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Abstract 

 

The goal of the experiment reported was to replicate the previous Sarrazin’s (2000) study in 

order to verify, with an adequate methodological procedure, whether or not the closure 

principle applied in spatial and temporal reproduction tasks. The hypothesis defended was that 

the closure of the pattern is an intrinsic property of the structuring process in spatial memory. 

The stimuli consisted of eight visually presented dots that appeared sequentially with inter-dot 

distances corresponding to inter-dot durations. After a learning phase, participants reproduced 

the spatial (space condition) or temporal (time condition) characteristics of the target 60 times 

in succession. We analyzed the variance level for both element location and Inter-Element-

Interval (IEI) on spatial and temporal responses. Two main results emerge from this 

experiment: (1) the critical dependency of the closure principle to the nature (spatial or 

temporal) of the response, (2) the importance to consider both locations and intervals as 

complementary information. These results are discussed in the light of physical system, in 

particular in term of compensation phenomenon and we proposed a mathematical model that 

replicates the qualitative feature of variance for both space and time conditions. 
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Introduction 

Many earlier studies on perception, memory, and motor processes led their authors 

(Bartlett, 1932; Burnham, 1903; De Camp, 1915; Gibson, 1929; Hebb, 1949; Köhler, 1947; 

Lashley, 1950; Loeb, 1901) to consider intra-individual response variability as a meaningful 

characteristic of the functioning of the system. However, until the recent advent of dynamical 

approaches (cf. Van Geert, 1998), contemporary psychology has shown relatively little 

interest in intra-individual variability. While developments in neurosciences, and in motor 

control in particular, brought variability back to the centre of the stage, acknowledging that it 

was inherent in every biologic system (Collins & DeLuca, 1993; Newell and Corcos, 1993; 

Schöner & Kelso, 1988; Webber & Zbilut, 1994), main stream cognitive psychology, 

including the field of memory, has continued to focus on patterns of accuracy as primary 

indicators of the mode of functioning of the system (see Finke & Shepard, 1986, for a 

review). 

Re-establishing the link with the early studies cited above, and separately analyzing 

both the time course of accuracy (difference between the required pattern and the produced 

pattern on each trial) and variability (difference between subsequent reproductions 

independently of the required pattern), Giraudo and Pailhous (1999) sought to identify the 

role and meaning of variability in image formation and stabilization in memory. Their results 

demonstrated that these two aspects of information processing evolve under different 

dynamics. They referred to the first dynamics as a migration process (i.e., evolution towards 

the required pattern); this process being captured by the accuracy time course, defines the 

maximum level of accuracy reached when accuracy no longer improves over several trials. 

They referred to the second dynamics as a structuring process (i.e., evolution of response 

consistency); this process being captured by the variability time course (defined as the 

difference between successive responses independently of the target configuration), defines 
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the maximum level of image resolution when variability reaches a steady state. These results 

raise the question of the mechanisms that underlie this structuring process, and consequently 

the stabilization of the memory configuration. 

These results have some similarities with studies carried out in the domain of neural 

modelling, and in particular about the question of emergent properties of network interactions 

(e.g., Carpenter and Grossberg, 2003; Grossberg, 1987). In their Adaptative Resonance 

Theory (ART), these authors evoke that a key issue leading to network models concerns how 

the behaviour of individuals adapts successfully in real-time to constraints imposed by their 

environments. In order to analyse this issue, the authors identify the functional level on which 

an individual’s behavioural success is defined and assume that a key behavioural properties 

are often emergent properties due to interactions among many cells in a neural network. 

Often, network emergent properties are much more complex than the network components 

from which they arise. In a network model, the whole is far greater than the sum of its parts. 

In addition the formal relationships among those emergent properties may be quite subtle, and 

may reflect the delicate interplay of behavioural properties that are characteristics of living 

organisms. Thus, in the context of structuring process of visual configuration in memory, 

network models can excite our interest by showing us how subtle and complex functional 

properties can emerge from interactions among simple components. 

Using spatio-temporal target configurations consisting of 8 dots appearing one after 

the other on a horizontal line, Sarrazin (2000) studied the properties of stabilized information. 

