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McKean caricature of the FitzHugh-Nagumo model: Traveling pulses in a
discrete diffusive medium

Arnaud Tonnelier*
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~Received 17 September 2002; published 13 March 2003!

This paper investigates traveling wave solutions of the spatially discrete reaction-diffusion systems whose
kinetics are modeled by the McKean caricature of the FitzHugh-Nagumo model. In the limit of a weak
coupling strength, we construct the traveling wave solutions and obtain the critical coupling constant below
which propagation failure occurs. We report the existence of two different pulse traveling waves with different
propagation speeds. Analytical results on the wave speed are obtained. Earlier results on propagation in the
bistable medium are found as a limiting regime of our analysis.
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I. INTRODUCTION

Reaction-diffusion equations are widely used in vario
fields from biology and image processing to material s
ences. They model the activity of so-called active media
an extensive literature is available on this topic@1–3#. In
most studies the underlying kinetics are bistable, i.e.,
isolated system has two stable fixed points. However, m
systems are excitable in the sense that the activity does
persist indefinitely but rather is transient in nature. A realis
description of excitable media needs the inclusion of a
covery process. A simple description of a one-dimensio
excitable medium is given by the set of partial different
equations

]v
]t

5d
]2v

]x2
1 f ~v !2w,

~1!
]w

]t
5bv, b.0,

wherev(x,t)PR is the activity at spatial pointx at time t,
w(x,t)PR is a recovery variable,d.0 is the coupling
strength, andb.0 monitors the time scale of the recover
The reaction functionf has a cubiclike shape~or S shape!
which allows for a bistability regime when inhibition i
blocked. System~1! has been introduced by FitzHugh@4#
and Nagumo, Arimoto, and Yoshizawa@5# as a simplified
description of the excitation and propagation of nerve i
pulses@28#.

Recent studies have shown that spatially continuous m
els do not always adequately describe structures comp
of discrete elements and differential-difference models
more appropriate if the coupling between cells is weak.
deed, the space discreteness can lead to effects not pres
continuum models. The most important example is the p
nomenon of propagation failure~or pinning! which appears
in the description of the myelinated axons of neurons@6#, in
chemical reactors coupled by mass exchange@7# or in mod-
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els of species invasions@8#. A recent biological experimen
has emphasized a direct observation of propagation bloc
the coupling is reduced@9#. In view of these and other ap
plications, we study the infinite system of ordinary differe
tial equations on the one-dimensional latticeZ,

dvn

dt
5d~vn1122vn1vn21!1 f ~vn!2wn , nPZ,

~2!
dwn

dt
5bvn , b.0.

The diffusion coefficientd plays a crucial role and in contras
to the continuum model~1!, it is not possible to scaled to
unity by rescalingx. Theoretical works on propagation an
its failure in spatially discrete models have dealt mainly w
the bistable medium, that is, when recovery is ignor
@10–16# or does not allow a return to the low-activity sta
@17#. Keener@10# showed that there exists a critical couplin
value below which wave front fails to propagate. This prop
gation failure is associated with the existence of nonunifo
steady states. Zinner@12,11# demonstrated that there exists
stable traveling wave front for sufficiently large couplin
Erneux and Nicolis@13# carried out an asymptotic analysis
determine the behavior of the wave near the pinning tra
tion. Excitable kinetics have retained less attention and a
lytical results are virtually nonexistent with the exception
the work of Booth and Erneux@18#. They investigated by
asymptotic methods the role that the diffusion constand
plays in pulse propagation. Their mathematical analysis
cused on the propagation failure for a limited chain of thr
excitable cells in the limitb→0.

