed doe S - - ; .

not ;pgear a0 (since?: ~0). P %ence, from Eq(22), its first-order approximation satisfies
° (rx+21/r)sinhrx—xcoshrx=0 which is equivalent to(we

of the coupling constand’ (b) (as a function ofb) above havex#0)

which propagation is possible. Thlelependence of the wave

speed for different values @fis shown in Fig. 4. The critical tanhrx = — 27)
coupling constand* =ad} +0O(a?) is related to a wave 1+r2x’

speedc* and is such that there is no propagation tbr
<d* and two traveling pulse solutions fa>d*. In fact, and using 6<r<1, we find at least one strictly positive so-

using lution. Unfortunately, this solution cannot be expressed ex-
) 5 plicitly. However, expressior(27) shows that, asymptoti-
“T s(x)=s(0)=—r"<0, (24 cally, the speed of the slower wave does not depend on the
X— 40

coupling parameter but only dm(through parameter). In
the following section, we shall demonstrate more precise re-

we see that traveling pulses appear in pdine knee point is o
gp PP b P sults for specific values di.

given by solving the system

s(x* ,dalc )=0, 3. Role of the recovery parametér

. We now study more closely the role of the recovery pa-
sx(x*,d7)=0, (25  ramete. There are two limits for which the functional form
o _ of s(x) simplifies. These limits are related to the two limiting
wheres, stands for the derivative afwith respect tox. The regimes of our analysis obtainedlas>0 andb— 1/4. As we
stability analysis of the fast and slow solution branches dist 5,6 pointed out, our analytical expressiong nd ;) are
played in Fig. 4 is left to future work but numerical simula- 4piained forb<1/4. Recall that parametdr monitors the
tions (not shown reveal that the faster wave is stable while iitny of oscillations for the space-clamped systg2t] and
the slower is unstable. Note that the fa;ter pulse can be rey, study does not concern propagation in the oscillatory
garded as the continuation of the traveling wave front stateg,qgium.

in the bistable medium for which a stability result is estab-  Reasyits are summarized in the two following propositions.

lished[11]. In contrast to propagation failure in the discrete Proposition 1.In the limit b—%, we obtain the critical

values
Un the limita—0 the assumption@) are still not fulfilled by the o3~ 3
slow wave. In this case, we expect that the slow wave is related to aF—»——~1914
- . . . 1 ’ !
sliding solutions and a precise statement is left to future works. 4(2\/§— 3)
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¢ 23— 13)

and we have the following asymptotic behaviordgs— oe:

~0.394

1
ey

Ci—

Cs— <.

We shall sketch the proof of this property. From E2p),
we calculate the expansion &s—1/4, (or equivalentlyr
—0) s(X)=s,(X)r2+0(r®) where s,(x)=2d,e *x?(1

PHYSICAL REVIEW E67, 036105 (2003

faster waveVd;>1, ci——1[1+W_((1—d;)/(edy))].

In the limit b— 0, we have lost, in the leading order expan-
sion (29), the solution corresponding to the slow wave speed.
In fact, the expansioi29) becomes nonuniform ik(1—r)
remains a nonzero constant as»1. Equivalently, the ex-
pansion(29) is no longer valid ifx—o asr—21. In this
critical situation, we obtain from Eq22) the new expansion
dy[x(r—1)e "X+ e"1X]—1=0 or equivalently [x(r
—1)+1]eX"V*l=¢g/d,. It follows that x(r—1)
=W,y(e/d;)—1 and using —1=—2b+0O(b?), we find the
asymptotic behavior given by Proposition 2.

Using Proposition 2, we now emphasize some properties
of the pulse waves ds—0. We have already mentioned that
the speed shapes the corresponding wave. Sigee0 as
b—0, the slower pulse wave becomes more and more tight

—x/3)—1. The functions, has a global maximum at 3 5,4 vanishes in the bistable medium.