Analyzing the variability of successive reproductions, Sarrazin (2000) found that, (1) when 

the pattern stabilized, individual elements varied in a coordinated fashion indicating the 

existence of an overarching synergy, (2) the variance of location for the outermost elements 

(about 0.2 cm) is smaller than the variance of location for other elements (until 1.2 cm), and 

(3) this last result is observed from the first trials on. As the variance measure expressed the 
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stability level of dots location independently of the accuracy of that location, these results 

suggested that the structuring process involves a fixation of the boarder elements in view to 

close the memorized pattern, thus constituting a form. This reminds the closure principle 

defended by Gestalt psychologists in the first half of the last century (e.g., Köhler, 1947, 

Koffka, 1935).  

Wertheimer (1923) initially introduced the concept of closure in a study on the 

principles of perceptual organization. Specifically, the principle of closure refers to the 

tendency towards a greater perceptual stability possessed by closed areas as compared with 

enclosed ones, and hence to the tendency for closed areas to be more readily attained and 

maintained in perception (Luchins & Luchins, 1959). In two studies performed in the first half 

of the last century, Tiernan (1938) and Gibson (1929) have shown that when participants were 

presented with geometric figures, there is a marked tendency to recall or reproduce non closed 

figures as closed ones, that is, to modify the perceived form from memory. Moreover, 

different studies have provided some evidence that closure is important in contour detection 

(Braun, 1999; Elder & Zucker, 1993; Kovacs & Julesz, 1993; Pettet, McKee, & Grzywacz, 

1998) and that the brain perceives boundaries to enclose an object (Koshman, 2006), This 

neural phenomenon of boundaries perception has been highlighted by Grossberg and 

Mingolla (1985) with the notion of boundaries contour system (BC system). The properties of 

the BC system provide a unified explanation of several ostensibly Gestalt rules (completion, 

segmentation, grouping) and computer simulations, based on a hierarchy of orientationally 

tuned interactions, established the formal competence of the BC system as a perceptual 

grouping system. 
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However, generally, the stimuli used allowed the participants to have a simultaneous 

perception of the pattern whereas in Sarrazin's (2000) study the stimuli were sequentially 

presented. Even if Gibson (1966) has emphasized that a series of items can be presented in 

adjacent order or in successive order, in both cases the apprehension is equivalent, it is 

possible that closure principle do not apply for sequentially presented pattern, in such a way 

that the result previously obtained was due to an experimental bias. Indeed, in Sarrazin's study 

(2000) participants recalled the spatial or the temporal pattern of a space-time target 

configuration projected on a computer screen. In such a situation, the edges of the screen 

being always visible, it is possible that the participant have used the edges as external cues 

(i.e., as reference) to learn very soon an almost absolute starting and ending position.  

Thus, the first goal of this experiment will be to replicate Sarrazin's (2000) study using 

the same paradigm (see also Sarrazin, Giraudo, Pailhous, & Bootsma, 2004). However, we 

modified their procedure by introducing a space-time target configuration projected on a wall 

(i.e., a situation in which the reproduction space is not limited by the boundaries of a 

computer screen). In other words, this raised the following issue:  

If the closure of the pattern is an intrinsic property of the structuring process, and thus 

the way the participant used to better memorize and reproduce this pattern, a similar 

distribution of the variance over elements as in Sarrazin's previous experiment (2000) will be 

found in the present experiment since the positions of the outermost elements have to be 

fixed. On the contrary, if the closure of the pattern is due to an experimental bias, and thus is 

not an intrinsic property of the structuring process, then the distribution of the variance over 

elements will be relatively flat because each element will approximately have the same 

variance level. 

A second question deals with the dependent character of the closure principle on the 

nature (spatial or temporal) of the response. Some authors, like Anderson (1974) and Collyer 
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(1977), suggested that the organization of information is identical whatever the nature of the 

reproduction, a spatial or temporal one. Following this argument, Jones and Huang (1982) 

developed an algebraic model to account for space-time contaminations in their psychological 

data characterized by a symmetrical effect of the spatio-temporal incongruence on a spatial or 

a temporal judgment task. Thus, in the context of the closure principle, and considering the 

symmetrical space-time balancing in spatial or temporal reproductions, the question which is 

to be examined is whether there is a temporal closure principle comparable to the spatial 

closure principle.  

Finally, a simple mass-spring model is proposed to account for the observed 

distribution of the variance.  