In this paper, we study traveling pulse solutions of E
~2! for f, the piecewise linear reaction function introduced
McKean @19,29#,

f ~v !52v1h~v2a!, 0,a,1, ~3!

wherea is a so-called detuning parameter andh is the Heavi-
side step functionh(x)51 if x.0 and 0 otherwise. The
study of traveling pulses appears to be considerably m
difficult than traveling fronts. As we will show, the use of th
piecewise linear idealization~3! allows for a deeper under
©2003 The American Physical Society05-1
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ARNAUD TONNELIER PHYSICAL REVIEW E67, 036105 ~2003!
standing of propagation and its failure in the spatially d
crete system~2!. For a coupling strength greater than a cri
cal value, we report the existence of two traveling pu
solutions of Eqs.~2! and we give some analytical propertie
of these waves. At the same time, we investigate the eff
of the recovery parameterb on propagation.

Our approach is based on an integral representation
traveling waves equivalent to the differential formulation
traveling wave solutions. However, beyond numerical sim
lations, the integral formulation does not lead to a tracta
description of waves. In the limit of a weak couplin
strength, traveling pulses are constructed. Based on thes
proximations, we obtain necessary conditions@30# for the
existence of pulse waves and derive some scaling laws o
wave speeds.

The organization of the paper is as follows. In Sec. II,
derive the integral expression of traveling pulses. We res
our attention to small diffusion coefficients and give analy
cal results on the existence, the shape, and the speed of
traveling waves. Next, we focus on particular values ob
which allow explicit calculations. In Sec. III, we emphasi
some links between single-pulse traveling waves a
multiple-pulse traveling waves including periodic waves.
nally, we summarize and discuss the main results of
analysis.

II. PULSE TRAVELING WAVE

By a traveling wave, with velocityc.0, we mean a so-
lution $vn(t),wn(t)%n52`

1` of Eqs.~2! for which there exists
(w,c) such that

vn~ t !5w~n2ct!,
~4!

wn~ t !5c~n2ct!,

which satisfies the boundary conditionsw(2`)5w(`)50
and c(2`)5c(`)50. Substituting the form of Eqs.~4!
into Eqs.~2!, we obtain the equations

2cw8~j!5d@w~j11!22w~j!1w~j21!#1 f „w~j!…

2c~j!,

2cc8~j!5bw~j!, ~5!

wherej5n2ct is the traveling wave coordinate. In the fo
lowing, we focus our attention on the state variablev and
hence onw. Recall thatv is the observable variable that ca
be obtained from experimental measurements, whilew is an
additional variable which mimics some recovery process.
ternatively to Eqs.~5!, one may work with the equation

2cw8~j!5d@w~j11!22w~j!1w~j21!#1 f „w~j!…

1
b

cE2`

j

w~ t !dt ~6!

for the study of nonstanding waves, i.e.,cÞ0. By a pulse
wave, we mean a solution of Eqs.~5!, or equivalently of Eq.
03610
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~6!, in L1(R), continuous and piecewise of classC1 such
that there exist two real numbersj0.j1 that satisfy

~H !:H w(j i)5a, i 50,1
w(j).a if jP] j1 ,j0[
w(j),a if jP] 2`,j1[ ø[ j0 ,1`[.

We are thus excluding any solutions which cross the va
w(j)5a more than twice. Translation invariance of the tra
eling wave solution allows us to takej050. Note that the
boundary conditions

w~2`!5w~1`!50

are satisfied from the requirementwPL1(R). With the nota-
tions previously introduced, we have

f „w~j!…52w~j!1h~2j!2h~j12j!. ~7!

Substituting Eq.~7! into Eqs.~5!, the system now takes th
form of the linear nonautonomous difference-different
equation

2cw8~j!5d@w~j11!1w~j21!#2~112d!w~j!1h~2j!

2h~j12j!2c~j!,

2cc8~j!5bw~j!, ~8!

which can be solved with transform methods. Let us consi
the Fourier transform of a functionrPL1(R),

r̂~s!5E
R
e22ipsxr~x!dx.

Taking the Fourier transform of both sides of Eqs.~8! yields

22ipcsŵ~s!5d~e2ips1e22ips!ŵ~s!2~112d!ŵ~s!

2
1

2ips
~12e22ipsj1!2ĉ~s!,

22ipcsĉ~s!5bŵ~s!

for sÞ0 andŵ(0)50, ĉ(0)52j1. We obtain

ŵ~s!5
2c

4p2c2s22b12ipcs@114d sin2~ps!#

3~12e22ipsj1!. ~9!

