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Abstract Many biological oscillators have a cyclic structure consisting of neg-
ative feedback loops. In this paper, we analyze the impact that the addition of
a positive or a negative self-feedback loop has on the oscillatory behavior of the
three negative feedback oscillators proposed by Tsai et al. (Science 231:126-
129, 2008) where, in contrast with numerous oscillator models, the interactions
between elements occur via the modulation of the degradation rates. Through
analytical and computational studies we show that an additional self-feedback
affects the oscillatory behavior. In the high-cooperativity limit, i.e., for large
Hill coefficients, we derive exact analytical conditions for oscillations and show
that the relative location between the dissociation constants of the Hill func-
tions and the ratio of kinetic parameters determines the possibility of oscilla-
tory activities. We compute analytically the probability of oscillations for the
three models and show that the smallest domain of periodic behavior is ob-
tained for the negative-plus-negative feedback system whereas the additional
positive self-feedback loop does not modify significantly the chance to oscillate.
We numerically investigate to what extent the properties obtained in the sharp
situation applied in the smooth case. Results suggest that a switch-like cou-
pling behavior, a time-scale separation, and a repressilator-type architecture
with an even number of elements facilitate the emergence of sustained oscilla-
tions in biological systems. An additional positive self-feedback loop produces
robustness and adaptability whereas an additional negative self-feedback loop
reduces the chance to oscillate.
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1 Introduction

Connected networks arising in systems biology show a wide variety of dy-
namical behaviors, oscillations being a recurrent motif. Oscillations frequently
occur in the regulation of biological systems and play a fundamental role in nu-
merous physiological processes as the hormone secretion (Walker et al. 2012),
the cardiac electrical activity (Keener and Sneyd 1998), the circadian rhythm
(Goldbeter 2002) or in pharmacodynamics (Dokoumetzidis et al. 2001), to
mention a few. Therefore, an important topic in mathematical biology has
been the study of necessary conditions for a system to show and maintain
oscillations in a fluctuating environment such as the interior of a cell (Weber
et al. 2011; Mincheva 2011; Tsai et al. 2008; Ferrell et al. 2011; and references
therein).
It has been suggested that the dynamical properties of biological systems made
of interacting elements could be understood in terms of network connectivity
considering the so-called interaction graph (Thomas 1981; Kaufman et al.
2007; Mincheva 2011; Domijan and Pécou 2012; Purcell et al. 2010). A hall-
mark of robust oscillations is the existence of inhibitory feedback loops despite
the fact that the occurrence of a negative feedback circuit is not necessary
(Richard and Comet 2011). In addition, negative feedbacks are frequently em-
bedded in a cyclic architecture (Fraser and Tiwari 1974; Hastings et al. 1977;
Smith 1987; Mallet-Paret and Smith 1990; Goldbeter 1991; Elkhader 1992;
Müller et al. 2006) that is believed to be the underlying circuit responsible for
the emergence of oscillations in networks as in enzymatic reactions coupled
with gene transcription (see references in (Hastings et al. 1977)), in cellular
control systems, or in neural systems where the term ’ring’ is used (see various
examples and references in Sect. 4 of Mallet-Paret and Smith 1990). The re-
pressilator is an archetypal instance of cyclic negative feedback system (Elowitz
and Leibler 2000; Müller et al. 2006). This class of models has been extensively
studied since the early work of Tyson (1975) which demonstrated the existence
of large amplitude oscillations for a three-dimensional cyclic negative feedback
system. Subsequently, several generalizations have been proposed and studied
(Hastings 1977; Hastings et al. 1977; Smith 1986). It has been observed (Fraser
and Tiwari, 1974) and proved (Smith 1987) that a qualitative difference oc-
curs in the dynamics of negative cyclic systems between an odd number and
an even number of nodes in the cycle. A significant insight has been accom-
plished in Mallet-Paret and Smith (1990) where it is shown that monotone
cyclic feedback systems can be embedded in R2 and, therefore, the possible
dynamics of the network are severely constrained. In addition, common char-
acteristics of global attractors for generic cyclic feedback systems have been
described in (Gedeon and Mischaikow 1995; Gedeon 1998).
Even though negative feedback loops are enough to generate oscillations (Gold-
beter 1991; Griffith 1968; Elowitz and Leibler 2000; Hirata et al. 2002; Tsai et
al. 2008), many biological oscillators have also positive feedback loops (Harris
and Levine 2005; Hornung and Barkai 2008; Angeli et al. 2004) raising the
question of the functional role of these extra loops. Several explanations have
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been proposed to justify the existence of positive loops in biological systems.
A conjecture by Thomas (1981) demonstrated in (Snoussi 1998; Plahte et al.
1995; Gouzé 1998; Cinquin and Demongeot 2002) states that the presence of a
positive feedback loop is a necessary condition for biological systems being able
to possess multiple steady states. In particular, a bistable behavior inducing
a switch-like response can be obtained (Angeli et al. 2004; Cherry and Adler
2000; Ferrell 2002). Tsai et al. (2008) argued that the existence of a positive
feedback loop makes oscillatory systems easy to tune and more robust (see
also Stricker et al. 2008). Other possible advantages include the reliability of
oscillations, the noise-resistance of the system (Elowitz and Leibler 2000) and
the stabilization of active states (López-Caamal et al. 2013). In addition, inter-
action of positive and negative loops are involved in the regulation of different
physiological processes: the cell cycle (Goldbeter 2002), the generation of the
well-known p53 oscillations (Ciliberto et al. 2005; Harris and Levine 2005) or
the balance between noise buffering and signaling sensitivity (Hornung and
Barkai 2008).
The study of the network architecture and its relation with the dynamical
behavior has attracted a lot of attention but the geometrical properties of the
vector field generating the flow of the system have been poorly explored. A
first attempt in this direction has been carried out in (Demongeot et al. 2007a,
2007b) where it is shown that a close link exists between sustained oscillations
and the existence of a potential-Hamiltonian decomposition of the vector field.
However, the link with the interaction graph of the system and the applicabil-
ity of the method to a dimension greater than two have not been addressed.
There is a need to fill the gap between oscillations, interaction graph, and
vector-field properties.
In this paper, we study the cyclic inhibitory feedback systems considered by
Tsai et al. (2008) where the symmetry of the cycle can be broken by an addi-
tional negative or positive self-feedback loop. In Sect. 2 we present the models.
In Sect. 3.1 we discuss the nature of the interactions and in Sect. 3.2 we ex-
hibit a vector-field decomposition of the 3D system. Fixed points are studied
in Sect. 3.3 and a qualitative description of oscillations in terms of slow-fast
dynamics is provided (Sect. 3.4). In the idealized case of step-like coupling,
we derive exact conditions for the existence of oscillations and we describe
analytically the ranges of model parameter where stable limit cycles are found
(Sect. 3.5). Numerical simulations in the smooth-coupling case are performed
in Sect. 3.6. We generalize some results to large cyclic repression systems in
Sect. 3.7 and we conclude by a discussion (Sect. 4).

2 Models

In this paper, we consider the oscillator models formulated in Tsai et al. (2008)
(see also Angeli et al. 2004; Ferrell et al. 2011): the first oscillator model,
referred to as the negative feedback-only oscillator (the No-oscillator in the
sequel) is schematically illustrated in Fig. 1. If we denote by a, b and c, the
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Fig. 1 Schematic view of the oscillator models. The additionnal loops of the negative-
plus-negative oscillator (labelled NN) and positive-plus-negative oscillator (labelled PN) are
represented in dotted lines.

concentration of the different molecules or chemical species (gene, protein, or
metabolite), the equation for a reads

da

dt
= αa − βaa−

βacac
nc

Knc

c + cnc

where it is assumed that the molecule is synthesized (or activated) at a con-
stant rate αa, degraded (or inactivated) at a rate βa and the inhibition by
another molecule (here c) is approximated by a Hill equation with nc > 0 the
Hill coefficient and Kc > 0 the median effective concentration value (or the
half-maximal concentration). The rate constant βac determines the strength
of inhibition of molecule a from molecule c. We assume that similar equa-
tions hold for b and c such that the system forms a cyclic negative feedback
three-component oscillator. If we take

A =
βaa

αa

, k1 = βa, k2 = βac, K1 =
Kcβc

αc

, and n1 = nc (1)