 

 

Method 

Participants: 

Twelve adult volunteers (6 women and 6 men) participated in this experiment. Their 

mean age was 23 (range = 20 - 27 years). Participants were divided in two groups. The first 

group was asked to reproduce the spatial characteristics of the target configuration (space 

condition) while the second group had to reproduce the temporal characteristics (time 

condition). 

 

Insert Figure 1 about here 

 

Material: 

The stimuli consisted of eight white dots (1 cm in diameter) presented against a black 

background in a dark testing booth. Dots appeared, one at the time, on a black wall (width: 
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4m - height: 3m) located 3.m from the participant. Each dot was visible for 26 ms at a 

position along the horizontal axis from left to right, so that the eight dots formed a uni-

dimensional spatial configuration (see Figure 1). 

 

Insert Table 1 about here 

 

The overall configuration covered 60 cm and was projected in the centre of the wall 

with a virtual start point located at an arbitrary zero position and a virtual end point located at 

an arbitrary 60 position. The sequence (of eight successive dots) lasted 6s. The configuration 

was characterized by variable but proportional spatial and temporal inter-dot intervals (IDI). 

Three of the spatial IDIs corresponded to 3.73 cm covered in 373 ms, two were about half as 

long (i.e., 1.9 cm, covered in 190 cm), and two were about 1.5 times as long (i.e., 5.5 cm 

covered in 550 ms). The seven spatial IDIs were thus always covered at a constant speed (10 

cm s-1). Finally, the spatial and temporal distribution of the eights dots were defined 

considering two criteria: (1) the outermost dots were approximately positioned at an 

equivalent distance from the virtual start and end location, (2) The three different spatial and 

temporal IDIs were in the vicinity one from other in such a way that a short interval, for 

instance, was at the same time near a medium and a large interval (see table 1).  

In the “space condition”, participants were asked to reproduce the spatial pattern of the 

target configuration whereas in the “time condition”, participants had to reproduce the 

temporal pattern of the target configuration. The same space-time target configuration was 

introduced in both spatial and temporal conditions  

Stimulus presentation and response recording were controlled by a dedicated 

application developed under the Labview™ 5.1 program in which the measurement accuracy 

was about 1/100 cm. In time condition, participants’ responses were obtained with a 
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pushbutton connected to the computer’s parallel port via a cable insulated from 

electromagnetic disturbances. Its ergonomic features and reliability (button sensitivity, lack of 

rebound of the signal provided by the switch, efficient anatomical position of the participant’s 

hand) were designed to avoid all interference effects (minimal noise in the signal). 

Procedure: 

There were three phases in each experimental condition: a familiarization phase, a 

learning phase and a reproduction phase. 

- Familiarization phase: In the familiarization phase participants acquainted 

themselves with the experimental apparatus, learning how to handle the mouse to locate the 

dots (in the space condition) or to use the pushbutton to reproduce the rhythm (in the time 

condition) of the target configuration. 

- Learning phase: The participants’ spatial task was to memorize each dot’s location 

(i.e., the spatial configuration), whereas the participants’ temporal task was to memorize the 

rhythm of dots appearance. In order to avoid all possible parasitic effects stemming from 

motor involvement, the participants did not reproduce the sequence during the learning phase. 

This phase consisted of 20 successive presentations of the same space-time sequence. Two 

consecutive sequences were separated by a 1.5 sec. time interval. Consequently, the learning 

phase lasted 150 seconds.  

- Reproduction phase. At the end of the learning phase, the target configuration 

disappeared and the participant’s task was to reproduce the learned pattern (spatial or 

temporal) from memory as precisely as possible. In the space condition, the participant had to 

locate each of the eight dots on the wall using the mouse. In order to minimize the movements 

with the mouse and thus being in a situation similar to a classic use of the mouse (using a 

computer screen), we increased the gain of the mouse. No vertical precision was required with 

dots being automatically projected on the horizontal axis in the middle of the wall. In the time 
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condition, the participant had to reproduce the rhythm of dots’ appearance (i.e., the temporal 

pattern of the target configuration) using the pushbutton sampled at a frequency of 1000Hz. 