—+/3. This implies that a traveling wave exists $5(3

Ford; large and using Eq28), we derive a more precise

- \/§)>0 It follows the critical value of the diffusion coef- approxima’[ion than a|ready obtained,

ficient given in the proposition. At the limit poind{,c*),

the fast and the slow wave branches coalesce. Near this 1 1

point, the asymptotic behavior is derived from the maximum
of s,. For large values afi;, we have to distinguish between
the stable and the unstable branches. The fast wave speed

has an asymptotic behavior given by E@6). The slow
wave speed is obtained takingg1 in Eq.(27). This leads to

xr—x3r3/3+ O(r*)=xr—x?r® and thus we obtain the lead-
ing approximatiork=3 which gives the asymptotic behavior

of cg asd;— .
Proposition 2.In the limit b—0, we have

di —1
andvd;>1
1
Cfﬂ—1 N 1—d,|’ (28)
W ed;
b
Cs— —,

Ci—

— a7,

23

which shows that the speed curve is below its asymptote.
From Eq.(28), the asymptotic behavior in the “pinning

limit” is given by

Ci— m as d1—> 1,

i.e., the speedt vanishes logarithmically near the critical
point. This result has been obtained for the wave front speed
in the bistable mediuni14]. As noted by Ftn [14], this
logarithmic transition is not due to the jump of discontinuity
of the functionf. We will demonstrate that it is the result of
a linear evolution during the onset of propagation. We will
show this property using a similar asymptotic analysis to the
one introduced in Ref.13]. The time evolution of the cells
shows the existence of a critical tiniest,,=(n—1)t. such
thatv,(t) reaches the threshold valaeAt this critical time,

we assume that,(t) quickly jumps from aO(a) value to
v,~1. Lett=t,_, be the origin of time. We seek a solution

where s=1-WO0(e/dD, W, is the principal branch of the of the form

LambertW function andW_, the branch corresponding to
-1 [22].

vp(t)=av,i(t)+av, () +- - -. (30)

The proposition above describes traveling pulses in the

limit of the singularly perturbed system obtainedbas O or

equivalentlyr —1. Keepingx fixed, the asymptotic expan-

sion of EQ.(22) asr—1—0 is given by
s(x)=d,[1-e Z(1+2x)]-1+0(r—1). (29

The leading approximation is an increasing functiorx ahd

we easily find the critical value of the diffusion coefficient
di (b)—1 asb—0. Ford>1, the approximation of the fast

wave speed is obtained frooy[1—e 2X(1+2x)]—1=0.
We rearrange this inte- (1+2x)e” ") =(1—d,)/(ed,).
We have to keep the solution which satisfigs+0" (x—

Introducing Eq.(30) into Egs.(2), we equate to zero the
coefficients of each power oi. We may choosé suffi-
ciently small such thati) the excited periodtime during
whichv,,_,~1) is greater tham, (the induction periogand
(i) the recovery process can be neglected. FromQfe)
problem, we obtain the following linear differential equation
forvng:

dUn‘l
dt =U17Una

(31)

with the initial conditionv,, ;(0)=0. Equation(31) is valid

+) asd;—1. Such a solution is expressed with the Lam-up to the moment of the threshold crossing, itest.. We
bert functionW_, [22] which gives the approximation of the find
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vpa(t)=dy(1—e™). (32 —Co(&)=—@,(O)+dle(§+1) 20, (&)t o, (E-1)]

The timet, is defined by, 1(t;) =1 which gives the propa- +H(E) —¢,(8),

gation speea=(t.) ! and we obtain

—cy(§)=be,(§). (36)
-1
C=———. (33)  Introducing the Fourier series
In(1—d; %)
As we emphasized, the calculations are valid if the jump 0,(£)=2 @ue?™EM,
n

transition(from the thresholdx to the saturation value 1) is

instantaneous compared with the induction peffoom 0 to

the thresholda). Using Eg.(32), expression(33) is valid %(5):2 @2 TET)
only in the limitd;—1" (thent.— +%) and we find the n

result previously obtained.

B 27 z 1 ) 27Tn7'
lll. MULTIPLE-PULSE TRAVELING WAVES AND T iF T
PERIODIC WAVES .
) ) _ ) ) Egs.(36) transform into
In this section, we investigate the relation between travel-
ing pulses and multiple-pulse waves. Our study is formal and 2imnc DT dinmlT
does not concern the existence of multiple-pulse waves. We ~ — — 1 %n™ —@ntden(e —2+e )
define ann-pulse waveg(n,£), as a solution of Eq6) for
i i 1 2mnT
which there exitsg,&;, . . . .£2,_1 Such that T sin .
. n T
e(n,§)=a, i=0,..., -1,
. n—1 2imnc
e(n,§)>a, if §eUp_glérj+1,820, g Un=bey
; -2
e(né)<a, if £e{Ug=5]éaus2:6akr1[}V] and ¢o=0. One finds after some algebra
=0, &on-1[U]&o, +oo[. (39 47°n2c? nmw
2t ° ————¢,=—2imnce,| 1+4d s’ —
T n n T
Then, the nonlinearity of Eq$5) is rewritten as
o1 .. 2mnT
n +2ic sin T +bToe,,
fle(eD=—¢(&)+ 2 h(éa—&~h(Exr1—é).