(and similar change of variables for b and c) we end up with the dimensionless
equations:

dA

dt
= k1(1−A)− k2AS1(C), (2)

dB

dt
= k3(1−B)− k4BS2(A),

dC

dt
= k5(1− C)− k6CS3(B),

where (ki)i=1,...,6 > 0 are rate constants and (Si)i=1,2,3 are the Hill functions

Si(x) =
xni

Kni

i + xni

. (3)

Parameters Ki are also referred to as the microscopic dissociation constants
or saturation constants, or when Hill functions exhibit a sharp transition, as
thresholds or switching values. Without cooperative binding, i.e. for ni = 1, the
interactions follow the Michaelis-Menten kinetic model, Ki being the Michaelis
constant.
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Two other oscillators have been introduced: the negative-plus-negative oscil-
lator (NN-oscillator in the sequel) and the positive-plus-negative oscillator
(PN-oscillator in the sequel). These oscillators have an additional self-feedback
loop on the A-component of the No-oscillator. For the NN-oscillator, Eq. (2)
becomes

dA

dt
= k1(1−A)− k2AS1(C)− k7AS4(A), (4)

and for the PN-oscillator a positive feedback is introduced

dA

dt
= k1(1−A)− k2AS1(C) + k7(1−A)S4(A), (5)

where S4 is given by (3). The No-oscillator belongs to the class of repressilator-
type models (Elowitz and Leibler 2000) that are characterized by the cyclic
inhibitory connection of elements (proteins that cyclically repress the synthesis
of another). The presence of a positive self-feedback loop for the PN-oscillator
is a characteristic feature of amplified negative feedback oscillators (Purcell et
al. 2010) where one species amplifies its own production. It is worth noting
that the coupling term can be rewritten as a modulation of the degradation
rates unlike many regulatory models where the coupling acts on the synthesis
term (we will discuss this point latter, section 3.5.2).
Due to the Bendixson’s and Dulac’s criteria, it is well known that the two com-
ponents version of the No-oscillator and NN-oscillator are not able to generate
oscillations and a minimal oscillator with negative interactions only has at least
three components. The three-node architecture proposed for the No-oscillator
model appears as a recurrent network motif in many different independent
biological contexts (Pigolotti et al. 2007). It has been widely used as a generic
and realistic minimal model responsible for the oscillatory behavior observed
in complex networks (Goldbeter 1991; Ferrell et al. 2011; Boulier et al. 2007;
Pigolotti et al. 2007).
Recently, a similar repressilator-type model has been studied in (Buse et al.
2009, 2010) where it has been shown that if the negative feedback is suffi-
ciently strong and if the sigmoidal interaction is sufficiently stiff then the sys-
tem oscillates. For the models studied here, it has been numerically observed
by Tsai and coworkers (Tsai et al. 2008) that the three oscillator models ex-
hibit oscillations and that oscillatory regimes are more easily obtained in the
positive-plus-negative type oscillator whereas oscillations are limited by the
negative self-feedback loop.

3 Results

3.1 The nature of interactions

The positive or negative nature of a loop is determined by the sign of the partial
derivative of the functions involved in the loop and is commonly represented by
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an interaction graph. The sign of the (i, j) component of the Jacobian matrix
(see Appendix A), i.e., ∂fi/∂xj , defines the nature of the connection from
j to i and the product of the signs of the components occurring in the loop
gives the nature of the feedback loop. In Tsai et al. (2008) another convention
seems to be used since the sign of the scalar term describing the feedback in the
equations determines the nature of the interaction. For the oscillators studied
here the two definitions coincide except for the nature of the self-feedback loop
of the PN-oscillator. The positive interaction term (1 − A)S4(A) in the PN-
oscillator equation has a positive derivative on (0, A∗) and a negative derivative
on (A∗, 1) where A∗ is the unique solution of xn4+1+(1+n4)K

n4

4 x−n4K
n4

4 = 0.
Adding the linear term k1(1 − A) the nature of the self-interaction remains
variable and can become negative in particular when k1 is sufficiently large.
In the limit of large n4 values, it is easy to show that the maximum of the
derivative of the interaction term (1− A)S4(A) is reached for A = K4 (when
K4 < 1) and the feedback is non-negative if and only if

k1
k7

<
n4

4

(

1

K4
− 1

)

−
1

2

to a leading order in 1/n4. To sum up, the interactions between molecules
induce a negative coupling. In addition, each molecule has a negative self-
feedback loop describing the degradation but it is common to ignore it in
the interaction graph (Fig. 1). The additional loop of the NN-oscillator does
not change the nature of the self-feedback loop whereas for the PN-oscillator
the nature of the loop becomes variable: it is negative when the degradation
dominates and positive when amplification dominates. By abuse of language
the PN-oscillator is referred to as an amplified negative feedback oscillator.
The oscillator models previously introduced can be generalized and written in
an abstract form as

dxi

dt
= fi(xi, xi−1), i = 1, 2, . . . , n

where we set x0 = xn with n the number of species involved in the cycle. For
the No-model we have

fi(xi, xi−1) = k2i−1(1− xi)− k2ixiSi(xi−1), i = 1, 2, . . . , n.

For the NN-model and PN-model an additional loop, that depends on x1 only,
is included in the definition of f1 (see Eq.4, 5, respectively). It can be checked
easely that D = [0, 1]n is positively invariant. Moreover, we have

∂fi(xi, xi−1)

∂xi−1
= −k2ixiS

′

i(xi−1) < 0, ∀x ∈ D and 1 ≤ i ≤ n

and therefore the different oscillators belong to the class of monotone cyclic
feedback systems (Mallet-Paret and Smith 1990). It is worth noting that the
models considered here do not satisfy the properties of the systems presented
in (Hastings et al. 1977) and in (Smith 1987) and therefore previous theorems
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on limit cycle existence do not apply here.
If we define ui such that xi = eui , then the cyclic feedback system can be
rewritten in a more standard decoupled form as

dui

dt
= ai(ui)− bi(ui−1), i = 1, 2, . . . , n

where ai(u) = k2i−1(e
−u − 1) and bi(u) = k2iSi(e

u).

3.2 Helmholtz decomposition, energy dissipation and divergence

Oscillations in biological systems have been widely analyzed via the associ-
ated interaction graph but the geometrical properties of the system have been
poorly addressed. One can expect that the structure of the vector field pro-
vides an intuitive understanding of the dynamics and gives some key elements
to figure out the appearance of stable periodicity.

Let us define S
[1]
k (x) =

∫ x

0
Sk(u)du and S

[2]
k (x) =

∫ x

0
S
[1]
k (u)du. Both integrals

can be analytically expressed with the generalized hypergeometric functions

pFq(a1, . . . , ap; b1, . . . , bq;x) as

S
[1]
k (x) = x

(

1−2 F1(1, 1/nk; 1 + 1/nk;−(x/Kk)
nk)

)

, (6)

S
[2]
k (x) = x

(

1−3 F2(1, 1/nk, 2/nk; 1 + 2/nk, 1 + 1/nk;−(x/Kk)
nk)

)

. (7)

Let Fi be the vector field of oscillator i where i ∈ {No, NN, PN} stands for
one of the three different oscillators. The oscillators share a similar Helmholtz
decomposition of their vector field

Fi = −∇φi +∇×G (8)

where φi is a scalar potential defining the conservative part of the vector field.
The vector potential G is identical for all oscillators and is given by

G(A,B,C) =







k6CS
[1]
3 (B)

k2AS
[1]
1 (C)

k4BS
[1]
2 (A)






.

The scalar potential φi can be decomposed as φi = φ+φ̃i where φ is a potential
common to all oscillators given by

φ(A,B,C) =
k1
2
(1−A)2 + k4S

[2]
2 (A) +

k3
2
(1−B)2 + k6S

[2]
3 (B) +

+
k5
2
(1− C)2 + k2S

[2]
1 (C). (9)
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φ̃i is an oscillator-dependent potential induced by the self-feedback loop and
is given by

φ̃No(A) = 0,

φ̃NN (A) = k7AS
[1]
4 (A)− k7S

[2]
4 (A),

φ̃PN (A) = k7(A− 1)S
[1]
4 (A)− k7S

[2]
4 (A).