Sixty trials were performed, without re-examination of the target. For each trial a start beep 

indicated to the participant the beginning of the reproduction. At the end of the sequence, an 

end beep occurred 340 ms after the participant's eight push to allow the participant to answer 

according to his or her own temporal scale. At the end of each reproduction, the next trial 

began in an automatic way 1.5 s later (as in the learning phase). The experiment took 

approximately one hour in the space condition, and approximately thirty minutes in the time 

condition. 

Data analysis: 

We computed the variance of position for each element’s configuration, and the 

variance of each inter element interval (IEI) in both spatial and temporal reproductions. 

Because in a previous study Berberian (2003) showed a stabilization phase of each dot 

location during the ten first trials, we decided to compute these two measures separately, that 

is, on the ten first trials, on one hand, on the fifty last trials, on the other, and to compare the 

two blocks of trials. The significance level (p) for the ANOVA statistical analysis (expressed 

by the Fisher’s F) was set at 0.05. 

Results 

 

1. Analysis of the element variance. 

The mean level of variance for dots was 1.59 cm (S.D. = 1.09 cm) in the space 

condition, and 24 ms (S.D. = 6 ms) in the time condition. The evolution of this level of 

variance has been analyzed by comparing the mean level of variance for the ten first trials 

with the mean level of variance for the fifty last trials in both space and time conditions. This 

analysis revealed a main effect of blocks of trials in both space [F(1,7) = 22.43 ; p <.05] and 
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time [F(1,7) = 9.22 ; p <.05] conditions. In both conditions, this effect was due to a decrease 

of the mean level of variance during the ten first trials (see figure 2). 

 

Insert Figure 2 about here 

 

In order to shed light on how the information is organized in memory, we analyzed the 

level of variance of each element. As shown in Figure 3, the level of variance of each element 

directly depends on (1) their location in the reproduction, (2) the blocks of trials (i.e., ten first 

trials versus fifty last trials), and (3) the nature of the response (spatial or temporal). 

Indeed, in space condition (see Figure 3A), the analysis revealed a main effect of the 

elements’ spatial location on the level of variance both in the ten first trials [F(7,35) = 3.88 ; 

p <.05] and the last fifty trials [F(7,35) = 4.84 ; p <.05]. Post-hoc analysis revealed that the 

level of variance was larger for the elements located at the centre of the spatial configuration 

(elements 4 and 5) than for the outermost elements (elements 1 and 8) in the two blocks of 

trials. The distribution of the elements’ variance was well fitted by binomial tendency curves, 

characterized by a like-Gaussian profile, with coefficients of determination R2 = 0.9 for the 

block of the ten first trials and R2 = 0.8 for the block of the fifty last trials.  

Concerning the time condition (see Figure 3B), the analysis revealed a non significant 

main effect of the elements’ temporal location on the level of variance for the ten first trials 

[F(7,35) = 0.42, ns]. In other words, no specific organization appears during the ten first 

trials. In contrast, the analysis revealed a main effect of the elements’ temporal location on the 

level of variance for the fifty last trials [F(7,35) = 41.28 ; p <.05]. The post-hoc analysis for 

the block of the last fifty trials revealed a linear increase of the level of variance from element 

1 to element 8. Indeed, the repartition of the level of variance of each element’s temporal 

location was well fitted by a linear trend line, characterized by a positive slope and a 
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coefficient of determination R2 = 0.98. At first sight, it seems that the linearly increasing 

variance in temporal location is the result of a phenomenon of accumulating variance. 

 

Insert Figure 3 about here 

 

2. Analysis of IEIs variance. 

The mean level of variance of the IEIs was 1 cm (S.D. = 0.24 cm) in the space 

condition and 7.7 ms (S.D. = 3.2 ms) in the time condition. The evolution of this level of 

variance was analyzed by comparing the block of the ten first trials with the block of the fifty 

last trials in both space and time conditions. This analysis revealed two mean results. Firstly, 

we observed a main effect of the blocks of trials in the space condition [F(1,6) = 13.89 ; p 

<.05] as well as in the time condition [F(1,6) = 10.23 ; p <.05]. Post hoc analysis revealed 

that this effect was due to a decrease of the level of variance between the block of the ten first 

trials and the block of the last fifty trials (see figure 4), in both space and time conditions. 

