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Abstract. Within the context of Liénard equations, we present the FitzHugh–Nagumo model
with an idealized nonlinearity. We give an analytical expression (i) for the transient regime corre-
sponding to the emission of a finite number of action potentials (or spikes), and (ii) for the asymptotic
regime corresponding to the existence of a limit cycle. We carry out a global analysis to study periodic
solutions, the existence of which is linked to the solutions of a system of transcendental equations.
The periodic solutions are obtained with the help of the harmonic balance method or as limit be-
havior of the transient regime. We show how the appearance of periodic solutions corresponds either
to a fold limit cycle bifurcation or to a Hopf bifurcation at infinity. The results obtained are in
agreement with local analysis methods, i.e., the Melnikov method and the averaging method. The
generalization of the model leads us to formulate two conjectures concerning the number of limit
cycles for the piecewise linear Liénard equations.
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1. Introduction. We consider the autonomous system

dv

dt
= p(v)− w,

(1.1)
dw

dt
= bv,

where t ∈ R, b > 0 , v(t) ∈ R represents the system status variable at time t, w(t) ∈ R

represents an additional variable, and p : R → R is a given function. These equations
are known as the Liénard system [23], [22]. Special cases of (1.1) provide mathematical
models for many applications in science and engineering. We mention here biology
[31], [17], electronics (e.g., the van der Pol model [38]), chemistry [19], and mechanics
(for instance, damped mass spring systems).

In this paper we consider the case of a cubic-like function for p. System (1.1) then
describes the behavior of an isolated excitable cell where v is the membrane potential
and w the recovery variable. When p is given by

p(v) = v(1− v)(v − a), where 0 < a < 1,(1.2)

system (1.1) is the polynomial FitzHugh–Nagumo model [8], [32]. It has given rise
to many studies and the reader is referred to the references given in [31] and [17].
There are no particular requirements with respect to the choice of p, except to have
a graphical representation similar to that given by (1.2). When p is a polynomial
function, it is difficult to obtain analytical results since exact solutions cannot be
obtained. In order to be able to go further with the study and the understanding of
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the model, we will follow the choice originally proposed by McKean [29], considering
that

p(v) = −v + h(v − a), where 0 < a < 1,(1.3)

and h is the Heaviside function

h(x) =

{
0 if x < 0,
1 if x > 0.

(1.4)

The study of model (1.1)–(1.3) with a diffusive term on v was initiated by McKean
[29] and developed considerably by Rinzel and Keller [34] and Wang [39], [40]. Their
analyses covered the existence and the stability of traveling wave solutions.

The use of idealized nonlinearity with the help of the Heaviside function has
become a classic procedure in the modeling of threshold effects in excitable media [3],
[6], [16]. This approach leads to analytical results concerning properties of the model
and provides a qualitative description for a more general class of functions. As far
as we know, no specific studies have been carried out on the model isolated in space
(1.1)–(1.3). More generally, we are going to study the following system:

dv

dt
= −λv + µh(v − a)− w,

(1.5)
dw

dt
= bv,

where

λ > 0, µ > 0, a > 0, and µ > λa.(1.6)

The latter condition shows the restriction that must be imposed upon p to obtain a
shape similar to that obtained with (1.2). We are going to carry out a global analysis
of equations (1.5) considering (λ, µ, a, b) as parameters. It should be noted that the
change of variables

(t̃, w̃, λ̃, µ̃) → 1√
b
(t, w, λ, µ)(1.7)

enables us to consider the case b = 1. Nevertheless, we will not make this choice given
the usefulness of the parameter b in the interpretation of the results. In addition, we
are going to consider the case b→ 0.

Our study covers the case where a constant input I is injected into the system:

dv

dt
= p(v)− w + I,

dw

dt
= bv.

We obtain (1.5) by putting w̃ = w − I, which, in the phase plane, corresponds to a
shift of the v-nullcline. The case of a variable current I(t) will be discussed briefly
and will be the subject of another paper. It should be noted that the FitzHugh–
Nagumo model has an additional term in the recovery variable ẇ = b(v − γw), and
the simplification γ = 0 introduces an artifact in the sense that a constant current
does not change the behavior. However, since we are not interested in the bistable
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regime, this limiting situation allows a qualitative description of the excitable regime
and captures the bifurcations of the complete system as γ → 0.

This article is organized as follows. In section 2, we present the context into
which we put our study and introduce the elements that are useful to our analysis.
In section 3, we discuss the so-called spike solution that corresponds to the emission
of a finite number of action potentials. Particular attention is given to the study
of the singular perturbed system obtained as b → 0. Section 4 is devoted to an
analytical study of periodic solutions, and a geometric analysis is given in section
5. We determine, in section 6, an approximation of the bigger limit cycle. Section
7 provides a mathematical link between excitability and oscillations. In the final
section, we summarize our results and we discuss the problem of the number of limit
cycles for the piecewise linear Liénard equations.

2. General. First, let us consider system (1.1) with p having a cubic shape
similar to that given by (1.2). For a smooth reaction function, p ∈ C1, classical
results from dynamical systems theory enable us to state the following proposition.

Proposition 2.1. The single fixed point E0 = (0, p(0)) is locally stable if and
only if p′(0) < 0. If p′(0) ≥ 0, a limit cycle, surrounding E0, appears via a Hopf
bifurcation.

Proof. The single fixed point of (1.1) is (0, p(0)). Its local stability is given by the
eigenvalues of the Jacobian matrix of (1.1) at (0, p(0)):

J =

[
p′(0) −1
b 0

]
.

For p′(0) < 0, we obtain local stability of the fixed point. The equality p′(0) = 0
corresponds to the Hopf bifurcation equation. The second part of the proposition
is obtained by constructing an invariant set containing E0 and using the Poincaré–
Bendixson theorem.

The Hopf bifurcation is a mechanism that is frequently encountered in the ap-
pearance of small-amplitude oscillations [13]. It is possible to specify the behavior
of the solution in the neighborhood of its Hopf bifurcation and to obtain, locally, an
analytical expression for the solution of system (1.1) [20]. However, the case that we
are going to look at is the so-called excitable one, which corresponds to p′(0) < 0.
There is no precise mathematical definition of excitability, and we say that a sys-
tem is excitable if a perturbation from its resting state leads to a large excursion for
the solution in the phase plane and a return to its resting state. This phenomenon is
characterized by a solution (v(t), w(t)) of (1.5) satisfying the following two properties:

(P1) ∃ 0 < t1 < t2, so that v is increasing on [t1, t2],
(P2) lim

t→+∞ v(t) = 0.