Clearly ŵ(s)PL1(R)ùL2(R) and so by the Fourier inver
sion theorem, we find that the pulse wave is given by

w~j!5h~j!2h~j2j1!, ~10!

where
5-2
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MCKEAN CARICATURE OF THE FITZHUGH-NAGUMO . . . PHYSICAL REVIEW E67, 036105 ~2003!
h~j!5E
R
e2ipjxg~x!dx,

g~x!5
2c

4p2c2x22b12ipcx@114d sin2~px!#
. ~11!

We directly emphasize some basic properties of pulse wa
Remark.From Eqs.~11!, we havegPL1(R) and using

h(j)5ĝ(2j) the functionw given by Eq.~10! satisfies

wPC0~R! and w~2`!5w~1`!50.

Remark.From the above proof, we haveŵ(0)50.
Remark. From Eq. ~10! and g(c,x)52g(2c,2x)

~where we explicitly report thec dependence!, we obtain the
symmetry property

w~2j,2c!5w~j,c!

for the solutionw(j)5w(j,c). In other words, the leftward
and the rightward traveling waves coexist.

Rather than working with the difference-differential equ
tion ~5!, we will make use of the integral representation
traveling wave solutions given by Eq.~10!. Note that this
expression is not completely explicit because of the two
known valuesj1 and c. More precisely, the existence o
pulse waves is given by the existence of these two va
which are obtained from the requirementsw(0)5w(j1)
5a. Unfortunately, in the general case, we cannot der
tractable expressions sinceh(j) cannot be expressed wit
known functions. We will consider the limitd→0 and then
specialize our analysis on the onset of propagation. We
demonstrate that this limiting situation allows the captu
and description of the propagation of waves.

A. Small diffusion coefficient

In this section, we investigate analytical results from t
propagation of pulse waves and determine some scaling
of the wave speed. Effects of parametersd, a, and b are
analyzed by exploring the smalld limit. We organize our
analysis into three subsections. In Sec. II A, we obtain a fi
approximation of pulse traveling waves and derive a fi
condition for propagation:d5O(a). In Sec. II A 2, we de-
termine a more accurate estimate of a traveling pulse
give results on its existence and its velocity. To complete
analysis, we investigate the role of the recovery param
studying the limitb small andb→1/4, which are the two
bounds for the validity of our analysis.

1. Zero-order approximation of the wave

For small d, we write g(x)5g0(x)1O(d) and h(j)
5h0(j)1O(d) and, from Eqs.~11!, we have g0(x)5
2c/(4p2c2x22b12ipcx). Thus

h0~j!5
21

2p E
R

ei j(x/c)

x22b1 ix
dx,
03610
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where we used the change of variablex→2pcx in the inte-
gral. From Ref.@20#, we have

h0~j!5
22

A124b
h~2j!ej/2csinh

j

2c
A124b, ~12!

where A124b varies in the complex plane@when b is
greater than 1/4, the hyperbolic function in Eq.~12! is re-
written as a trigonometric one#. From Eq. ~10!, the zero-
order expansion of a pulse traveling wave is given by

w~j!5w0~j!1O~d!5h0~j!2h0~j2j1!1O~d!.
~13!

This first approximation reveals the simple structure of tra
eling waves. Their amplitudes do not depend onc that only
acts as a scale parameter@see Eq.~12!#. The zero-order ap-
proximation ~13! describes the behavior of an isolated c
~i.e., d50) in the traveling wave coordinate. It has be
shown@21# that a self-oscillatory dynamics can be obtain
whenb>1/4. Since we are interested on excitable kineti
we restrict our attention to the case whereb,1/4. In this
case, we show in Fig. 1 the shape of the functionh0. The
existence of a traveling pulse solution is related to the e
tence ofc andj1 such that

w~0!5a,
~14!

w~j1!5a.