The vector field of each oscillator is the sum of a curl-free vector field, defined
by φi, and a divergence-free vector field, defined by G. The divergence-free
part defines the circulation density (source-free) of the oscillators and remains
the same in the three versions of the oscillators. The curl-free part defines
the source density and reflects the difference between each oscillator induced
by the additional self-feedback. The modification of the source density term
can be measured directly by the divergence of the vector field. Physically the
divergence measures to which extent the flow generated by the vector field
behaves as a source or a sink. The divergence describes the rate of change of
an infinitesimal state space volume V (t) following the flow defined by F and
we have div(F (x)) = V̇ (t)/V (t). In conservative systems, there is no change of
the total energy and therefore the state space volume is constant and divF =
0. In non-conservative systems, if divF > 0 the volume V (t) increases and the
vector-field flow behaves like a source, whereas if divF < 0 then V (t) decreases
and the vector field flow behaves as a sink. We have

divFi = −∆φi,

and we calculate for the No-oscillator

divFNo = −k1 − k3 − k5 − k2S1(C)− k4S2(A)− k6S3(B) (10)

which is negative. For the NN-oscillator, we get

divFNN = divFNo − k7S4(A)− k7AS
′

4(A) (11)

which is still negative. For the PN-oscillator, we obtain

divFPN = divFNo − k7S4(A) + k7(1−A)S′

4(A) (12)

which has k7(1 − A)S′

4(A) as a positive term in the divergence showing the
existence of a positive self-feedback. It is easy to show that the sum of the two
terms adding divFNo in the right-hand side of (12) is positive when A ∈ (0, A∗)
where 0 < A∗ < 1 is the unique solution of n4K

n4

4 − (n4 + 1)Kn4

4 x− xn4 = 0.
It is worth noting that the existence of an Helmhotz decomposition is not
insured by the Helmholtz-Hodge theorem which applies for a decaying vector
field that vanishes at infinity. Here, the system lies on a bounded space (the
cube [0, 1]3) where the decomposition is not unique. It is easy to check that
φ = k1A+ k2B+ k3C and G = 0.5(k2C− k3B, k3A− k1C, k1B− k2A)

t satisfy
∇φ = ∇×G.
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3.3 Steady states

Without interactions between molecules, i.e., k2 = k4 = k6 = k7 = 0, the
oscillators have (A,B,C) = (1, 1, 1) as a globally attractive steady state. The
negative coupling modifies the nature of the resting state and qualitatively the
new fixed points result from a balance between an attraction toward (1, 1, 1)
driven by the internal dynamics and an attraction toward (0, 0, 0) generated by
the inhibitory connection. If a static balance cannot be reached, a dynamical
state induced by the negative interactions emerges with possibly the birth of
oscillations.
Steady states are points in the state space where the curl-free component
equals the divergence-free component of the vector field. For oscillator i, the
steady state X0 = (A0, B0, C0) satisfies

∇φi(X0) = ∇×G(X0).

For the No-oscillator we obtain

A0 = (1 + r2,1S1(C0))
−1,

B0 = (1 + r4,3S2(A0))
−1,

C0 = (1 + r6,5S3(B0))
−1,

where rp,q is the ratio of rate constants kp/kq. The functions fk : x → 1/(1 +
rkSk(x))) (where rk = r2k,2k−1) are decreasing and thus

A0 = f1(f3(f2(A0))) (13)

has at most one solution. Since f1(f3(f2(0))) > 0 and f1(f3(f2(x))) − x < 0
for sufficiently large x, Eq. (13) has exactly one solution. The stability is given
by the eigenvalues of the Jacobian matrix. For the NN-oscillator, using similar
arguments one can show that there is exactly one steady state. However, for
the PN-oscillator several steady states can coexist as shown in Fig. 2.
It is worth noting that the No-oscillator is invariant under the circulating
permutation

k1 → k3 → k5 → k1,
k2 → k4 → k6 → k2,
K1 → K2 → K3 → K1,
n1 → n2 → n3 → n1.

The symmetry is broken by the additional self-feedback loop and thus, in com-
parison with the No-oscillator, the possible oscillator birth or oscillator death
obtained for the NN-oscillator or the PN-oscillator is induced by symmetry
breaking.



10 Arnaud Tonnelier

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

Negative only

Negative−Negative

Positive−Negative

A

0.13 0.16 0.19
0.1

0.2

0.3

0.4

 

 

Fig. 2 Determination of the A-component of the steady states as the crossing point between
the curves and the straight line y = A, for the different oscillators. For the negative feedback-
only oscillator and the negative-plus-negative oscillator, there exists one fixed point. For
the positive-plus-negative oscillator, several steady states can coexist. The inset shows a
zoom on the corresponding region. Parameters are r2,1 = r4,3 = r6,5 = 10, r7,1 = 100,
K1 = K2 = K4 = 0.2, K3 = 0.25 and n1 = n2 = n3 = n4 = 3.

3.4 The fast-slow repressilator

A qualitative understanding of the emergence of oscillations is provided by a
fast-slow timescale analysis of the negative feedback oscillators. Let us con-
sider the No-oscillator where we assume that the rate constants k1, k3, and k5
are small, i.e., k1, k3, k5 ∼ ǫ where ǫ ≪ 1. If the sigmoidal interactions are
sufficiently sharp, thus starting from an underthreshold initial condition (i.e.,
each sigmoidal function Si is inactivated), the system evolves following the
slow dynamics

dA

dt
= k1(1−A),

dB

dt
= k3(1−B),

dC

dt
= k5(1− C),

that holds as long as the concentrations of the different molecules are below
their associated thresholds, i.e. A < K2, B < K3 and C < K1. When one
species reaches its threshold, the corresponding interaction is activated. De-
pending on the relative location of K1, K2, K3 and the relative strength of the
rate constants k1, k3 and k5, different oscillatory patterns can be obtained.
Let us assume that C reaches its threshold K1 first. At that time, noted t0,
the concentration of molecule A follows the fast dynamic

dA

dt
= −k2AS1(C)

and quickly tends towars 0. We enter a regime where A(t) ≪ 1 and B,C slowly
tend toward 1. Let t1 be the time at which B(t1) = K3. At that time, C tends
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toward 0 following a fast dynamics whereas A enters a slow recovery process
toward 1 while B continues to increase toward 1. At a time noted t2, A reaches
its threshold and subsequently B is reset to 0 whereas C starts its recovery
process that will define a time t3 such that C(t3) = K1. These different regimes
repeat indefinitely giving rise to an oscillatory activity characterized by the
successive resetting of variables A, B and C (fast trajectory toward 0) following
by recovery processes toward 1 (see Fig. 3). It should be noted that the fast-
slow repressilator presented here has a fast repressor dynamics in contrast with
many synthetic oscillators where the activation is fast and repression is slow
(Purcell et al. 2010).

0 300 600 900
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0.4

0.8
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C(t)

t
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1
t
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t
3
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K
3

Fig. 3 Oscillatory activity of the fast-slow negative feedback-only oscillator as a function
of time. Parameters are k1 = k3 = k5 = 0.01, k2 = 30, k4 = 10 and k6 = 10. The threshold
values are K1 = 0.6, K2 = 0.8 and K3 = 0.9. The Hill coefficients are n1 = n2 = n3 = 100.

From the previous discussion, it is easy to show that a necessary and sufficient
condition to have a periodic switch between the fast and the slow regimes is
Ki < 1, i = 1, 2, 3. The analysis is valid in the limit of a sharp sigmoid, i.e.,
ni ≫ 1, and we will show in the next section that this condition prevents the
occurence of stable fixed points that would lead to oscillator death.

3.5 The high cooperativity limit

The Hill functions describe the cooperative dynamics of macromolecules. In-
teractions of Hill type are modeled by sigmoidal functions where the slope of
the curve near the median effective concentration is governed by the Hill co-
efficient. When the Hill coefficient is large (ni ≫ 1), a situation that we refer
to as the high cooperativity limit (HCL), the transition around Ki is sharp
and the sigmoid behaves as an Heaviside-step function generating a switch-like
interaction. The functions Si, Eq. (3), become

Si(x) = Θ(x−Ki)
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where Θ is the Heaviside-step function and parameter Ki plays the role of a
threshold. In this limiting regime, the studied oscillators belong to the class
of piecewise linear differential equations and it becomes possible to derive
analytical conditions for the existence of oscillations. Let us define the following
critical values

K∗

1 =
k5

k5 + k6
, K∗

2 =
k1

k1 + k2
, K∗

3 =
k3

k3 + k4
.