Such a solution will be called a spike solution. It should be noted that (P2) is always
satisfied when the domain of attraction of (0, p(0)) is the whole phase plane. For
our study, property (P1) is sufficient to characterize the excitability of our system.
When p is the function involved in (1.5), property (P1) will be satisfied as soon as
(v, w) crosses the threshold segment [−λa,−λa + µ] in the phase plane. These two
properties are in agreement with the characterization of excitability given in [1], i.e.,
the existence, in the phase space of the so-called amplifying set and decaying set.

We are going to examine the two phenomena associated with the emergence of an
action potential. These phenomena will be written according to the concept of spike
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solution and periodic solution. The spike solution is a transient regime characterized
by a finite number of action potentials. The periodic solution corresponds to the
emission of an infinite number of action potentials. It is an asymptotic regime that
shows the presence of a limit cycle. These two regimes represent the basic properties
of neuronal excitability [33], [15].

Before proceeding with an analytical study of these regimes, we are going to give
a qualitative interpretation of the dynamical behavior of system (1.1). This system
can be rewritten in a convenient form usually used within the context of self-excited
oscillations [30], [12]:

d2v

dt2
− p′(v)

dv

dt
+ bv = 0.

It is then useful to consider the energy derived from the harmonic oscillator (obtained
as p′ = 0) defined by

E =
1

2

(
dv

dt

)2

+
b

2
v2.

This gives a solution,

dE

dt
= p′(v)

(
dv

dt

)2

.(2.1)

We find the stability of the fixed point (0, p(0)), provided by Proposition 2.1, when
p′(0) < 0, which corresponds to damped oscillations in the neighborhood of this fixed
point. As p′ is not negative everywhere on R, it is not possible to obtain a conclusion
concerning the global stability of (0, p(0)). In particular, it is possible that the added
energy, when p′ > 0, is sufficient to give rise to a limit cycle. Equation (2.1) provides
information concerning this cycle to the extent that it must contain at least one root
of p′. Note that this result can be found using the Poincaré–Bendixson criterion.
When p is the cubic polynomial proposed by FitzHugh–Nagumo (1.2), system (1.1)
does not have a limit cycle [24]. Nevertheless, while keeping a similar shape for p, it
is possible to obtain a limit cycle. For example, for

p(x) =

{ −x if x ≤ 0,
10x(x− 0.3)(1− x) if not,

and b = 6, one observes, numerically, the existence of a stable limit cycle. Thus the
constraint on p, said to be of cubic shape, leaves a variability in the dynamical behavior
of (1.1). In the case we are going to study, where p is represented in Figure 2.1, we
will see that the energy input due to the jump discontinuity of v′, ∆v′ = µ when v
crosses the line v = a, may be sufficient to give rise to a limit cycle. In this case,
the limit cycle coexists with the fixed point (0, 0) and this situation is termed as hard
self-excitation.

Before beginning this study, it is necessary to specify the meaning given to a
solution of (1.5) when p is discontinuous. Geometrically, a solution corresponds to a
trajectory in the phase plane (v, w). If this trajectory crosses the line of discontinuity
transversally, the solution is easy to define: for t such that v(t) = a, v′(t) has a jump
discontinuity (v′(t+) − v′(t−) = ±µ), and elsewhere the solution is C1 and satisfies
(1.5) in the classical sense. In the case where the trajectory tangentially meets the
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Fig. 2.1. (a) The nonlinear function p and (b) its distributional derivative p′.

line of discontinuity, the solution satisfies v(t) = a on a nonempty set. In this case,
we speak of a generalized solution and approach the problem from a geometrical
point of view. It is not the purpose of this article to give a precise mathematical
characterization of this solution, and the reader is referred to [7], [18]. It should be
noted that the problem of discontinuous vector fields is covered extensively in control
theory, e.g., [5], [14].

Our main results are given in the following summary. In section 3, we demonstrate
that the spike solution contains only one spike when λ2 ≥ 4b and several spikes can
be emitted otherwise (depending on the initial conditions). In the former case, we
derive a simple expression for the solution as b → 0 and, in the latter, we give
the general expression for the spike solution. The next sections focus on the case
λ2 < 4b for which we derive, in section 4, analytical results on the existence and the
expression of the periodic solutions. The periodic orbits appear via a double limit
cycle bifurcation that we compute in the plane (a, b). Using a geometrical analysis
(section 5), we characterize the two periodic solutions, represented in the phase plane
by two concentric limit cycles. We show how in the limiting situation λ→ 0 and µ→ 0
the periodic orbits can be obtained with the use of the Melnikov function. Moreover,
we discuss the existence of two different types of unstable limit cycles referred to
either as a classical or a generalized solution. The generalized solution is related to
the discontinuity of the vector field. In section 6, the study as λ → 0 allows us to
capture and to describe the bigger limit cycle which is obtained as a Hopf bifurcation
at infinity. In section 7, we show how the spike solutions and the periodic solutions
are related.

3. Excitability and singular perturbation. The purpose of this section is to
study the spike solution. In particular, we characterize this solution by the number
of spikes that are part of the solution. This number corresponds to the number of
times that v crosses the threshold a, where v′− > 0 (where v′− designates the left-
hand derivative of v). This number includes the initial pulse corresponding to the
perturbation due to the initial condition, noted as (v0, w0). In order to simplify the
study we consider the case where w0 = 0. We distinguish between several cases,
according to the value of λ2 − 4b. We prove the following proposition.

Proposition 3.1. For λ2 ≥ 4b, there is a spike solution when a < v0 <
µ
λ . This

solution only presents a single spike.
Proof. First, we look at the case where λ2 > 4b. For v0 < a and as long as

v(t) < a, we have

v′′(t) + λv′(t) + bv(t) = 0.
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The solution is then given by

v(t) =
v0

r+ − r−

(−(λ− r−)er+t + (λ+ r+)e
r−t
)
,

where

r± =
1

2
(−λ±

√
λ2 − 4b).(3.1)

Let t̃ be the time defined by t̃ = 1/(r+ − r−) ln(1 + λ
r+
)/(1 + λ

r−
). If v0 > 0, v is

decreasing on [0, t̃ ] and increasing on [t̃,+∞[. In addition, we have limt→+∞ v(t) = 0
and thus ∀t > 0, v(t) < a. When v0 < 0, if ∀t, v(t) < a, the study is completed;
conversely, if there is a time t∗ so that v(t∗) = a, then the trajectory crosses the line
w = 0 for a value of v greater than a, and, given a time shift, the study corresponds
to the case where v0 > a.