From Eqs.~12! and ~13!, the first requirement yields the
following necessary condition for propagation:

d5O~a!, ~15!

similar to the result obtained in the bistable medium@13#.
Expression~15! clearly shows that for smalld a propagation
is possible only ifa is small enough, at least of the sam
order thand. Thus, we introduce the asymptotic expansio

d5d1a1O~a2!. ~16!

FIG. 1. Plot of the zero-order approximation of the superthre
old part of the traveling pulseh0(j) ~for b50.2). The speed acts a
a scale parameter and we takec51. The zero-order approximation
of the traveling pulse is obtained fromw(j)5h0(j)2h0(j2j1)
1O(d).
5-3
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Note that the second requirement yields

ej1/2csinh
j1

2c
A124b5O~a!

which gives a first approximation forj1:

j15O~ ln a!. ~17!

Not surprisingly, the zero-order expansion~13! does not pro-
vide a full description of the pulse traveling wave. In partic
lar, it does not provide information on the wave speed
more accurate description of pulse waves is thus desirab

2. First-order approximation of the wave

We introduce the expansionsg(x)5g0(x)1dg1(x)
1O(d2) and h(j)5h0(j)1dh1(j)1O(d2). From Eqs.
~11!, we calculateg1(x)58ipx sin2(px)g0

2(x). Using h1(j)
5*Re2ipjxg1(x)dx, we find after some trivial manipulation

h1~j!5h̃1~j21!22h̃1~j!1h̃1~j11!, ~18!

where

h̃1~j!5
2 i

2pER

xe2 i j(x/c)

~x22b1 ix !2
dx.

From Ref.@20#, we find

h̃1~j!5
2

r 2
h~2j!ej/2cS 2

1

r
sinh

r j

2c
1

r j

2c
sinh

r j

2c

1
j

2c
cosh

r j

2cD ,

wherer 5A124b. The functionh1 stands for the coupling
contribution to the isolated spike previously described by
function h0. More precisely, it gives the leading order co
rection, due todÞ0, to the expression of the pulse wave

w~j!5w0~j!1dw1~j!1O~d2!, ~19!

where

w1~j!5h1~j!2h1~j2j1!.

Figure 2 shows the shape ofh1. Expression~18! reflects the
structure of the coupling between cells described
d(vn2122vn1vn11) and gives a precise description of ea
cell contribution to the wave dynamics. In particular, t
induction period of the wave, obtained forj.0, is derived
from the contribution ofvn21 which readsw(j)5dh̃1(j
21) for j>0. Using Eqs.~19! and ~16! andw0(0)50, the
requirements atj50 andj1 lead to

d1w1~0!51, ~20!

w0~j1!1ad1w1~j1!5a, ~21!
03610
-

.

e

y

respectively. The wave speed can be obtained from Eq.~20!.
Using w1(0)5h 1̃(21), we have to solve

s~x!52d1e2xF S rx1
1

r D sinhrx2x coshrx G2r 250,

~22!

where we introduce for notational conveniencec51/2x. If
we assume that there exists ac satisfying Eq.~22!, then to
show the existence of a pulse wave, we have to show tha
requirement~21! can be fulfilled for a suitable value ofj1.
Expression ~21! yields h0(j1)1ad1@h1(j1)2h1(0)#5a.
Using d1h1(0)51 and Eq.~17!, we obtain the following
leading order approximation:

h0~j1!52a. ~23!

Using Eq.~12!, we see that for a givenc there exists a unique
value ofj1 given by Eq.~23! that satisfies Eq.~17!. Note that
for a rigorous demonstration of the existence of pulse wav
one has to show that the requirement~14! can be fulfilled at
any order.

Now, using Eq.~22!, we show in Fig. 3 the critical value

FIG. 2. Plot of the first-order correctionh1(j) ~for b50.2), due
to the coupling, of the traveling pulse. The speed acts as a s
parameter and we choosec51. The first-order approximation o
the traveling pulse is obtained addingh0(j), dh1(j), and expres-
sions including subthreshold dynamics~terms express with respec
to j2j1).