For the NN-oscillator, we define the two additional critical values

K∗

4,a =
k1

k1 + k2 + k7
, K∗

4,b =
k1

k1 + k7

and for the PN-oscillator, we define

K∗

4 =
k1 + k7

k1 + k2 + k7
.

Each critical value is the ratio of the rate constants of the reaction kinetics
with and without interactions. We find that the conditions for the existence of
an oscillatory regime are determined by the relative location ofKi, i = 1, 2, 3, 4
with the associated critical values K∗

i and with unity (see appendix B.2). More
precisely, for the No-oscillator, oscillations exist when

K∗

1 < K1 < 1,
K∗

2 < K2 < 1,
K∗

3 < K3 < 1.
(14)

For the NN-oscillator, the existence of oscillations is given by the following
non-intersecting sets

K∗

1 < K1 < 1,
K∗

2 < K2 < 1,
K∗

3 < K3 < 1,
K4 > 1,

or

K∗

1 < K1 < 1,
K∗

4,a < K2 < K∗

4,b,

K∗

3 < K3 < 1,
0 < K4 < K∗

4,b.

(15)

For the PN-oscillator, we find

K∗

1 < K1 < 1,
K∗

2 < K2 < 1,
K∗

3 < K3 < 1,
K4 > K∗

4 ,

or
K∗

1 < K1 < 1,
K∗

4 < K2 < 1,
K∗

3 < K3 < 1.
(16)

The projection of the sets (14)-(16) on the (K2,K4) parameter plane is shown
in Fig. 4. An example of a limit cycle together with the corresponding os-
cillatory pattern is plotted in Fig. 5. When one of the inequalities defining
the sets (14), (15) and (16) is violated, a stable fixed point appears (see ap-
pendix B.1) leading to the so-called oscillator death. When K4 > 1, the ad-
ditional self-feedback loop of the NN and PN-oscillator is inactive and the
conditions for the existence of oscillations are identical for all oscillators, i.e.,
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Fig. 4 Locus of existence of stable oscillations in the (K2,K4) parameter space (shaded
grey) for (A) the negative feedback-only oscillator, (B) the negative-plus-negative oscillator
and (C) the positive-plus-negative oscillator. Parameters, Ki, i = 1, 3, satisfied K∗

i < Ki <
1.
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Fig. 5 Oscillations in the piecewise linear negative feedback-only oscillator. A) Limit cycle
in the phase plane. The phase plane is partitioned into rectangular regions delimited by the
switching planes A = K2, B = K3 and C = K1. B) The corresponding trajectories of the
three variables of the model. Parameters are ki = 1, i = 1, . . . , 6 and K1 = 0.6, K2 = 0.7
,K3 = 0.8. The initial condition is (A(0), B(0), C(0)) = (0.5, 0.5, 0.5).
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3.5.1 Remarks on oscillatory activities

The oscillatory patterns that we obtained are expected to be limit cycles, i.e.
periodic trajectories. The main reason is based on the results of Mallet-Paret
and Smith (1990) on smooth monotone feedback systems and its possible gen-
eralization to discontinuous systems: without stable fixed points, the trajecto-
ries of the system approach as t → ∞, either a limit cycle, or a set consisting
of equilibra together with homoclinic and heteroclinic orbits. In particular,
chaotic solutions do not occur. Homoclinic or heteroclinic orbits do not exist
in the studied systems. The proof is trivial for regular fixed points and we
assume that the possible singular fixed points do not support these connecting
orbits. Numerically we only observed limit cycles or fixed points.
We have here only derived sufficient conditions for the existence of oscillatory
patterns. These conditions are necessary if we assume that the existence of a
stable fixed point precludes the existence of stable limit cycles, i.e., bistability
between a fixed point and a limit cycle is ruled out. Many negative cyclic feed-
back systems share this property (Tyson 1975; Hastings 1977; Hastings et al.
1977; Smith 1987; Mallet-Paret and Smith 1990; Müller et al. 2006; and other
references therein) that holds for systems where oscillations occur through a
supercritical Hopf bifurcation, in contrast with the subcritical Hopf bifurcation
that may support bistability. Thus, we have rigorously derived only a subset
of the total oscillatory domain but, numerically, we did not observe bistability.
Additional complications in the analysis are generated by the nature of the flow
on the switching surfaces where singular solutions may exist (Glass and Paster-
nack 1978a, 1978b; Snoussi and Thomas 1993; Mestl et al. 1995a,b). A rigorous
treatment of these trajectories has been initiated by Filippov (1988) and fur-
ther developed in the context of biological systems by Plahte and Kjoglum
(2005) and by Ironi and coworkers (Ironi et al. 2011). Recently, these ap-
proaches have been revisited (Machina et al. 2013) and reformulated in the
complementarity systems framework (Acary et al. 2014). Due to the particular
nature of the systems studied here, there are no oscillatory trajectories with
a sliding part but steady states may lie on a switching surface (see appendix
B.1).

3.5.2 Links with previous work

The idealization of nonlinear functions by an Heaviside-step function to ad-
dress oscillations in biological systems dates back to McKean (1970) and Hast-
ings (1977). The resulting piecewise linear systems have been proposed as a
modeling framework in biology allowing efficient simulations while being an-
alytically tractable. Piecewise linear systems have been introduced for the
study of regulatory networks (Glass and Kaufman 1973; Mest et al. 1995a;
Gouzé and Sari 2002) and have been successfully applied to the qualitative
simulation of genetic networks (de Jong et al. 2003). In this context, earlier
results on the possible oscillatory regimes have been obtained by Glass and
Pasternack (1978a) and extended in subsequent work (Snoussi 1989; Farcot
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and Gouzé 2009, 2010; Lu and Edwards 2010). A common representation of
the dynamics uses the so-called state transition diagram of the system (Glass
and Pasternack 1978a, 1978b). In Fig. 6 we plot the state transition diagram
of the No-oscillator for ki = 1, i = 1, . . . , 6 and Ki = 2/3, i = 1, 2, 3 showing
the existence of a so-called logical cycle (where, for instance, the state 010
corresponds to the configuration A < K2, B > K3 and C < K1). Since there
is no branching point the logical cycle is a cyclic attractor of the system. To

111

010 110

000 100

101001

011

Fig. 6 State transition diagram for the negative feedback-only oscillator where K∗

i < Ki <
1, i = 1, 2, 3. The cyclic attractor is represented by heavy edges.

further compare our analysis with previous works, it is convenient to rewrite
the equations in the following form:

dxi

dt
= αi(X)− γi(X)xi, i = 1, 2, . . . , n, (17)

where X is the boolean vector X = (Θ(x1 − K2), Θ(x2 − K3), . . . , Θ(xn −
K1)), αi(X) denotes the production rate and γi(X) is the relative decay rate.
Formulation (17) is commonly used to describe the dynamics of regulatory
genetic networks (Glass and Pasternack 1978b; Mest et al. 1995a, 1995b).
However, only one threshold per variable is used and thus the PN- and NN-
oscillators cannot be recast in this framework. Moreover, common assumptions
are: (i) that decay rates are identical and (ii) that interactions occur in the
production term, in contrast with the No-oscillator studied here where the
coupling alters the degradation rate

γi(X) = k2i−1 + k2iXi−1,

(we define X0 = Xn) and the production rate is assumed to be constant

αi(X) = k2i−1.