If v0 > a, there is a time t∗ so that v(t∗) = 0 and w(t∗) = w1 > −λa + µ. If
we put t∗ = 0, this gives v(t) = w1

r+−r−
(er−t − er+t) and thus ∀t > 0, v(t) < 0 and

limt→+∞ v(t) = 0.

The case where λ2 = 4b is dealt with in a similar way.

For λ2−4b ≥ 0, the response to an input I = I0δ(t−t0) is a single action potential
when I0 > a.

We will now obtain a simple analytical expression for the potential v. The previous
study showed the existence of several phases when a spike is emitted. This point can
be made more specific by studying the case b� 1. This situation models the behavior
of a system in which two time scales are involved; i.e., v is a fast variable and w is a
slow variable. The mathematical description of the excitability is a classical one (see,
for example, [17]) and is carried out using the singular perturbation theory. In our
case, the relevance is to allow explicit solutions that give a simple expression for v
according to the different phases of the spike solution.

Let there be (v0, w0) so that a < v0 <
µ
λ and w0 = 0. In addition, let us assume

that v0 − µ
λ is of order greater than a O(b). The variations of v can be separated

into four phases. The first phase, which is the excited phase, is fast and the motion is
governed approximatively by the system

dv

dt
= p(v)− w,

dw

dt
= 0,

which gives

v(t) =
1

λ

(
µ+ e−λt(λv0 − µ)

)
.(3.2)

This approximation is valid as long as v(t) is at a greater distance from the v-nullcline
than a O(b) value. If not, we enter the second phase where the dynamic is described
using a new time scale τ = bt. In this phase, v is adjusted to maintain a pseudoequi-
librium at w = p(v), and we have v(τ) = 1

λ (µ− w). We obtain

v(t) =
µ

λ
e−

τ
λ .(3.3)
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Fig. 3.1. Solution v(t) of (1.5) for (v0, w0) = (0.25, 0), λ = 1, a = 0.2, b = 0.05, and µ = 1.
Intervals T2 and T4 designate the durations of the two slow phases.

We enter into the third phase as v reaches a. We have a fast motion where v is given
by

v(t) =
µ

λ
(e−λt − 1) + a.(3.4)

The final phase is characterized by a slow return to the equilibrium state according
to

v(t) =
(
a− µ

λ

)
e−

τ
λ .(3.5)

We can easily find these results by observing that the roots r+ and r− given by (3.1)
are written r+ = − b

λ+O(b
2) and r− = −λ+O(b). The fast dynamic is obtained using

the zero order approximation, and the slow motion by using the first order one. The
different phases, (3.2)–(3.5), correspond to the charge and discharge of a capacitor,
and are graphically shown in Figure 3.1. They allow precise identification of the role
of each parameter. In particular, the amplitude of the potential is parameterized by
µ
λ and a. In addition, it is possible to obtain an approximation of the duration of
a spike T using the durations of the slow dynamics of phases two and four, written
T2 and T4, respectively. We consider that the duration of phase four is the time for
which v(t) = O(b). This gives

T = T2 + T4,

where

T2 =
λ

b
ln

µ

λa
+O

(
1

b

)
,

(3.6)

T4 = O

(
− ln b

b

)
.



466 ARNAUD TONNELIER

For b� 1, it is possible to obtain a simple description of the subthreshold response to
a variable input I(t). This response is the one given by an RC filter, where λ = 1

RC
and is written

v(t) = e−λ. ∗ I(t).
If we consider a train of impulses at regular intervals, the system reacts preferentially
at a high input frequency in that the higher the input frequency, the earlier a spike
is emitted. More precisely, with I(t) = I0

∑
ti
δ(t− ti), where ti = iT and i ∈ N, the

subthreshold response is given by

v(t) = I0e
−λt 1− eλ(n+1)T

1− eλT
,

where n is the index of the final pulse of I(t) before the system reaches the threshold.
Thus, for an input such as I0 < a with a small frequency

1

T
<

λ

ln( a
a−I0

)
,

the system cannot emit an action potential.
Now, and for the rest of this article, unless indicated otherwise, we are going to

consider the case in which λ2 − 4b < 0. We shall see that the model presents a richer
dynamic in the sense that the spike solution is able to present several action potentials.
In addition, we will show in the following section the existence of periodic solutions.
We continue the case of a solution satisfying limt→+∞ v(t) = 0 and, therefore, there
exists a constant C > 0 and a time t∗ starting from which we have

|v(t)| < Ce−
λ
2 t.

We can then define the Laplace transform of v

L(v)(p) =
∫ ∞

0

v(t)e−ptdt

for which the region of convergence is the half plane

D =

{
p ∈ C | Re(p) > −λ

2

}
.

We define the finite sequence of times, written (ti)0...2n−1, so that t0 = 0, and for
i �= 0, v(ti) = a and ∆v′(ti) = (−1)iµ. This sequence indicates the passage of
potential via the line of discontinuity and corresponds to a jump of the derivative of
v. An equivalent characterization of ti is given by v′(t−2j) > 0 and v′(t−2j+1) < 0. We
have, on ]t2i, t2i+1[, v(t) > a with v(t0) = v0 > a. The number n corresponds to the
number of spikes emitted by the system. For w0 = 0, we calculate

L(v)(p) = µ

p2 + λp+ b

n−1∑
i=0

(e−pt2i − e−pt2i+1) +
pv0

p2 + λp+ b
.

We write in the following r =
√
4b− λ2. Using inverse Laplace transforms gives

v(t) = v0α(t) +

2n−1∑
i=0

(−1)ih(t− ti)ϕ(t− ti),(3.7)
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Fig. 3.2. Solution v(t) of (1.5) for (v0, w0) = (1.6, 0), λ = 0.8, µ = 2, a = 0.4, and b = 1. This
spike solution presents two action potentials, or spikes.

where

ϕ(t) =
2µ

r
e−

λ
2 t sin

r

2
t,(3.8)

α(t) = e−
λ
2 t
(
cos

r

2
t− λ

r
sin

r

2
t
)
.(3.9)

The above expression characterizes the transient regime with (i) a term that depends
on the initial excitation, v0, and corresponds to damped oscillations of period 4π√

4b−λ2
,

and (ii) a sum of terms with the form (−1)iSti(hϕ) (where S is the shift operator)
reproducing an excitation when v′− > 0 (even i) or an inhibition v′− < 0 (odd i).
This sum shows the different crossing v = a and is defined implicitly by the existence
of times ti such as v(ti) = a. It is clear that t1 exists: it is given by the smallest
strictly positive solution of the equation

v0α(t) + ϕ(t) = a.