FIG. 3. Plot of the critical coupling strengthd1* (b) as a function
of b such that there is no propagation ford,ad1* , in the limit a
→0. Ford>ad1* , pulse traveling waves exist.
5-4
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of the coupling constantd1* (b) ~as a function ofb) above
which propagation is possible. Thed dependence of the wav
speed for different values ofb is shown in Fig. 4. The critica
coupling constantd* 5ad1* 1O(a2) is related to a wave
speedc* and is such that there is no propagation ford
,d* and two traveling pulse solutions ford.d* . In fact,
using

lim
x→1`

s~x!5s~0!52r 2,0, ~24!

we see that traveling pulses appear in pair.1 The knee point is
given by solving the system

s~x* ,d1* !50,

sx~x* ,d1* !50, ~25!

wheresx stands for the derivative ofs with respect tox. The
stability analysis of the fast and slow solution branches d
played in Fig. 4 is left to future work but numerical simul
tions ~not shown! reveal that the faster wave is stable wh
the slower is unstable. Note that the faster pulse can be
garded as the continuation of the traveling wave front sta
in the bistable medium for which a stability result is esta
lished @11#. In contrast to propagation failure in the discre

1In the limit a→0 the assumptions~H! are still not fulfilled by the
slow wave. In this case, we expect that the slow wave is relate
sliding solutions and a precise statement is left to future works

FIG. 4. Variation of the speedc5c(d) of a traveling pulse as a
function of the diffusion couplingd for the two limiting values ofb:
b→0 andb→1/4. We reportd5ad1 for a50.002. The enlarged
figure shows an additional curve obtained forb50.1. The dotted
curves are the approximations of the fast wave speed asd→` ~top!
and asb→0,d→d* (0) ~enlarged figure!. The fast solution branch
and the slow solution branch bifurcate at the pointd* 5ad1*
1O(a2) determined in Fig. 3. Note that the slow wave speed d
not appear asb→0 ~sincecs→0).
03610
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bistable medium, the wave vanishes with a nonzero w
speed for a given value ofb.0. Note also that the wave
speed leads to a direct evaluation of the corresponding w
shape, since the speed acts as a scale parameter stre
out a reference shape given, for example, forc5c* . The fast
wave is obtained from a dilatation and the slow wave from
contraction.

To complete the speed diagram~Fig. 4!, we provide an
asymptotic description of the speed curves for larged1. Let
cf and cs denote the speed of the fast wave and the s
wave, respectively. For larged1, one may expect to obtain
large speed value for the faster wave. We seek an asymp
expansion for largecf (x!1) and from Eq.~22! we obtain
s(x)52d1r 2x22r 21O(x3). Using c5(2x)21, we find the
following asymptotic behavior:

cf→
1

A2
Ad1 asd1→`. ~26!

To this order, the fast wave speed does not depend onb. Note
that a parabolic law has also been obtained for the wave f
speed in the bistable medium@13,15#. Figure 4 emphasizes
the outstanding quality of approximation~26! and shows that
the fast wave speed is hardly affected by the recovery p
cess.

The speedcs of the slow wave is bounded asd1→` and
hence, from Eq.~22!, its first-order approximation satisfie
(rx11/r )sinhrx2xcoshrx50 which is equivalent to~we
havexÞ0)

tanhrx5
rx

11r 2x
, ~27!

and using 0,r ,1, we find at least one strictly positive so
lution. Unfortunately, this solution cannot be expressed
plicitly. However, expression~27! shows that, asymptoti-
cally, the speed of the slower wave does not depend on
coupling parameter but only onb ~through parameterr ). In
the following section, we shall demonstrate more precise
sults for specific values ofb.

3. Role of the recovery parameterb

We now study more closely the role of the recovery p
rameterb. There are two limits for which the functional form
of s(x) simplifies. These limits are related to the two limitin
regimes of our analysis obtained asb→0 andb→1/4. As we
have pointed out, our analytical expressions (h0 andh1) are
obtained forb,1/4. Recall that parameterb monitors the
birth of oscillations for the space-clamped system@21# and
our study does not concern propagation in the oscillat
medium.