Secondly, we observed a larger level of variance for the elements than for the IEIs whatever 

the considered block of trials and whatever the nature (spatial or temporal) of the response are 

(in the space condition, t(11) = 3.19, p<.05 for the ten first trials, and t(11) = 2.28, p<.05 for 

the fifty last trials ; in the time condition, t(11) = 4.76, p<.05 for the ten first trials, and t(11) = 

6.38, p<.05 for the fifty last trials).  

 

Insert Figure 4 about here 

 

However, the comparison of the level of variance of each IEI, did not reveal an effect 

neither for the block of the ten first trials [F(6,30) = 2.13, n.s] nor for the block of the fifty last 
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trials [F(6,30) = 2.14, n.s] in the space condition (see Figure 5A). Concerning the time 

condition (see Figure 5B), the level of variance of each IEI did not differ from each other in 

the last fifty trials [F(6,30) = 1.25, n.s]. In contrast, we observed different levels of variance 

for the IEIs in the ten first trials [F(6,30) = 3.27, p<.05]. 

Thus, compensation of variance between elements occurs in the space condition as 

well as in the time condition and set up (in time condition) on the ten first trials.  

 

Insert Figure 5 about here 

 
3. A dynamical system approach. 

Previous modelling studies on reproduced extents in recall tasks use static models 

where the issue of the dynamical changes, i.e. intra-individual response variability across 

trials, is not addressed. We give here some steps towards a dynamical approach for the 

modelling of the reproduced spatial and temporal extents. Let us denote 

! 

x
i
(t)  the spatial (or 

temporal) location of the ith dot at trial t. In the space condition, 

! 

x
i
(t)  stands for space 

position, and in the time condition 

! 

x
i
(t)  is a time location. We have 

! 

i " 1,n{ }  (in the present 

Experiment 

! 

n = 8) and for convenience we consider trials as a continuous time. A simple way 

to model interaction between dots is to consider the n-dots configuration as a system of mass 

driven by an interacting force.  Evolution of the system follows:  

! 

m
d
2
x
i
(t)

dt
2

= F(x
i+1(t) " xi(t)) " F(xi(t) " xi"1(t))

 

where 

! 

m  is a mass, 

! 

F  is a coupling function that models the interaction between two 

successive dots. For simplicity we consider a simple linear coupling function 

! 

F(x) ="(x #$)  

where 

! 

"  is a parameter that describes the coupling strength and 

! 

"  is the resting value at 

which the interacting function vanishes. (hereafter, we take the dimensionless value 

! 

" =1) 
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Therefore in our approach the evolution of the configuration is like an ideal mass-spring 

system. The system is fully described setting the initial conditions and the boundary 

conditions. For the initial conditions we take 

! 

x
i
(0) as a uniform distribution on  

! 

0,n +1[ ] 

! 

x
i
(0) = i , and we consider an initial perturbation taking 

! 

dx
i
(0) dt  as a random variable 

(normally distributed with mean 0 and standard deviation 0.25). We explore the closure 

hypothesis using two different boundary conditions. In the first numerical experiment we take 

! 

x
0
(t) = 0  and 

! 

x
n+1(t) = n +1, i.e. the boarder elements are fixed. In the second case, we still 

consider a fixed boundary at the origin (

! 

x
0
(t) = 0 ) but the last dot is free. Evolution of dot 

! 

n  

is given by: 

! 

m
d
2
x
n
(t)

dt
2

= "F(x
n
(t) " x

n"1(t))  

i.e. there is no link to a fixed boundary. We focus our analysis on the variance 

produced by the dynamical system in both scenarii for each element. A typical result is shown 

in figure 6 for both scenarii.  

 

Insert figure 6 about here 

 

 

Discussion 

 

The goal of the experiment reported was to replicate the previous Sarrazin's (2000) 

study in order to verify, with an adequate methodological procedure, whether or not the 

closure principle of a memorized pattern in spatial and temporal reproduction tasks could 

applied. Two main results emerge from this experiment. The first relates to the critical 

dependency of the closure principle on the nature (spatial or temporal) of the response. The 
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second concerns the importance to consider both locations and intervals as complementary 

information. Moreover we developed a mathematical model which captures some features of 

the experimental results. 

 

1. The dependency of the closure principle to the nature of the response. 

Studying the question of the mechanisms that underlie the structuring process of 

information in memory in spatial and temporal recall tasks, we demonstrated the existence of 

a distribution of elements’ variance which was different according to the spatial or temporal 

nature of the response. Specifically, removing the experimental bias that could be induced by 

the edges of the computer screen in the Sarrazin’s study (2000), we found that in the spatial 

task the outermost elements have smaller variance than the others, whereas in the temporal 

task the variance increased from the first to the last element.  