The sequence of times (ti) cannot be expressed with known functions and is im-
plicitly defined using expression (3.7). Figure 3.2 illustrates the case in which the
system generates two action potentials. The return to the resting state takes place
via damped oscillations and induces computational properties which differ from that
studied above. If we consider the case of a system that has not emitted a spike, its
subthreshold response to an input I(t) is given by

v(t) = α ∗ I,
corresponding to the response of an RLC filter, with λ = R

L and b = 1
LC , when an

input I is applied. In particular, the filter response is more significant for an input

signal having a resonant frequency close to
√
b− λ2

4 .

4. Periodic solutions. Let us assume that system (1.5) has a periodic solution.
According to the expression of the vector field, this solution delimits a domain con-
taining the origin, which is a stable fixed point. In addition, when λ �= 0, it is possible
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to construct an invariant region large enough to include this limit cycle. Thus, there
are at least two limit cycles surrounding the origin, with an alternation of stable and
unstable cycles, the largest being stable.

We are looking for a periodic solution (v(t), w(t)) ∈ (L2(0, T )
)2
, where T is the

period of the solution. This solution can be expressed in a Fourier series

v(t) =
∑
n

vne
2iπn t

T ,

(4.1)
w(t) =

∑
n

wne
2iπn t

T .

The technique used, which is known as the method of the harmonic balance (see [2],
for example), involves identifying (vn, wn) using the differential equation satisfied by
(v, w).

In the phase plane, a periodic solution crosses the line v = a at two points, one of
which satisfies w > 0 and the other w < 0. We set t1 and t2 as the two successive times
that satisfy v(ti) = a, i = 1, 2, so that ∀t ∈]t1, t2], v(t) > a. The time-translation
invariance of the periodic solution allows us to define the real τ so that t1 = −τ ,
t2 = τ , where 0 < τ < T

2 . The periodic solution looked for satisfies

v(t) =

{
> a on ]− τ, τ [,
< a on [−T

2 ,−τ [ ∪ ]τ, T2 ].
(4.2)

The function t→ h(v(t)− a) is a T -periodic function such as

h(v(t)− a) =

{
1 if t ∈ [−τ, τ ],
0 if not,

and we calculate that

h(v(t)− a) =
2τ

T
+
∑
n 	=0

1

πn
sin
(
2πn

τ

T

)
e2iπn

t
T .

Therefore we obtain

v(t) =
∑
n

cn sin
(
2πn

τ

T

)
e2iπn

t
T ,(4.3)

where

cn =
2µTi

−4π2n2 + bT 2 + i2πλTn
.

At this stage in the study, we may remark that the mean value of v is zero (which
could be seen directly with (1.5)). The mean value of w is w0 =

2µτ
T . The amplitude

spectrum of v is O
(

1
n2

)
, which ensures the normal convergence of the associated

Fourier series.
Let f be the function defined by

f(t) =
∑
n

icne
i2πn t

T .

With the help of trigonometric transformations, (4.3) is written

v(t) =
1

2
(f(t− τ)− f(t+ τ)).(4.4)
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We calculate

f(t) =
−2µ

r
(
cosh λT

2 − cos r
2T
)eλ

4 (T−2t)
(
e−

λT
4 sin

r

2
(T − t) + e

λT
4 sin

r

2
t
)

(4.5)

for 0 ≤ t ≤ T , where r =
√
4b− λ2 and f is defined on R by periodicity. Therefore,

f is continuous on R and has a derivative for t �= ZT . Note that f does not depend
on the auxiliary variable τ . A periodic solution exists if and only if there is T and τ
such as 0 < τ < T

2 , solutions of

f(0)− f(2τ) = 2a,
(4.6)

f(−2τ)− f(0) = 2a,

so that v, given by (4.4), satisfies (4.2). We note x = T
2 and y = τ . Elementary

operations show that (4.6) can be written in the form

F (x, y) = 0,
(4.7)

F (x, y − x) = 0,

0 <y < x,

where

F (x, y) = µ sinhλx sin ry − µ sin rx sinhλy − ar(coshλx− cos rx) coshλy.(4.8)

The existence of periodic solutions for the differential system (1.5) is given by the
existence of roots for a system of transcendental equations. We have therefore reduced
the differential problem to an algebraic one that corresponds to a search for roots in
R. In contrast to perturbation methods, it is interesting to note that our analysis is
a global one and gives an analytical formula for a periodic solution.

Remark. A similar study can be carried out for λ2 − 4b > 0. We then write
r =

√
λ2 − 4b. We find that

f(t) =
−2µ

r
(
cosh λT

2 − cosh r
2T
)eλ

4 (T−2t)
(
e−

λT
4 sinh

r

2
(T − t) + e

λT
4 sinh

r

2
t
)
,

where T and τ are given by the resolution of (4.7) with F defined by

F (x, y) = µ sinhλx sinh ry − µ sinh rx sinhλy − ar(coshλx− cosh rx) coshλy.

(4.9)

Using r < λ, it is easy to show that F (x, y − x) < 0 when 0 < y < x, and, therefore,
there cannot be solutions of (4.7) with F given by (4.9), which confirms the result of
the previous section.

Starting from the study carried out above, it is possible to state several simple
properties concerning a periodic solution. First of all, it is easy to see that its existence
is controlled by parameters r, λ, and a

µ . In addition, we have the following bound for
the periodic solution:

‖v‖+∞ <
4µ√

4b− λ2
.
e

λT
2 + 1

e
λT
2 − 2

,
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which is valid for e
λT
2 > 2. In particular, we can see that the smaller the period, the

larger the bound.
Based on (4.7), in the general case, it is difficult to give conditions for the existence

of (T, τ). More precisely, two phenomena appear to make the study tricky: (i) the
presence of solutions of (4.7) that do not correspond to a periodic solution, and (ii) the
presence of a periodic solution not detected by our analysis. We will look more closely
at the second point in the next section. The first point arises from the fact that the
existence of exactly two solutions for the equation v(t) = a on [0, T ], corresponding
to (4.2), is not reported in system (4.7). These two situations can be illustrated by
looking at the solutions of (4.7) as a → 0. If we take a = 0, the resolution of (4.7)
leads to the family of solutions (Tk, τpk

)k, where k ∈ N, k > 1:

Tk =
2kπ√
4b− λ2

,

(4.10)
τpk

=
pkπ√
4b− λ2

, where pk = 1 . . . k − 1,

and the implicit functions theorem leads to the existence of these solutions for a
sufficiently small a. In fact, only the solution obtained for k = 2 is admissible; other
solutions do not satisfy the assumptions of our study (given by (4.2)). Numerically,
this solution corresponds to a stable limit cycle. As we have already mentioned, there
must be an unstable cycle separating the domain of attraction of the origin from the
stable cycle one. Therefore, we are in a situation where a limit cycle has not been
detected.