Results are summarized in the two following proposition
Proposition 1.In the limit b→ 1

4 , we obtain the critical
values

d1* → e32A3

4~2A323!
;1.914,to

s

5-5
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ARNAUD TONNELIER PHYSICAL REVIEW E67, 036105 ~2003!
c* → 1

2~32A3!
;0.394

and we have the following asymptotic behavior asd1→`:

cf→
1

A2
Ad1,

cs→
1

6
.

We shall sketch the proof of this property. From Eq.~22!,
we calculate the expansion asb→1/4, ~or equivalentlyr
→0) s(x)5s2(x)r 21O(r 3) where s2(x)52d1e2xx2(1
2x/3)21. The functions2 has a global maximum at 3
2A3. This implies that a traveling wave exists ifs2(3
2A3)>0. It follows the critical value of the diffusion coef
ficient given in the proposition. At the limit point (d* ,c* ),
the fast and the slow wave branches coalesce. Near
point, the asymptotic behavior is derived from the maximu
of s2. For large values ofd1, we have to distinguish betwee
the stable and the unstable branches. The fast wave specf
has an asymptotic behavior given by Eq.~26!. The slow
wave speed is obtained takingr !1 in Eq.~27!. This leads to
xr2x3r 3/31O(r 4)5xr2x2r 3 and thus we obtain the lead
ing approximationx53 which gives the asymptotic behavio
of cs asd1→`.

Proposition 2.In the limit b→0, we have

d1* →1

and;d1.1

cf→2
1

11W21S 12d1

ed1
D , ~28!

cs→
b

§
,

where §512W0~e/d1!, W0 is the principal branch of the
LambertW function andW21 the branch corresponding to
21 @22#.

The proposition above describes traveling pulses in
limit of the singularly perturbed system obtained asb→0 or
equivalentlyr→1. Keepingx fixed, the asymptotic expan
sion of Eq.~22! as r 21→0 is given by

s~x!5d1@12e22x~112x!#211O~r 21!. ~29!

The leading approximation is an increasing function ofx and
we easily find the critical value of the diffusion coefficie
d1* (b)→1 asb→0. Ford.1, the approximation of the fas
wave speed is obtained fromd1@12e22x(112x)#2150.
We rearrange this into2(112x)e2(112x)5(12d1)/(ed1).
We have to keep the solution which satisfiescf→01 (x→
1`) asd1→1. Such a solution is expressed with the La
bert functionW21 @22# which gives the approximation of th
03610
is

e

-

faster wave;d1.1, cf→21/@11W21„(12d1)/(ed1)…#.
In the limit b→0, we have lost, in the leading order expa
sion~29!, the solution corresponding to the slow wave spe
In fact, the expansion~29! becomes nonuniform ifx(12r )
remains a nonzero constant asr→1. Equivalently, the ex-
pansion~29! is no longer valid ifx→` as r→1. In this
critical situation, we obtain from Eq.~22! the new expansion
d1@x(r 21)e(r 21)x1e(r 21)x#2150 or equivalently @x(r
21)11#ex(r 21)115e/d1. It follows that x(r 21)
5W0(e/d1)21 and usingr 21522b1O(b2), we find the
asymptotic behavior given by Proposition 2.

Using Proposition 2, we now emphasize some proper
of the pulse waves asb→0. We have already mentioned th
the speed shapes the corresponding wave. Sincecs→0 as
b→0, the slower pulse wave becomes more and more t
and vanishes in the bistable medium.