Oscillations are therefore induced by the modulation of the decay rates and
not by the time evolution of production rates. The decay rates are piecewise
constant unlike the vast majority of previous work that uses constant rates and
piecewise constant production terms. Moreover, another significant difference
with previous work on periodic orbits (Glass and Pasternack 1978b; Farcot



16 Arnaud Tonnelier

and Gouzé 2009) is the architecture of the model: each variable inhibits the
production of the next variable unlike systems where each variable activates
the next variable except one (noted xn) which inhibits x1.
The cyclic attractor of the transition graph is closely related to the existence of
an absorbing torus-like region for the smooth system (Buse et al. 2010) which
is linked with the existence of a partition of the state space into regions where
the sign of the flow remains constant. The signature of the dynamics for both
the discontinuous and smooth systems remains the same (Buse et al. 2009):
(110) → (100) → (101) → (001) → (011) → (010) which is remiscent to the
functioning of the ring oscillator in electronics (an odd number of not gate in
series forming a chain).
Finally, a closely related study in term of methodology has been performed by
Matsuoka (1985) in the field of neurosciences. Sufficient conditions for oscilla-
tions in neural networks are derived from stability analysis. Similarly to our
approach, the author uses a step function to idealize the nonlinearities, con-
siders inhibitory connections and focuses on circular architectures. Analytical
expressions on network structure are obtained for a neural system to generate
and sustained oscillations (including chaotic solutions).

3.5.3 Probability of oscillations

A Monte Carlo approach has been used by Tsai and coworkers (Tsai et al.
2008) to explore in the parameter space the domain of existence of stable
limit cycles. They generated random parameter sets for the three different
oscillators and determined by numerical integration of the equations whether
oscillatory regimes are observed. One of the goals of this paper is to provide
an analytical understanding of the previous results numerically obtained (see
Fig. 4 in Tsai et al. 2008). On the other hand, the probability of oscillations
gives a quantitative assessment of the robustness of oscillations.
In the limit ni → ∞ we have obtained in the previous section the domain of
existence of oscillatory activities. In this section, we will derive analytically
the probability of oscillations for the different oscillator models.
Negative feedback-only oscillator. Let PNo be the probability of the No-oscillator
oscillating. We have

PNo =
∏

i=1,2,3

P (K∗

i < Ki < 1),

or equivalently

PNo =
∏

i=1,2,3

(1− P (Ki > 1)− P (Ki < K∗

i )) .

To compare with the numerical results obtained in (Tsai et al. 2008) we use
the same assumptions on the parameters of the model: the thresholds, Ki,
i = 1, 2, 3, are random variables that follow continuous uniform distributions
on [0, K̄i] and we noteKi ∼ U(0, K̄i) where (K̄i) are positive constants that we
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assume greater than 1 for simplicity. We also assume that the rate constants
kj , j = 1, . . . , 6 satisfy ki ∼ U(0, k̄i).
We have

P (Ki > 1) = 1−
1

K̄i

. (18)

Using K∗

1 = k5/(k5 + k6), we obtain

P (K1 < K∗

1 ) =
1

K̄1k̄5k̄6

k̄6
∫

0

k̄5
∫

0

x

x+ y
dxdy. (19)

We define

F (x) =
ln(1 + x)

x
(20)

and we calculate

P (K1 < K∗

1 ) =
1

2K̄1

(

F

(

k̄6
k̄5

)

− F

(

k̄5
k̄6

)

+ 1

)

(21)

and similar equations hold for the expressions of P (K2 < K∗

2 ) and P (K3 <
K∗

3 ).
Let (H) be the following assumption: the thresholds (Ki), i = 1, 2, 3, the self-
rate constants (k2i−1) and the coupling rate constants (k2i) have identical and
independent uniform distributions (as in Tsai et al. 2008). We note

(H)







Ki ∼ U(0,K),
k2i−1 ∼ U(0, k)
k2i ∼ U(0, kc)

(22)

where K ≥ 1, k > 0, and kc > 0 where the subscript “c” stands for “coupling”.
The probability of oscillations for the No-oscillator is given by

PNo =
1

8K3

(

1 + F (rc)− F

(

1

rc

))3

(23)

where rc is the ratio of the maximal value of the self-rate constant over the
maximal value of the coupling rate constant, i.e. rc = k/kc. Probability (23)
is maximum when rc → 0, and, for small rc values, we derive the following
asymptotic expansion:

PNo =
1

K3

(

1−
3

4
rc +

3

2
rc ln rc

)

+ rcǫ(rc), (24)

where ǫ(rc) → 0 as rc → 0. For parameters used in (Tsai et al. 2008) (see
appendix C) we find PNo = 0.01446. Approximation (24) gives PNo = 0.01443
and if we keep only the first term of the expansion we find PNo = 0.01562.
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In (Tsai et al. 2008) the value of k5 has been fixed to 1 and therefore K∗

1 =
(1 + k6)

−1. Expression (19) becomes

P (K1 < K∗

1 ) =
1

K̄1k̄6

k̄6
∫

0

dy

1 + y

which gives

P (K1 < K∗

1 ) =
1

K̄1
F (k̄6)

and we find P (K1 < K∗

1 ) = 1.72 10−3 (instead of P (K1 < K∗

1 ) = 6.39 10−3

when k5 ∼ U(0, k)) that yields PNo = 0.0147. It can be seen that the proba-
bility is poorly modified by the distribution of the random variable k5. Indeed,
parameter k5 acts on PNo through the critical parameter K∗

1 but does not
affect significantly its distribution. As a consequence, the influence of the k5
distribution on PNo is weak.
Negative-plus-negative oscillator. For the NN-oscillator, we assume that the
parameters of the self-feedback loop satisfy k7 ∼ U(0, k̄7) and K4 ∼ U(0, K̄4).
From (15) the probability of oscillations for the NN-oscillator is given by

PNN = PNoP (K4 > 1)

+P (K∗

1 < K1 < 1)P (K∗

4,a < K2 < K∗

4,b)P (K∗

3 < K3 < 1)P (K4 < K∗

4,b).

Both probabilities P (K∗

1 < K1 < 1) and P (K∗

3 < K3 < 1) have been previ-
ously calculated analytically (see 18 and 21). We have P (K4 > 1) = 1− 1/K4

and both probabilities, P (K4 < K∗

4,b) and P (K2 < K∗

4,b), are given by (21)

substituting k̄7/k̄1 to k̄6/k̄5 and using K̄4 and K̄2, respectively, instead of
K̄1. To complete the analytical expression of PNN , it remains to calculate
P (K2 < K∗

4,a). We get

P (K2 < K∗

4,a) =
1

K̄2k̄1k̄2k̄7

k̄1
∫

0

k̄2
∫

0

k̄7
∫

0

x

x+ y + z
dxdydz (25)

which has an analytical expression given in appendix B.3 (Eq. (33)).
Assuming that (H) holds, we obtain

PNN = PNo

(

1−
1

K

)

+
1

16K4

(

1− F

(

1

rc

)

+ F (rc)

)2(

1 + F

(

1

rs

)

− F (rs)

)

×

(

1 + F

(

1

rs

)

− F (rs)− 2KINN

)
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where INN is the integral in the right-hand side of (25) and rs = k/k̄7 measures
the strength of the self-feedback loop. Taking the limit rc → 0, we have INN →
0, which yields

PNN =
1

K3

(

1−
1

K

)

+
1

4K4

(

1 + F

(

1

rs

)

− F (rs)

)2

+ ǫ(rc). (26)

To compare with the No-oscillator, we calculate the zero-order expansion of
the ratio of probabilities

PNN

PNo

= 1−
1

K
+

1

4K

(

1 + F

(

1

rs

)

− F (rs)

)2

for small rc values. The ratio is maximum when rs → ∞ and we have PNN/PNo →
1, corresponding to the case where k7 → 0, i.e., the self-feedback is inactivated
and the two oscillators coincide. The minimum is reached for rs → 0 (strong
self-feedback) and we have PNN/PNo → 1 − 1/K. Expression (26) has been
derived assuming rc/rs → 0 and therefore we only capture the limiting regime
rc → 0, rs → 0, and rc/rs → 0, i.e., the coupling strength remains greater (of
at least one order) than the self-feedback strength.
For a strong self-feedback and a strong coupling, both of the same order, we
consider rc = rs = r ≪ 1, and, from the complete expression of PNN , we
calculate

PNN =
1

K3

(

1−
1

K

)

+ ǫ(r) (27)

which coincides with the asymptotic development (26) when rs → 0.
For parameters used in (Tsai et al. 2008) (see appendix (C)), we find PNN =
0.0109 using the exact analytical expression. Asymptotic expansion (26) gives
PNN = 0.0118. In the so-called “strong positive feedback” case, i.e., rc = rs =
0.01, we find PNN = 0.0108 and approximation (27) gives 0.0117.
Positive-plus-negative oscillator.As for the NN-oscillator, we take k7 ∼ U(0, k̄7)
and K4 ∼ U(0, K̄4). From (16) the probability of oscillations for the PN-
oscillator is given by

PPN = PNoP (K4 > K∗

4 )

+P (K∗

1 < K1 < 1)P (K∗

4 < K2 < 1)P (K∗

3 < K3 < 1)P (K4 < K∗

4 ).