Before clarifying this situation, we carry out a numerical study of the specific case
used in [29], [34], and [39], where µ = 1 and λ = 1. The results are illustrated in
Figure 4.1, where we determine in the plane (a, b) the region where a periodic solution
exists. It appears that there is a value of a, noted a∗, for which there is no periodic
solution for a ≥ a∗. When a < a∗, the existence of a periodic solution is obtained for
b ≥ bf (a). The curve bf (a) is given by the resolution, in {(x, y) ∈ R

2/ 0 < y < x}, of
F (x, y) = 0,

F (x, x− y) = 0,(4.11)

det Fx,y = 0,

where Fx,y is the Jacobian matrix of the system above with respect to (x, y). Ge-
ometrically speaking, the latter condition corresponds to a tangential intersection
between the two curves defined by the equations F (x, y) = 0 and F (x, x−y) = 0. For
b = bf (a), there is a single unstable limit cycle. For b > bf (a), there are two concen-
tric limit cycles. The larger one is stable, and the smaller one is unstable, separating
the different domains of attraction. At b = bf (a) a fold limit cycle bifurcation (or
double limit cycle bifurcation) occurs. Several limiting situations can be analytically
specified. When a → 0, system (4.7) always has an admissible solution (given by
(4.10) with k = 2), and the only restriction on b is related to the existence of r. We
therefore have lima→0 bf (a) = 0.25.

We determine the value of a∗ using an asymptotic expansion of (4.7) as b→ +∞.
More exactly, we use an asymptotic expansion as r → +∞.

We write

x =
x1

r
+O

(
1

r2

)
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Fig. 4.1. Curve of the fold limit cycle bifurcation C = {bf (a), 0 ≤ a < a∗} so that there are
two periodic solutions if and only if b > bf (a) with a < a∗. Parameters are λ = 1, µ = 1. Curves
Cλ and Cλµ correspond to the two approximations given by (6.7).

as the expansion of x (it is easy to show that the zero order term is zero). The leading
order expansion of F (x, y) is

F (x, y) = a(cosx1 − 1)r +O(1),

which gives us the approximation

T =
4π

r
+O

(
1

r2

)
.

One notes the similarity with the expression (4.10) obtained above. In the same way,
if we write

y =
y1
r
+O

(
1

r2

)
,

the determination of y1 is carried out by canceling the higher order term of the
expansion of F (x, y). We find

2π sin(y1)− a

2
x2

2 − aπ2 = 0,(4.12)

and it should be noted that the expansion of F (x, y−x) leads to the same expression.
We show that x2 = 0 (while remarking that x2 is the first order term in the expansion
of T as b → 0 and using the symmetries of the differential equations (1.5)). We
therefore find a solution of (4.12) if and only if

a ≤ 1

π
,(4.13)

which enables us to obtain the value a∗ = 1
π (Figure 4.1). When a < a∗ and r is

large enough, we found two values of τ corresponding to exactly two limit cycles. We
remark that, asymptotically, both these cycles have the same period.
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We can now predict the behavior of system (1.5) for any (λ, µ). The change of
variables

(b̃, ã, t̃, ṽ, w̃) =

(
b

λ2
,
λ

µ
a, λt,

λ

µ
v,
w

µ

)
enables us to find the case previously studied. Condition (4.13) is then written as

a ≤ µ

λπ
,(4.14)

and the bifurcation curve obtained from bf is given by

b = λ2bf

(λ
µ
a
)
.(4.15)

Thus, for sufficiently small λ, the system has always a limit cycle. We will discuss
this point in more detail in section 6. For µ large enough, the condition for existence

of a periodic solution is written as b ≥ λ2

4 .

5. Geometrical study. We are going to specify the dynamical behavior of the
system in the phase plane. We also will make use of a geometrical analysis to char-
acterize solutions of the transcendental equations system (4.7) in the sense that the
search for periodic solutions should be carried out among the intersection points of
the two curves C1 = {(x, y), F (x, y) = 0} and C2 = {(x, y), F (x, y − x) = 0} in the
space region 0 < y < x. Three configurations can then be distinguished.

5.1. No periodic solution. The simplest situation is obtained when the two
curves C1 and C2 do not present any intersections. In this case, the origin is globally
attractive. We already have illustrated such a configuration in Figure 3.2 and have
shown that this case still appears when λ2 > 4b (in this case, C1 and C2 are defined
using F given by (4.9)).

5.2. Pair of admissible solutions. We have seen that when r → +∞, it is
possible to find exactly two pairs of solutions for system (4.7). When these solutions
lead to an expression for the limit cycle, given by (4.4), satisfying the hypotheses
(4.2), they correspond to solutions that are admissible. From numerical simulations,
it appears that this situation occurs when C1 and C2 are two closed convex curves
(in the region of the plane where 0 < y < x). In this case, there are exactly two
intersection points, which correspond to the two limit cycles (stable and unstable).

This configuration can also be found using perturbation methods. In particular,
we will show a mechanism for the birth of these two limit cycles in the phase plane.
We consider the following Hamiltonian system:

du

dt
= −w,

(5.1)
dw

dt
= bv

for which the Hamiltonian function, written H, is given by

H(v, w) = v2 +
1

b
w2.(5.2)
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System (1.5) can be written as a perturbation of the Hamiltonian system (5.1)

dv

dt
= −w − λg(v),

(5.3)
dw

dt
= bv,

where λ � 1 and g(v) = v − h(v − a). We take µ = λ, but we have seen that the
study can easily be extended to any (λ, µ) of the same order. It is easy to see that
for system (5.3) the origin becomes a focus. In order to have a closer look at what
becomes of the periodic trajectory of the center, we are going to use the Melnikov
method [11]. This method, which arises from the averaging method, enables us to
determine the periodic trajectories that are transformed into limit cycles and thus
obtain an approximation of these cycles. The Melnikov function, associated with the
level curve H(v, w) = v2 + 1

bw
2 = l2, is

M(l) =

∫ 2π

0

dt vg(v)|v=l cos t.

We obtain

M(l) = πl2 − 2h(l − a)
√
l2 − a2.

Level curves of the unperturbed Hamiltonian system which transform into limit cycles
are obtained as solutions of M(l) = 0. When l < a, the only solution is l = 0 and we
find that the trajectories tend towards the origin. When l > a, M(l) = 0 is written
as

l4 − 4

π2
l2 +

4

π2
a2 = 0.