For d1 large and using Eq.~28!, we derive a more precise
approximation than already obtained,

cf→
1

A2
Ad12

1

3
,

which shows that the speed curve is below its asymptote
From Eq.~28!, the asymptotic behavior in the ‘‘pinning

limit’’ is given by

cf→
21

ln~d121!
as d1→1,

i.e., the speedc vanishes logarithmically near the critica
point. This result has been obtained for the wave front sp
in the bistable medium@14#. As noted by Fa`th @14#, this
logarithmic transition is not due to the jump of discontinui
of the functionf. We will demonstrate that it is the result o
a linear evolution during the onset of propagation. We w
show this property using a similar asymptotic analysis to
one introduced in Ref.@13#. The time evolution of the cells
shows the existence of a critical timet5tn5(n21)tc such
thatvn(t) reaches the threshold valuea. At this critical time,
we assume thatvn(t) quickly jumps from aO(a) value to
vn;1. Let t5tn21 be the origin of time. We seek a solutio
of the form

vn~ t !5avn,1~ t !1a2vn,2~ t !1•••. ~30!

Introducing Eq.~30! into Eqs. ~2!, we equate to zero the
coefficients of each power ofa. We may chooseb suffi-
ciently small such that~i! the excited period~time during
which vn21;1) is greater thantc ~the induction period! and
~ii ! the recovery process can be neglected. From theO(a)
problem, we obtain the following linear differential equatio
for vn,1 :

dvn,1

dt
5d12vn,1 ~31!

with the initial conditionvn,1(0)50. Equation~31! is valid
up to the moment of the threshold crossing, i.e.,t<tc . We
find
5-6
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vn,1~ t !5d1~12e2t!. ~32!

The timetc is defined byvn,1(tc)51 which gives the propa
gation speedc5(tc)

21 and we obtain

c5
21

ln~12d1
21!

. ~33!

As we emphasized, the calculations are valid if the ju
transition~from the thresholda to the saturation value 1) i
instantaneous compared with the induction period~from 0 to
the thresholda). Using Eq. ~32!, expression~33! is valid
only in the limit d1→11 ~then tc→1`) and we find the
result previously obtained.

III. MULTIPLE-PULSE TRAVELING WAVES AND
PERIODIC WAVES

In this section, we investigate the relation between trav
ing pulses and multiple-pulse waves. Our study is formal a
does not concern the existence of multiple-pulse waves.
define ann-pulse wave,w(n,j), as a solution of Eq.~6! for
which there exitsj0 ,j1 , . . . ,j2n21 such that

w~n,j i !5a, i 50, . . . ,2n21,

w~n,j!.a, if jPøk50
n21] j2 j 11 ,j2 j@ ,

w~n,j!,a, if jP$øk50
n22#j2k12 ,j2k11@%ø]

2`,j2n21@ø#j0 ,1`@ . ~34!

Then, the nonlinearity of Eqs.~5! is rewritten as

f „w~j!…52w~j!1 (
k50

k5n21

h~j2k2j!2h~j2k112j!.

The technique is mathematically similar to the technique
Sec. II and we find that then-pulse wave resembles a supe
position ofn solitary pulse waves in the sense that

w~n,j!5 (
p50

2n21

~21!ph~j2jp!, ~35!

whereh is given by Eqs.~11!.
For an infinite number of pulses, one expects to find

riodic waves. To clarify this intuition, we shall describe p
riodic waves. A periodic wave is a periodic solution of E
~6!. We seek for a solution in the spaceLp

2(0,T) whereT is
the period of the wave. We consider periodic waveswg(j)
that present a single pulse on one period and we notet the
real number such that 0,t,T/2, and wg(j).a, on ]
2t,t@ . Then we have

h@wg~j!2a#5H~j!,

whereH(j) is theT-periodic function such thatH(j)51 if
jP] 2t,t@ andH(j)50 if jP] 2T/2,2t@ø#t,T/2@ . It fol-
lows that Eqs.~5! take the form
03610
p

l-
d
e

f

-

2cwg8~j!52wg~j!1d@wg~j11!22wg~j!1wg~j21!#

1H~j!2cg~j!,

2ccg8~j!5bwg~j!. ~36!

Introducing the Fourier series

wg~j!5(
n

wne2ipn(j/T),

cg~j!5(
n

cne2ipn(j/T),

H~j!5
2t

T
1 (

nÞ0

1

pn
sin

2pnt

T
,

Eqs.~36! transform into

2
2ipnc

T
wn52wn1dwn~e2inp/T221e22inp/T!