The distribution of variances observed could derive from the form of the dots 

distribution since dots location (and thus intervals) was not completely distributed at random. 

However, it is difficult to understand why such an effect can occur regarding the distributed 

variance of dots and not regarding the distributed variance of IEIs. Moreover, as the spatial 

and temporal distributions are the same, it is also difficult to understand why different results 

appeared. In this context, we assume that the distribution of the eight dots have no influence 

on the variances observed. 

As the space condition lasted approximately one hour while the time condition lasted 

approximately 30 minutes, it could be argued in first approximation that the differences in the 

experimental results could be ascribed to the possibility that a simple phenomenon of neural 

dynamics occurs, that is, how the brain responds to time. However, if we observe differences 

in the results, especially regarding dots location and evolution of IEIs variance between 

conditions, we also observe similarities which are difficult to explain by appealing to 
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differences in the way the brain responds to time. Consequently, the difference in time 

between the two conditions did not appear as a convincing argument to explain our results. 

It could be argued that our result corresponded with the well known primacy and 

recency effects. However, it is difficult to understand why such effects appeared for spatial 

responses and not for temporal responses. 

Our results could be understood in a simple way, by considering that the participants 

learned the absolute starting and ending positions across trials. If this consideration can 

partially explain the results of the spatial responses, it can not explain (1) that the variance 

level of the outermost element is low since the beginning of the reproduction, (2) why there is 

a different result for spatial and temporal responses, (3) how the absolute positions have been 

learned without external cues used as reference, and (4) why the location variance increased 

until the element situated at the half of the pattern, and decreased after, until the last element.  

If participants clearly reproduce almost absolute starting and ending positions it is not 

because they learned it, but rather because they mentally structured the pattern by fixing the 

position of the outermost elements, coordinating the other in an overarching synergy. As the 

variance level of element location expressed the stability of the positions, we have to consider 

that for the spatial responses, fixed locations of the outermost elements, probably via a rapid, 

preattentive and automatic process (Grossberg & Mingolla, 1885), allowed to close the 

pattern and thus to constitute a form. 

Luchins and Luchins (1959) argued that closed areas are more readily attained and 

maintained in perception. We assumed that a similar phenomenon occurred in spatial 

reproduction tasks as previously demonstrated by Tiernan (1938) or Gibson (1929). 

Moreover, our results showed that even if the elements are presented sequentially, the 

elaborated spatial representation ended to a closed configuration, that is, a configuration 

which constituted a whole entity. Some authors (Tversky, Geisler, & Perry, 2004) have 
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considered that this closure effect resulted both from good continuation – elements that 

continue a pattern tend to gather together–and proximity – items placed near from each other 

appeared to be part of a group – so that viewers mentally organized closer elements into a 

coherent group. However, the configuration used in the present experiment does not totally 

keep the principles of good continuation and proximity since the elements are presented 

sequentially with different spatial intervals (small, medium or large). As a result, the closure 

principle appeared as a basic property of element organization in spatial reproduction task. 

Moreover we observed that a Gaussian-like curve well fits the repartition of the variance over 

the spatial locations. This distribution of elements’ variance revealed a phenomenon of 

compensation between elements that can be explained as a mass-spring model. In a mass-

spring model which oscillated, the element variance level evolves as a function of the element 

distance to the boundaries. Our explanation found a large confirmation with the first scenario 

of the simple mass-spring model we develop since the distribution of the variance is similar to 

the Gaussain profile of the observed results for the spatial task.  

In the time condition, no closure principle appears. However we have to remember 

that if space is always a closed area, time is always an open dimension. Our results showed 

that the distribution of the element temporal variance follows an increasing linear trend line. 

This linear increase indicated a phenomenon of variance accumulating over elements. This 

linear trend could thus be understood as a mass-spring model characterized by a single 

boundary, that is, only with a starting point. Here again, the second scenario replicates the 

linear increase of the level of variance obtained in the temporal task.  