There are solutions if and only if a ≤ 1
π . We then have the following result:

– If a = 1
π , there is a single limit cycle which corresponds to the level curve

defined by

H(v, w) =
2

π2
.(5.4)

– If a < 1
π , there are two limit cycles which correspond to the level curves

defined by

H(v, w) =
2

π2

(
1±

√
1− π2a2

)
.(5.5)

These results can be added to by using system (4.7). When µ = λ � 1, the second
order asymptotic expansion of F gives

F (x, y) = 2a
√
b(cos(2

√
bx)− 1)

+

(
− a

√
b(x2 + y2) +

a

4
√
b
(1− cos(2

√
bx))

+
(ax
2

− y
)
sin(2

√
bx) + x sin(2

√
by) + a

√
by2 cos(2

√
by)

)
λ2 +O(λ3).
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Canceling the zero order term gives

T =
2π√
b
+O(λ).

To find a zero order approximation of τ , written τ0, it is necessary to use the second
order expansion of F . In this case, the first order term of the expansion of T , written
as T1, is involved and the cancellation of the second order term of F (or of F (x, y−x))
is written as

−ab2T 2
1 − aπ2 + π sin(2

√
bτ0) = 0.

Note that the system obtained by the transformation λ→ −λ and t→ −t has a phase
portrait that is obtained from the original system taking the symmetric with respect
to the line w = 0. We then have T (−λ) = T (λ), τ(−λ) = τ(λ) and the expansion of
T and τ have the form

T = T0 + T2λ
2 + T4λ

4 + · · · ,
τ = τ0 + τ2λ

2 + τ4λ
4 + · · · .

In particular, we have T1 = 0 and, when a ≤ 1
π , we find two possible values for the

first term of the expansion of τ corresponding to the two limit cycles obtained above:

1τ0 =
1

2
√
b
arcsin(aπ),

2τ0 =
1

2
√
b
(π − arcsin(aπ)).

It is possible to obtain more refined approximations by continuing the series expansion
of T and τ using (4.7). The approximation of limit cycles is then given from (4.4),
(4.5). It is interesting to note the similarity of the expressions obtained here and those
obtained for large r. This result is not surprising given the change of variables (1.7).
In Figure 5.1 and Figure 5.2, we show a typical configuration under study. The two
limit cycles that have just been characterized correspond to solutions in the classical
sense in that they satisfy hypothesis (4.2) and can be obtained by our Fourier analysis.

5.3. Only one admissible solution. From numerical simulations, we observe
configurations where there is only one admissible solution for system (4.7). This
situation does not only appear when there is a single intersection between C1 and
C2 since, as we have already mentioned as a → 0, there can be several intersections
so that only one of which is suitable. Moreover, it is possible to find exactly two
intersections between C1 and C2 only one of which is suitable. This situation is
illustrated in Figure 5.3. We have therefore detected a single limit cycle that appears
to be the stable one. Naturally, the unstable cycle still exists and here we talk about
a generalized solution, insofar as we cannot define it in the classical sense. From
numerical simulations, we observe that the appearance of this generalized solution
corresponds to a bifurcation of curves C1 or C2 in that at least one of these two
curves no longer corresponds to a single closed curve (see Figure 5.3).

In the phase plane, the study of the vector field enables us to specify the un-
stable cycle, called a separatrix because it is the boundary between two domains of
attraction. We write the coordinate points (a,−λa), (a, yB) as A and B, respectively,
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Fig. 5.1. Unstable (dotted line) and stable (full line) limit cycles of system (1.5). The v-
nullcline is represented. The parameters are λ = µ = 0.1, a = 0.22, b = 1.
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Fig. 5.2. Curves C1 (thick line) and C2 (thin line). The two intersections correspond to the
two limit cycles given in Figure 5.1 (the parameters are given in Figure 5.1).

where yB ∈ I and I designates the interval [−λa,−λa+µ]. Let P be the parameter-
ized curve obtained when considering the solution of system (1.5) starting from A by
reversing the time. The equation for this curve is given by

x(t) = a(cos rt− λ
r sin rt)e

λt,

y(t) = −a
(
λ cos rt+ 2

r (b− λ2

2 ) sin rt
)
eλt

as long as x(t) < a. Let t∗ be the smallest real so that t∗ > 0 and x(t∗) = a. If
y(t∗) ≤ −λa + µ, then we take yB = y(t∗) and the curve Γ = [A,B] ∪ P is the
boundary being looked for. This situation is displayed in Figure 5.4. If we now have
y(t∗) > −λa+µ, we again consider the solution of system (1.5) by reversing the time
but with (x(t∗), y(t∗)) as the initial condition. This solution crosses the segment I at
the point B that is looked for. If this solution does not present an intersection with
I, we are in the presence of an unstable cycle that can be defined in a classical sense
given by the resolution of (4.7). Nevertheless, we have not succeeded in establishing
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Fig. 5.3. Curves C1 (thick line) and C2 (thin line). The line y = x is represented. The
parameters are those of Figure 5.4.
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Fig. 5.4. Stable limit cycle (full line) and unstable limit cycle (dotted line) marking the boundary
with the domain of attraction of (0, 0). The parameters are λ = 1, a = 0.3, b = 2, and µ = 3.

precise links between the existence of the point B and the solutions of (4.7).
Another approach is to consider a family of near systems, the solutions of those

tending towards those of (1.5). From this technique arises the mathematical difficulty
of the notion of limit being considered. However, let us define the system

dv

dt
= pδ(v)− w,

(5.6)
dw

dt
= bv,

where pδ(x) = −λx+ µhδ(x− a) and hδ is the continuous function defined by

hδ(x) =


0 if x ≤ 0,
x
δ if 0 < x < δ,
1 if x ≥ δ.

Numerically speaking, for small values of δ, the orbits of (5.6) are a good approxima-
tion of those of system (1.5). This result requires careful study, which we have not
undertaken here. The convenience of (5.6) is that they allow the application of classi-
cal theorems of existence as well as the usual numerical integration methods like the
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Runge–Kutta method. In addition, it seems possible to extend the results obtained
for the discontinuous system to these continuous piecewise linear systems as δ → 0.

6. Large relaxation time. In this section, we study the case of a small λ which
corresponds to a system with a large time constant. When λ � 1, the asymptotic
expansion of (4.8) is written as

F (x, y) = −2a
√
b(1− cos(2

√
bx)) + λµ(x sin(2

√
by)− y sin(2

√
bx)) +O(λ2).