1
1

pn
sin

2pnt

T
2cn ,

2
2ipnc

T
cn5bwn

andw050. One finds after some algebra

4p2n2c2

T
wn522ipncwnS 114d sin2

np

T D
12ic sin

2pnt

T
1bTwn ,

which yields the expression of periodic waves,

wg~j!5(
n

wne2ipn(j/T), ~37!

where

wn5

2iTc sinS 2pnt

T D
4c2n2p22bT212ipcTnF114d sin2S pn

T D G .

~38!

Note that the existence of periodic waves is related to
existence of (c,T,t) such that

wg~t!5wg~2t!5a.

The periodic wave is obtained from then-pulse traveling
wave in the sense of the following.

Proposition 3.Let w(n,j) be the n-pulse wave defined b
Eq. ~35!. For regular interspike intervals, we have the co
vergence in the space of tempered distributionS8,
5-7
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lim
n→1`

w~n,j!5wg~j!,

wherewg is the periodic wave given by Eq.~37!.
We shall demonstrate this result using the express

previously obtained. Translating the argumentj, we recast
Eq. ~35! as the symmetric summation

w~n,j!5 (
p52n

n

h~j2j2p!2ĝ~j2j2p11!. ~39!

For regular interspike intervals, there exists (t,T) such that
j2p5pT2t and j2p115pT1t. Using h(j)5ĝ(2j), the
Poisson formula applied to Eq.~39! yields

lim
n→`

w~n,j!5
1

T (
pPZ

2gS p

TD2i sinS 2pp
t

TDe2ipp(j/T)

in the space of tempered distributionS8. Using Eqs.~11!,
~37!, and~38!, we obtain the stated result.

IV. DISCUSSION

The study of traveling wave solutions of the discre
reaction-diffusion equation is of great interest to vario
fields but the analysis appears to be difficult and res
are scarce even in one dimension. One approach is to
sider nonlinearities that are amenable to explicit calculati
@23–25#. Previous works mainly focus on the bistable m
dium and little was done for traveling waves in th
ns
,

03610
s

s
ts
n-
s

-

monostable case. In this paper, we have studied trave
pulses in coupled systems of discrete monostable cells wh
kinetics are modeled by McKean’s caricature of t
FitzHugh-Nagumo model.

Our analysis is based on an integral representation of t
eling waves from which we derived some asymptotic expr
sions in the limit of a weak coupling strength. The combin
tion of these expressions and some matching conditi
provide an analytical description of pulse waves. As for t
space-continuous reaction-diffusion system~1!–~3! @26#,
there exist two pulse waves with different shapes and dif
ent propagation speeds. However, an important qualita
difference with the continuum is the phenomenon of pro
gation failure that occurs at a critical value of the coupli
parameter. We studied how the propagation and its failure
affected by the recovery process. In particular, we show
in the limit of a slow recovery process, the faster pulse wa
shares some properties of the traveling front previously
scribed in the bistable medium. Moreover, we showed t
the logarithmic law of the speed close to the pinning tran
tion is related to the linear evolution of the excitation in t
initiation of the wave.

Using a particular nonlinearity gives rise to the issue
whether it is representative of a more general function. C
tinuation of traveling wave solutions while parameters of t
nonlinearity are varied can provide insight into this proble
As it has been shown for the continuum@27#, one expects
that the main features of the dynamics are preserved. H
ever, some limiting situations~for example, asc→0) reveal
a distinct behavior and provide the definition of differe
class of models.
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@28# The complete FitzHugh-Nagumo model has an additional te
in the recovery equationwt5b(v2gw) but, since we focus
our analysis on the excitable regime, we considerg50.

@29# Our study includes the more general function;f (v)52v/t
1mh(v2a) where 0,a,mt, since the change of variable
03610
(t,vn ,wn ,d,a,b)→(tt,mtvn ,mwn ,td,amt,b/t2) allows us
to considert5m51.

@30# Our work is not a rigorous demonstration of the existence
pulse waves and we will not show that these conditions
sufficient.
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