All the probabilities occuring in the expression of PPN have been calculated
analytically hereinabove except P (K4 < K∗

4 ) and P (K2 < K∗

4 ). We have

P (K4 < K∗

4 ) =
1

K̄4k̄1k̄2k̄7

k̄1
∫

0

k̄2
∫

0

k̄7
∫

0

x+ z

x+ y + z
dxdydz

which can be rewritten as

P (K4 < K∗

4 ) =
1

K̄4
− IPN



20 Arnaud Tonnelier

where

IPN =
1

K̄4k̄1k̄2k̄7

k̄1
∫

0

k̄2
∫

0

k̄7
∫

0

y

x+ y + z
dxdydz

has been previously calculated analytically (from Eq. 25, switching k2 and k1).
A similar expression holds for P (K2 < K∗

4 ).
Assuming that (H) holds, we calculate

PPN = PNo

(

1−
1

K
+ IPN

)

+
1

4K2

(

1 + F (rc)− F

(

1

rc

))2

IPN

(

1

K
− IPN

)

.

Taking the limit rc → 0 we get IPN → 1/K and we obtain

PPN =
1

K3
+ ǫ(rc) (28)

that yields PNP /PNo → 1. The limit does not depend on rs unlike the NN-
oscillator. For a strong negative coupling and a strong self-feedback, we note
r = rc = rs → 0. We find IPN → 1/(2K) and we calculate

PPN =
1

K3

(

1−
1

4K

)

+ ǫ(r) (29)

that is lower than the limit (28) obtained as rc → 0 and rs fixed.
ForK = 4, rc = 0.01 and rs = 0.1, we find PPN = 0.01438 using the exact ana-
lytical expression and we find PPN = 0.01562 using (28). When rc = rs = 0.01,
i.e. strong coupling and strong self-feedback, we have PPN = 0.01356 and ap-
proximation (29) gives 0.01367.
Probabilities of oscillations as a function of the coupling ratio rc are plotted
Fig. 7 for the three oscillators. Different values for the self-feedback ratio are
used. Probability of oscillations for the different models decreases with rc sug-
gesting that strong negative coupling facilitate oscillations. The addition of a
negative self-feedback reduces the chance to oscillate whereas a moderate pos-
itive self-feedback does not modify significantly the probability of oscillations
as shown in Fig. 8. The plot (Fig. 8) also indicates that, for the No-oscillator
and NN-oscillator, the high-cooperativity regime gives an upper approxima-
tion of the probability of oscillations comparing to the smooth case whereas a
lower approximation is obtained for the PN-oscillator. The effect of a negative
or a positive self-feedback loop is illustrated in detail Fig. 9 where the proba-
bility is plotted as a function of rs for different rc values. It is shown that the
probability of oscillations is an increasing function of rs and crucially depends
on the coupling ratio rc. As the self-feedback ratio rs increases a sigmoid-type
transition occurs from a low-probability level to a higher probability level. The
transitions for the PN- and NN-oscillators are compared in Fig. 10. The high-
probability level is reached when rs → +∞ (weak self-feedback). This level
can be maintained for a large range of rs values when the self-feedback loop
is positive. However, when rc ≫ 1 the difference induced by the nature of the
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Fig. 7 Log-log plot of the percentage of parameter sets that yield stable oscillations as
a function of the coupling ratio, rc = k/kc, for the negative feedback-only oscillator (left
panel), negative-plus-negative oscillator (middle panel) and positive-plus-negative oscillator
(right panel). For the two last oscillators, the percentage is computed for different values
of the self-feedback ratio rs = k/k̄7. To avoid heavy notation the axes are labeled as ’u’
instead of ’log(u)’ where u = rc for the x-axis and u is the percentage of parameter sets for
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Fig. 8 Percentage of parameter sets that yield stable oscillations. Each group is for an oscil-
lator: the negative feedback-only oscillator (left group), the negative-plus-negative oscillator
(middle group) and the positive-plus-negative oscillator (right group). The black bar is for
the high cooperativity limit (HCL) with a coupling ratio rc = 0.01 and a self-feedback ratio
rs = 0.1. The middle bar represents the maximum probability obtained as the coupling ratio
rc tends towards 0 (strong coupling). The right bar represents the result of the numerical
investigations in the smooth case.

self-feedback connection vanishes and the probability of oscillations becomes
negligible.
The strong coupling regime (rc ≪ 1) is related to the fast-slow repressilator
previously discussed and is revealed to be the configuration that maximizes
the chance to function in an oscillatory regime. Moreover, when the strength
of the self-feedback is also strong, we found, for rs = rc ≪ 1,

PNN =
1

K3

(

1−
1

K

)

,

PPN =
1

K3

(

1−
1

4K

)
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Fig. 10 Log-log plot of the percentage of parameter sets that yield stable oscillations as a
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plus-negative oscillator is compared with the positive-plus-negative oscillator for different
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which has PNN = 33/44 ≈ 0.1055 and PPN = 3/4 as a maximum when
K = 4/3 and K = 1, respectively.

3.5.4 Helmholtz decomposition of the piecewise linear oscillators

In the HCL, the functions (6) and (7) can be simplified as follows:

S
[1]
i (x) = (x−Ki)Θ(x−Ki),

S
[2]
i (x) =

1

2
(x−Ki)

2Θ(x−Ki)

and the scalar potential (9) can be rewritten as quadratic function combined
with step functions. It is straightforward to show that the potential functions of
the oscillators admit a global minimim. Oscillations are therefore generated by
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a balance between an attracting fixed point where the gradient part vanishes
and a rotating part derived from the potential vector

G(A,B,C) =





k6C(B −K3)Θ(B −K3)
k2A(C −K1)Θ(C −K1)
k4B(A−K2)Θ(A−K2)



 .

For the No-oscillator and for parameters satisfying (14), the minimum of the
potential function is given by

(Am, Bm, Cm) =

(

k1 + k4K2

k1 + k4
,
k3 +K3k6
k3 + k6

,
k5 +K1k2
k5 + k2

)

.

If Ki > 1, the corresponding minimum is 1. Therefore, the necessary condition
for the existence of a limit cycle Ki < 1 can be reformulated as: the minimum
point of the potential energy has to be greater than the median effective con-
centration (component by component).
For the NN-oscillator, the additional term in the potential energy can be
rewritten as

φ̃NN (A) =
k7
2
(A2 −K2

4 )Θ(A−K4).

The minimum point remains unchanged if Am < K4 and a sufficient condition
is K4 > 1 corresponding to the upper zone of existence of limit cycles (see Fig.
4B). In this case, the minimum point Am is lower than the median effective
concentration K4 but greater than K2. For the other set of parameter values
yielding oscillations (bottom left part of Fig. 4B), the minimum is given by

Am =
k1 + k4K2

k1 + k4 + k7
,

and Bm, Cm remain unchanged. Thus Am > K2 is equivalent to the necessary
condition K2 < K4,b previously derived (when K4 < 1).
For the PN-oscillator, we have

φ̃PN (A) =
k7
2
(A−K4)(A+K4 − 2)Θ(A−K4).

The minimum stays unchanged if Am < K4, otherwise the minimum becomes

Am =
k1 + k7 + k4K2

k1 + k4 + k7
.

In both cases Am > K2 reads K2 < 1.