(6.1)

Therefore we have

T =
2π√
b
+O(λ),

τ =
π

2
√
b
+O(λ).

The existence of a periodic solution for small λ has already been noted in section 4.
We obtain a single solution for τ which is related to the big cycle. The small cycle
cannot be captured by this limiting situation. Using the third order expansion of
F (x, y) and F (x, y − x), we find that

T =
2π√
b
+

π

4b
√
b
λ2 +O(λ3),

(6.2)
τ =

π

2
√
b
− aπ

2µ
√
b
λ+

π

16b
√
b
λ2 +O(λ3).

Using the first order expansion of T , we calculate

f(t) = − 2µ

λπ
sin

√
bt+O(1).

Calculation of the approximation of v, using (4.5), (4.4), (6.2), gives

v(t) =
2µ

λπ
cos

√
bt+O(1).(6.3)

The approximation that is obtained coincides with the term carrying the fundamental
frequency in the Fourier series of v. Using w0 = µ

2 , the limit cycle approximation is
given by

v2 +
1

b

(
w − µ

2

)2

=
4µ2

λ2π2
+O(1).(6.4)

Numerically speaking, this approximation appears to be a good one, even for large
values of λ. It is possible to refine the approximation obtained by using higher order
terms in the expansion (6.2). We then find

v(t) =
2µ

λπ
cos

√
bt+

µ

π

(
π√
b
− t

)
cos

√
bt+O(λ).(6.5)

Remark 1. The terms in the expansion of v have zero mean value.
Remark 2. Approximation (6.5) must be considered for t ∈ [0, T ]. This raises the

problem of matching at T , a problem that we will not discuss here since we will use
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Fig. 6.1. Stable limit cycle of system (1.5) (thick line) and its approximations given by (6.6)
(thin line) and (6.4) (dotted line). The parameters are λ = 0.8, µ = 1.5, a = 0.4, and b = 2.

approximation (6.3). From a numerical point of view, this approximation appears to
be better for a wide range of values of λ. This is due to the appearance of secular
terms in the asymptotic expansion (6.5).

Remark 3. If the expansion of T is continued, there is no term of third order,
which leads us to believe that T presents an even power series expansion.

It is interesting to compare the approximation that has just been calculated with
the one previously obtained (5.5). The value found for the largest cycle, in the case
of small (λ, µ), gives

v2 +
1

b

(
w − µ

2

)2

=
2µ2

λ2π2

(
1 +

√
1− λ2π2a2

µ2

)
,(6.6)

which, for small values of a, corresponds to the approximation (6.4). Numerically
speaking, this approximation is very precise, as shown in Figure 6.1.

Using approximations (6.4) and (6.6), we can formulate an approximate necessary
condition for the existence of a periodic solution since the expression of the vector
field requires that the interior of the limit cycle contains the point (a,−λa), which
yields to

b >
(λa+ µ

2 )
2

d2 − a2
(6.7)

with d ∈ {dλ, dλµ}, where d2
λ and d2

λµ are the values of the right-hand term of equations

(6.4) and (6.6), respectively. Approximation (6.4) imposes the condition a < 2µ
λπ ,

which is a requirement greater than that given by (6.6). Even far from its validity
domain, approximation (6.7) remains useful. When λ = 1 and µ = 1, Figure 4.1
shows the approximation (6.7) obtained from the study for small λ (curve Cλ ) and
for small (λ, µ) (curve Cλµ). For small values of a, the requirement appears to be a

little too strong, in that it imposes b > π2

16 when b > 1
4 would do.

Let us precisely give the bifurcation giving rise to the stable limit cycle for small
λ. In this case, the system under study may be considered as a perturbation of

dv

dt
= µh(v − a)− w,
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(6.8)
dw

dt
= bv.

System (6.8) was previously considered as a perturbation of the Hamiltonian system
obtained for µ = 0. However, in this analysis, µ is not considered as a small parameter.
The harmonic balance method leads to the following two cases:

• τ does not exist and we find a family of periodic solutions defined by

H(v, w) = c2, where c < a,(6.9)

where H is given by (5.2).
• If we assume that τ exists, we find that the Fourier series expansion of v is
divergent and therefore there is no periodic solution such as v > a.

For an initial condition outside the ellipse obtained with c = a in (6.9), a solution of
(6.8) tends towards infinity since the orbits of system (6.8) are given by

v2 +
1

b
w2 = const for v < a,

v2 +
1

b
(w − µ)2 = const for v > a,

and, if we consider the sequence (wn)n∈N associated with the Poincaré section defined
by v = a, we have

wn = wn−1 + 2µ.

Thus, the orbits spiral around the origin and move away from it. The addition of the
perturbation −λv leads to (i) the destruction of the family of periodic solutions so
that v < a (the origin becomes a stable focus) and (ii) the appearance of a limit cycle
towards which the orbits converge while spiraling. We have seen that the birth of the
limit cycle takes place at ∞ since the diameter of the ellipse can be made arbitrarily
large. We are going to specify this result in bifurcation terms.

We write (r, θ) for the polar coordinates of (v, w) and, because we are interested
in the system at ∞, we introduce the variable u = 1

r . Given a change of variables, we
can consider the case b = 1. Writing (1.5) using the new variables gives

du

dt
= λu cos2 θ − u2µ cos θh

(
cos θ

u
− a

)
,

dθ

dt
= 1 + λ sin θ cos θ − uµ sin θh

(
cos θ

u
− a

)
.

We are interested in the behavior of the system for λ � 1 and u close to 0. In this
case, θ is a fast variable, the dynamic of which can be approximated by θ′ = 1. The
averaging theorem [11] enables us to consider the approximation given by the averaged
system

du

dt
=

1

2π

∫ 2π

0

dθ λu cos2 θ − u2µ cos θh(cos θ),

where we have used the approximation h( cos θ
u − a) ∼ h(cos θ) for small u > 0.

We find

du

dt
=
(λ
2
− µ

π
u
)
u,
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which shows the appearance of a stable limit cycle. The radius of this cycle is given
by u = λπ

2µ and is in agreement with the approximation (6.4). This is a supercritical
Andronov–Hopf bifurcation which appears at∞. As far as we know, such a bifurcation
was mentioned for the first time in [37].

7. Excitability and oscillations. We may interpret the appearance of oscilla-
tions as the limit behavior of a spike solution when the number of action potentials
becomes large. We are going to give mathematical content to this statement by show-
ing that the periodic solution, written as vγ(t), can be obtained as the limit of the
spike solution, written as vn(t), when the number of spikes n tends towards +∞.
Most often, the birth of oscillations is shown in terms of bifurcations using equations
based on system parameters. Here, the characterization is directly obtained from the
system solutions.