The analysis of the IEIs variance produced by the model reveals a compensation 

phenomena similar to the one observed in the experiment (simulations not shown). The 

variability observed in the recall experiments is qualitatively reproduced by a simple mass-

spring model where all the elements have the same physical properties. A difference in the 
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boundary condition for the last element accounts for the difference in the variance distribution 

obtained in the spatial and the temporal task. This suggests that (i) the structuring process is 

governed by some simple laws and (ii) the closure principle is a key mechanism for spatial 

reproduction tasks. 

 

2. Considering locations and intervals as complementary information. 

Focusing our attention, on the IEIs variance level, we found that the variance of the 

intervals in the block of the last fifty trials was uniform both in space and time conditions. If 

this result confirms the observed phenomenon of compensation at work for the spatial 

locations, it brings an important issue on the interpretation of the element variance repartition 

for the temporal locations. Indeed, this result shows clearly that the phenomenon of 

accumulating variance, observed for the temporal elements did not prevent a uniform 

repartition of variance over the temporal intervals. However, this homogeneous repartition has 

progressively developed since the variance of intervals is statistically different for the first ten 

trials. Thus, we assumed that a compensation of variance occurs in the structuring process 

both for a spatial and a temporal memorized pattern even if this compensation operated in 

different ways. In the spatial recall task, the compensation process operated both at the level 

of elements and IEIs. We can affirm that this compensation process critically depends on the 

closure principle. In the temporal recall task, the compensation process only operated at the 

level of IEIs. In the same way, we assume that the lack of closure modifies the repartition of 

variance and thus necessitated time for a classical propagation phenomenon to occur. 

Nevertheless, as the action system to drive pointing movements, (Van Wieringen & 

Beek, 1997), these results obviously show that locations and intervals are two complementary 

elements of information that allow to understand the implications of the structuring process of 

information in memory in a better way. Studying pattern reproduction in spatial and temporal 
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reproduction tasks, we demonstrated that the central nervous system used different ways 

according to the task constraints to end up at a same structuring process of information in 

memory. Indeed, the relationship between the emergent functional properties that govern the 

behavioural success and the mechanisms that generate these properties is far from obvious. A 

single network module may generate qualitatively different functional properties when 

parameters are changed. Conversely, two mechanisms which are mechanistically different 

may generate formally homologous functional properties (Grossberg, 1987). If the 

distribution of locations’ variance differs according to the spatial or temporal nature of the 

response, the organization of information in memory leads to a phenomenon of variance 

compensation in both spatial and temporal reproductions. The cognitive and learning 

mechanisms which enable us to group, or chunk, ever more complex information into 

phenomenally simple unitized representations act to hide us the myriad of interactions 

underlying these representations during every moment of experience. 
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Figure captions 

Figure 1: Spatial position occupied by each dot in the target configuration over time 

characterized by variable distances between dots. 

Figure 2: Mean element variance level for the ten first trials and the fifty last trials in both 

space (A) and time (B) conditions. 

Figure 3: Variance distribution of each element for the ten first trials and the fifty last trials in 

both space (A) and time (B) conditions. 

Figure 4: Mean interval variance level for the ten first trials and the fifty last trials in both 

space (A) and time (B) conditions. 

Figure 5: Variance distribution of each interval in function of its location for the ten first trials 

and the fifty last trials in both space (A) and time (B) conditions. 

Figure 6: Variance distribution of each element given by the model of (A) the space condition 

and (B) the time condition. Parameter is 

! 

" m =1 and we simulate over an arbitrary period of 

! 

T =180 . 
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Table 1: Spatial and temporal characteristics of the target configuration. 
 

 

 
 

 
 

 

 
 
 

 Dot location (cm) 
 

Spatial intervals (cm) 
between 2 consecutive 

dots 

Temporal intervals (ms) 

    Dot 1 
Dist. 1 

4.40  
7.46 

 
746 

   Dot 2 
Dist. 2 

11.86  
3.82 

 
382 

   Dot 3 
Dist. 3 

15.68  
10.80 

 
1080 

  Dot 4  
 Dist. 4 

26.48  
11.20 

 
1120 

 Dot 5 
Dist. 5 

37.68  
7.46 

 
746 

 Dot 6 
Dist. 6 

45.14  
7.46 

 
746 

 Dot 7 
Dist. 7 

52.60  
4.00 

 
400 

 Dot 8 56,60   