3.6 The smooth case: numerical analysis of oscillatory regimes

In this section, we will investigate numerically the smooth sigmoidal case and
we will determine the domain of existence of stable oscillations in the param-
eter space together with the size and location of the limit cycles.
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3.6.1 Domain of oscillations

We redid the numerical experiments of Tsai and coworkers (Tsai et al. 2008):
for the different oscillators, we generated random parameter sets (see appendix
C) until we had obtained 500 that gave stable oscillations. The distributions of
parameters (Ki)i=1,...,4 that give oscillations are represented with histograms
shown in Fig. 11A-C for the three different oscillators. Figures 11D, E shows
the distributions in the (K2,K4) plane for the NN- and PN-oscillator and Fig.
11F-H shows the distributions of the Hill coefficients. Figure 11 indicates that

0 1 3 4
0

20

40

60

0 1 3 4
0

20

40

60

0 1 3 4
0

20

40

60

Negative only

K
2

K
3K

1
0 1 3 4

0

20

40

60

0 1 3 4
0

20

40

60

0 1 3 4
0

20

40

60

0 1 3 4
0

20

40

60

Negative − Negative

K
1

K
2 K

3
K

4
0 1 3 4

0

20

40

60

0 1 3 4
0

20

40

60

0 1 3 4
0

20

40

60

0 1 3 4
0

20

40

60

Positive − Negative

K
2

K
3

K
1

K
4

A B C

0 1 2 3 4
0

1

2

3

4
Negative − Negative

K
2

K
4

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4
Positive − Negative

K
4

K
2

D E

0 2 4
0

10

20

30

40

50

0 2 4
0

10

20

30

40

50

0 2 4
0

10

20

30

40

50

Negative only

n
1

n
2

n
3

0 2 4
0

10

20

30

40

50

0 2 4
0

10

20

30

40

50

0 2 4
0

10

20

30

40

50

0 2 4
0

10

20

30

40

50

Negative − Negative

n
1

n
2

n
3

n
4

0 2 4
0

10

20

30

40

50

0 2 4
0

10

20

30

40

50

0 2 4
0

10

20

30

40

50

0 2 4
0

10

20

30

40

50

n
4

n
1

Positive − Negative

n
2

n
3

F G H

Fig. 11 Distributions of parameters leading to oscillations for the different oscillator models.
A Histograms of K1, K2 K3 for the negative feedback-only oscillator and of K1, K2, K3, K4

for B the negative-plus-negative oscillator and C the positive-plus-negative oscillator. The
histograms are computed for 500 parameter sets that gave oscillations for each oscillator.
The projections of the distributions in the (K2,K4) parameter space are shown panel D
and E for the negative-plus-negative oscillator and for the positive-plus-negative oscillator,
respectively. Histograms of the distributions of the Hill coefficients, (ni)i=1,...,4, are shown
panels F-H (models as for A-C respectively).

there is no significant difference in the distribution of parameters between the
No-oscillator and the NN-oscillator. The nonsymmetric distribution of param-
eters (Ki)i=1,2,3 observed for the No-oscillator is only due to the fact that k5
has been fixed to 1. The histograms of the median effective concentrations
are peaked near a value slightly less than 1 (reminiscent to the condition for
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oscillations Ki < 1 obtained for the step-like coupling) whereas the Hill co-
efficients are mainly located at large values. Therefore, a high cooperativity
facilitates oscillatory activities and explained the upper approximation of the
probability of oscillations obtained when ni ≫ 1. The existence of a positive
self-feedback loop makes more uniform the distributions of parameters indi-
cating weak constraints on parameters for limit cycle existence. Parameter
K4 of the NN-oscillator has to be large (greater than 1) suggesting that the
additional negative self-feedback loop is preferentially inactivated during oscil-
lations whereas the positive loop plays an enhancing role in oscillatory regimes
(K4-histogram peaks for a value less than 1). For the PN-oscillator, a local
peak of the n4-histogram occurs close to n4 = 2 suggesting that moderate n4

values also facilitates oscillations and therefore explains why the probability
of oscillations in the HCL gives a lower approximation of the corresponding
probability for n4 finite (see Fig.8).

3.6.2 Location and size of limit cycles

In order to assess the location and the size of the limit cycles, we compute
for the three different oscillators and for each variable of the model: (i) the

mean value X̄ = 1/T
∫ T

0
X(t)dt for X = A(t), B(t) or C(t) and (ii) the peak

amplitude |X| = maxX(t) − minX(t) where (A(t), B(t), C(t)) is the limit
cycle solution and T the period of the oscillations. Results are shown in Fig.
12. It can be seen that the PN-oscillator supports a larger variability in the
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Fig. 12 Plots of the peak amplitude as a function of the mean location of the limit cycles
for the three different oscillators. The first row is for the oscillator without self feedback, the
second one is for the negative-plus-negative oscillator and the third one is for the positive-
plus-negative oscillator. The left column is for the A variable, the middle one is for B and
the right one is for C. A different scale of the vertical axis has been used for the positive-
plus-negative oscillator.
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amplitude and location of its limit cycle whereas the No-oscillator and NN-
oscillator exhibit similar properties. This is also illustrated in Fig. 13 where
some limit cycles are plotted in the phase space. A larger filling is obtained for
the PN-oscillator. Results suggest that the addition of a positive self-feedback
loop produces a higher variability and thus enhances the tunability of the
system.
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Fig. 13 Plots of the limit cycles in the state space (250 limit cycles have been plotted) for
the negative feedback-only oscillator (left), the negative-plus-negative oscillator (middle)
and positive-plus-negative oscillator (right).

3.7 A generalized repressilator-type model

The core pathway motif that underpins sustained oscillations may involve
more than three components. A generalization of the cyclic biochemical circuit
to an arbitrary number N of components sequenced in series, schematically
represented by x1 ⊣ x2 ⊣ . . . ⊣ xN ⊣ x1, is given by:

dxi

dt
= k2i−1(1− xi)− k2ixiSi(xi−1), for i = 1, . . . , N,

where xi is the dimensionless concentration of the chemical species i and we
define x0 = xN making the system of equations into a cycle. Parameters k2i−1

and k2i are kinetic constants, Ki are the dissociation constants, and Si are the
sigmoidal functions given by (3). Here, we restrict our attention to a network
without self-feedback loop. Each species is repressed (inhibited) by the species
immediately preceding in the loop. The network architecture is based on the
successive inhibition of the chemical species and follows the design principles
of the repressilator. A similar but different generalized model of repressilator-
type has been proposed and studied in (Müller et al. 2006).
For a switch-like coupling obtained in the limit of large Hill coefficients, the
equations become

dxi

dt
= k2i−1(1− xi)− k2ixiΘ(xi−1 −Ki), for i = 1, . . . , N.
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Shifting the origin to the point of intersection of all thresholds, the system
could be rewritten as

dxi

dt
= ai(xi)− bi(xi)sgn(xi−1), for i = 1, . . . , N,

where ai(x) = k2i−1− (k2i−1+k2i/2)(x+Ki+1), bi(x) = k2i/2(x+Ki+1), sgn
is the sign function, and we set KN+1 = K1.
An analysis (not shown) similar to the one performed for the three-component
oscillator gives

– if N is odd, oscillatory regimes are obtained for

K∗

i < Ki < 1, i = 2, . . . , N where

K∗

i =
k2i−3

k2i−3 + k2i−2
, (30)

where k0 = k2N and k−1 = k2N−1.
– if N is even, the network admits at least one stable fixed point. In particu-

lar, for parameters belonging to the domain of periodic behavior obtained
for the negative feedback system, i.e., (30), it can be shown that the net-
work exhibits bistability between the two stable steady states

(1,K∗

3 , 1, . . . ,K
∗

N−1, 1,K
∗

1 ) and (K∗

2 , 1,K
∗

4 , . . . , 1,K
∗

N , 1)

This situation is similar to the one encountered for the two-component
system where it is easy to see that (1,K∗

1 ) and (K∗

2 , 1) are two stable fixed
points that coexist if and only if K∗

1 < K1 < 1 and K∗

2 < K2 < 1.