We consider (3.7), omitting the transient regime containing v0, because we are
interested in the asymptotic state. Using a time shift, we consider the symmetrical
sum obtained from (3.7):

vn(t) =

n∑
k=−n

φ(t− t2k)− φ(t− t2k+1),

where

φ(t) = h(t)ϕ(t)

and ϕ is given by (3.8). If we assume that the spikes are produced at periodic time
intervals, there exist T and τ so that t2k = kT − τ and t2k+1 = kT + τ . The existence
of the pair (T, τ) is studied in section 4. We should also note that the assumption just
made is linked to v0 insofar as not all orbits converge towards a periodic solution.

We have φ ∈ L1(R), and the Poisson formula, in the space of tempered distribu-
tions S ′, gives us

lim
n→+∞ vn(t) =

1

T

+∞∑
−∞

φ̂

(
k

T

)
2 i sin

(
2πτ

k

T

)
e2iπk

t
T .

As φ′, the distributional derivative of φ, is in L1(R), equality occurs for every t, and
we have the uniform convergence of the series. We calculate that

φ̂(w) =
2µ

2b− 8π2w2 + 4iπλw
,

giving

lim
n→+∞ vn(t) = vγ(t),

where vγ(t) is the periodic solution given by (4.3), which establishes the stated result.

8. Discussion. Estimation of the maximal number and relative positions of limit
cycles of a two-dimensional autonomous system is an open problem corresponding to
the second part of the sixteenth Hilbert problem. Given the difficulty of the general
problem, mathematicians have become interested in a particular system class, the
Liénard system:

dv

dt
= p(v)− w,

(8.1)
dw

dt
= v.
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Most results concern the case in which p is a polynomial function. Even in this case,
there are no general theoretical results and most approaches are local ones insofar as
they determine only the number of limit cycles for certain parameter values. Limit
cycles are obtained using perturbation methods via a Hopf bifurcation or a global
bifurcation (see [28] and the references therein). Some global approaches make it
possible to link the number of limit cycles to the roots of a polynomial [10], [25], but
the results remain to be demonstrated.

We have studied the Liénard system where p is a piecewise linear function (linear
on ] − ∞, a[ and on ]a,+∞[) allowing a finite jump discontinuity at a > 0. We
have shown that the limit cycles are characterized by the roots of a system of two
transcendental equations. These roots correspond to the period of the oscillations
and to an additional parameter. We have obtained an explicit expression of the
limit cycles as a function of these two roots. Our results are in agreement with
the local methods in that (i) the fold limit cycle bifurcation can be obtained as a
perturbation of a center and (ii) the large size limit cycle can be obtained as a Hopf
bifurcation at ∞. We might also consider the limit cycle obtained as a→ 0 as a kind
of degenerated Hopf bifurcation. We have shown the existence of at least two limit
cycles, and arguments similar to those used in [27] should enable us to demonstrate
that at most two limit cycles exist. When p is a polynomial function, such a result
can be obtained only for a polynomial of degree at least five [36]. It has already been
observed that discontinuous dynamical systems have a richer dynamic than regular
dynamical systems [9]. The obtained results, and numerical simulations that we have
carried out, lead us to formulate two conjectures concerning the number of limit cycles
of a piecewise linear Liénard system.

Conjecture 1. The Liénard system (8.1), with p piecewise linear on n+1 intervals
and having n finite jump discontinuity, has up to 2n limit cycles.

Conjecture 2. The Liénard system (8.1), with p continuous and piecewise linear
on n+ 1 intervals, has up to n limit cycles.

Conjecture 2 generalizes the result obtained in [26], [27] in which the authors
proposed a continuous, and piecewise linear on 2n + 1 intervals, function p so that
Liénard system (8.1) has exactly n limit cycles. The parity and periodicity of p appear
to be the two properties that limit the number of limit cycles.

Beyond mathematical interest of the system under study, it is of great importance
in mathematical biology where excitable systems are widely used [31], [17]. Our sys-
tem is a piecewise linear version of the FitzHugh–Nagumo equations with a simplified
version of the recovery process which provides an understanding of the behavior in a
transparent way. First of all, we have distinguished between two dynamics according
to the value of λ2 − 4b. When λ2 − 4b ≥ 0, the system is termed leaky integrator and
only a single spike can be emitted in response to an excitation given by the input
I = I0δ(t− t0). When λ2 − 4b < 0, the system is referred as being resonator. In this
case, the response is obtained as the superposition of

v(t) = e−
t
η sinΩt,

where η = 1
λ and Ω =

√
b− λ2

4 denote, respectively, the time constant and the natural
frequency of the system. When this response is a finite sum, we obtain what we call
a spike solution. In the case of infinite sum, we obtain a periodic solution for which
an analytical expression is given by

v =
1

2
(S−τf − Sτf),
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where S is the shift operator Syg(x) = g(x+ y) and f is a function that depends on
the period T . In the general case, it is not possible to have an explicit expression for
T and τ . However, we have obtained a set of approximate solutions which shows that
the period is well approximated using

T =
4π√

4b− λ2
.

We have detected two possible mechanisms for the appearance of oscillations: a fold
limit cycle bifurcation and a Hopf bifurcation at infinity.

A significant biological interest is the extension of our analysis to the complete
system where the recovery process is given by

dw

dt
= b(v − γw).

In this case, a change of variables allows us to rewrite the FitzHugh–Nagumo system
as the generalized Liénard equation

dv

dt
= F (v)− w,

dw

dt
= G(v).(8.2)

When p is the polynomial function (1.2), the two functions F and G are third degree
polynomial functions and, in contrast to the case γ = 0, three limit cycles can be
obtained. We plan to explore the piecewise linear case for which an analytical study
is possible but yields much more complicated expressions than those obtained in this
paper. Results on such an extension will be reported elsewhere.

There remains much work to be done on our system. The simplicity of the model
allows us to hope for analytical results for bursting [35]. The coexistence of a limit
cycle and a stable fixed point favors the existence of such a phenomenon when an
additional slow variable is added to the system. Another aspect is the study of coupled
equations. In particular, we hope for promising results concerning the dynamics of
coupled oscillators using the approximations obtained for the periodic solution. As
a first step, we plan to explore the forced system in the context of forced piecewise
linear systems [4], [21].

Acknowledgments. The author thanks J. Demongeot and J. L. Martiel for
many helpful discussions.
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