which yields the expression of periodic waves,
The technique is mathematically similar to the technique of

Sec_. _II and we f_ind that the-pulse wave resembles a super- o (&)= E 2i mn(&IT) 37)
position ofn solitary pulse waves in the sense that Y = n '

2n—-1

where
e(né)= 2 (—1)Pp(é—&), (35)

p=0 piTes (27rn7)

where 7 is given by Eqs(11). _ Hesin Ty
For an infinite number of pulses, one expects to find pe-  ¥n~ N

riodic waves. To clarify this intuition, we shall describe pe- 4c’n’m?—b T2+ 2iwcTn 1+4d sin2<?ﬂ
riodic waves. A periodic wave is a periodic solution of Eq. (39)

(6). We seek for a solution in the spat:é(O,T) whereT is

the period of the wave. We consider periodic wavegé) Note that the existence of periodic waves is related to the
that present a single pulse on one period and we ndtee  existence of ¢, T,7) such that

real number such that 07<T/2, and ¢,(§)>a, on ]

—1,7[. Then we have e T)=9¢,(—71)=a.
hl¢,(&)—al=H(&), The periodic wave is obtained from thepulse traveling
wave in the sense of the following.
whereH(¢) is the T-periodic function such tha# (&) =1 if Proposition 3.Let ¢(n,¢) be the n-pulse wave defined by
el—7,7 andH(&)=0if £e]-T/2,— 7 U]7,T/2. It fol- Eq. (35). For regular interspike intervals, we have the con-
lows that Eqs(5) take the form vergence in the space of tempered distribut®n
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lim o(n,§)=¢,(£),

n— +o0

where ¢, is the periodic wave given by E¢37).

PHYSICAL REVIEW E67, 036105 (2003

monostable case. In this paper, we have studied traveling
pulses in coupled systems of discrete monostable cells whose
kinetics are modeled by McKean’s caricature of the
FitzHugh-Nagumo model.

We shall demonstrate this result using the expressions Our analysis is based on an integral representation of trav-

previously obtained. Translating the argumentwe recast
Eq. (35 as the symmetric summation

(&)= 2 7(E=E2p) =G~ bzprr): (39

For regular interspike intervals, there existsT) such that

£2p=PT—7 and &1 =pT+ 7. Using 7(§)=g(—§), the
Poisson formula applied to E¢39) yields

> -9

_ 1
lim (P(nlg):? =

n—oo

Ploigi 7| g2imp(em
T) 2i sm( 27Tp_|_)e

in the space of tempered distributi@i. Using Egs.(11),
(37), and(38), we obtain the stated result.

IV. DISCUSSION

eling waves from which we derived some asymptotic expres-
sions in the limit of a weak coupling strength. The combina-
tion of these expressions and some matching conditions
provide an analytical description of pulse waves. As for the
space-continuous reaction-diffusion systefh)—(3) [26],
there exist two pulse waves with different shapes and differ-
ent propagation speeds. However, an important qualitative
difference with the continuum is the phenomenon of propa-
gation failure that occurs at a critical value of the coupling
parameter. We studied how the propagation and its failure are
affected by the recovery process. In particular, we show that
in the limit of a slow recovery process, the faster pulse wave
shares some properties of the traveling front previously de-
scribed in the bistable medium. Moreover, we showed that
the logarithmic law of the speed close to the pinning transi-
tion is related to the linear evolution of the excitation in the
initiation of the wave.

Using a particular nonlinearity gives rise to the issue of
whether it is representative of a more general function. Con-

The study of traveling wave solutions of the discretetinuation of traveling wave solutions while parameters of the
reaction-diffusion equation is of great interest to variousnonlinearity are varied can provide insight into this problem.
fields but the analysis appears to be difficult and resulté\s it has been shown for the continuui7], one expects
are scarce even in one dimension. One approach is to cothat the main features of the dynamics are preserved. How-
sider nonlinearities that are amenable to explicit calculationgver, some limiting situation§or example, ag— 0) reveal
[23—-25. Previous works mainly focus on the bistable me-a distinct behavior and provide the definition of different
dium and little was done for traveling waves in the class of models.
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