The qualitative difference in the dynamics of cyclic feedback systems with an
odd or an even number of elements in the cycle has already been pointed out
by Fraser and Tiwari (1974), studied by Smith (1987), and subsequently in
(Mallet-Paret and Smith 1990; Müller et al. 2006). It has been shown that
this difference mainly manifests for strong nonlinearities whereas for weak
nonlinearities the number of molecules involved in the loop does not play a
crucial role in the dynamics. An even number of negative interactions canceled
each other and the network essentially acts as a positive feedback system. The
fundamental difference between both networks is related to the competitive
nature of negative feedback systems whereas positive feedback systems are of
cooperative and irreducible nature in the sense of Hirsch (1982, 1985). For
cooperative systems, almost all trajectories tend to a steady state that always
exists for N even.
For an odd number of nodes and for uniformly distributed parameters, i.e.,
Ki ∼ U(0, K̄i), i = 1, . . . , N and ki ∼ U(0, k̄i), i = 1, . . . , 2N , the probability
of oscillations is given by

PNo =
N
∏

1

1

2K̄i

(

1− F

(

k̄2i−2

k̄2i−3

)

+ F

(

k̄2i−3

k̄2i−2

))
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where we define k̄0 = k̄2N and k̄−1 = k̄2N−1. The function F (x) is given by
(20). For dissociation constants with identical maximal values, K̄i = K, and
for identical ratios of maximum rate constants, rc = k̄2i−1/k̄2i, we obtain

PNo =
1

2NKN

(

1 + F (rc)− F

(

1

rc

))N

. (31)

Probability (31) is represented in Fig. 14A as a function of rc for different
N values. In the limit of a strong coupling (or weak internal dynamics), i.e.
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Fig. 14 A. Log-log plot of the percentage of parameters leading to oscillation as a function
of the coupling ratio rc for different lengths of the negative feedback oscillator. Probabilities
obtained for odd N values from N = 3 (upper) to N = 19 (lower) are depicted. We used
K = 2. Same labeling convention as in Fig. 7. B. Oscillations in a circular negative feedback
system of N = 19 nodes. Parameters Ki, k2i and k2i are uniformly distributed on (0, 1),
(0, 100) and (0, 1), respectively (rc = 0.01). Activity of elements i = 1, 7, 14 is represented
(starting from a random initial condition in [0, 1]N ).

rc ≪ 1, we obtain the following asymptotic expansion of the probability of
oscillations

PNo =
1

KN
+

Nrc
2KN

ln(rc) + rcO(1). (32)

Some typical trajectories of network elements are shown Fig.14B for a net-
work of N = 19 nodes with a weak rc value. The activity is characterized by
sequential successions of active and inactive states. Probability (31) vanishes
as N becomes large except for K = 1 and for sufficiently small rc values.
More precisely, a non-zero probability is reached if and only if rcN ≪ 1, i.e.
rc has to be sufficiently small with respect to N , or equivalently a necessary
and sufficient condition is Nrβc bounded ∀β < 1.

4 Discussion

In the present work, based on a mathematical and numerical analysis of
repressilator-type oscillators, we corroborated and characterized some obser-
vations already made or proved in various biological systems. (i) Oscillations
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are promoted by negative feedbacks. (ii) Strong nonlinearities facilitate oscil-
lations: the more switch-like are the interactions, the easier it is to generate
oscillations. (iii) A qualitative difference in the dynamics of monotone cyclic
feedback systems occurs between an even or an odd number of components in
the cycle. (iv) A strong inhibitory coupling induces a fast-slow dynamics that
maximizes the probability of oscillations. In this regime, the dynamics is char-
acterized by sequential switches from active to inactive states and vice-versa.
(v) Small molecular circuits are suitable candidates to design robust biologi-
cal oscillators. Moreover, as the length N of the feedback loop increases, the
coupling strength 1/rc has to increase in order to maintain the product Nrc
sufficiently small. Therefore, the claim “the longer the loop, the easier it is
to produce oscillations” (see, for instance Ferrell et al. 2011) is not fully cor-
roborated by our study. However we used here a restrictive framework where
interactions are step-like, which seems unlikely in many biological systems. It
is suspected that a longer cycle allows to weaken the stiffness of nonlinearities
(Smith 1987) and a balance between “moderate” Hill coefficients, sufficiently
long feedback loop and strong inhibitory coupling should be reached to maxi-
mize the chance of oscillations.
Some features of the smooth oscillators are preserved by the step-like coupling.
In particular, an additional negative feedback severely reduces the possibility
of oscillations of cyclic negative feedback systems. However, some discrepan-
cies are observed: comparing to the smooth case, a step-like coupling promotes
oscillations except for the PN-oscillator where oscillatory regimes appear at
moderate values of the Hill coefficients and therefore an additional positive
feedback does not enhance oscillations in the sharp-coupling case, unlike the
smooth case. Moreover, we have shown that the PN-oscillator allows a large
variability in the amplitude of oscillations. Surprisingly, it has been reported in
the smooth case (Tsai et al. 2008) that a positive feedback provides a tunable
frequency and constant amplitude. This counterintuitive result is probably due
to a distinct role played by the parameters of the system: the amplitude and
the frequency of oscillations can be tuned separately varying different param-
eters.
Adding a negative self-feedback loop in a negative cyclic feedback oscillator
does not present any new advantages whereas a moderate positive self-feedback
weakens the constraints on parameters in the oscillatory regime and improves
the versatility of the system. Tunability induced by positive loops has already
been observed in molecular systems (Tsai et al. 2008; López-Caamal et al.
2013) and is essential in cases where cellular processes require a tight reg-
ulation. The additional self-feedback loop affects the structure of the flow of
the three components system and modifies the Helmholtz decomposition of the
oscillators. The divergence-free part of the decomposition, analog to a circulat-
ing density responsible for a vortex-like behavior, remains unchanged but the
gradient part that minimizes the corresponding potential energy is affected.
A positive self-feedback loop increases the divergence of the system and facil-
itates oscillations whereas a negative self-feedback loop tends to stabilize the
system on a steady state precluding oscillations.
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There are various ways of taking into account the fluctuations inherent in
real systems. Two different frameworks have been used to address the issue
of randomness and limit cycles: random environments (Lin and Kahn 1977)
and uncertain environnements (Falkenburg 1979). Here we considered random
parameters but the presence of a stochastic term in the nonlinear differen-
tial system may induce different properties. A stochastic switching between
two stable states has been observed in three-node genetic regulatory networks
(Li et al. 2012). It has been shown that the unstable periodic solution of
repressilator-type networks with an even number of nodes can be stabilized
with random walk noise (Strelkowa and Barahona 2010). This suggests that
oscillations are more widespread than expected by the study of the determinis-
tic system and the probability of oscillations may be enhanced by a Brownian
noise.
Determining the conditions for robust oscillations has attracted a renewal of
interest with the emergence of synthetic biology (Elowitz and Leibler 2000;
Stricker et al. 2008; Gardner et al. 2000). It has become possible to construct
in the laboratory a biological system according to “design specifications” de-
rived from analytical and/or computational approaches. Networks of interact-
ing species (mainly gene networks) are shaped in order to perform a given
function, and due to its fundamental role in cellular processes, oscillations
have attracted much attention. The calculation of the probability of oscilla-
tions when fluctuating parameters are considered is of particular interest in
this engineering-based approach. Despite the fact that parameters of a real
biological system are probably not uniformly distributed with independent
distribution, our approach suggests a way to tackle this issue and, as far as we
know, we obtained for the first time a close form expression for the probability
of oscillations in a nonlinear dynamical system. Without specific knowledge on
the distribution of parameters, the uniform probability distribution is a natu-
ral choice that requires less a priori information on the underlying processes.
However, it has been shown that kinetic rate parameters are more likely to
follow Benford’s law (Grandison and Morris 2008) and the study of the prob-
ability of oscillations for log-uniform distributions is desirable.

A Appendix: Jacobian matrix of the smooth system

For the negative feedback-only oscillator, the Jacobian matrix is given by

JNo =













−k1 − k2S1(C) 0 −
k2n1K

n1

1
Cn1−1

(K
n1

1
+Cn1 )2

A

−
k4n2K

n2

2
An2−1

(K
n2

2
+An2 )2

B −k3 − k4S2(A) 0

0 −
k6n3K

n3

3
Bn3−1

(K
n3

3
+Bn3 )2

C −k5 − k6S3(B)













.

where it is easy to see that each term is negative. For the NN and PN oscillators, only the
term in the first row and first column differs and we have

(JNN )11 = −k1 − k2S1(C)− k7
(n4 + 1)Kn4

4 An4 +A2n4

(Kn4

4 +An4 )2
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that is always negative and

(JPN )11 = −k1 − k2S1(C) + k7
n4K

n4

4 An4−1 − (n4 + 1)Kn4

4 An4 −A2n4

(Kn4

4 +An4 )2

which has a positive term. Other components are given by (JNN )ij = (JPN )ij = (JNo)ij
for (i, j) 6= (1, 1)

B Appendix: piecewise linear oscillators

Our analysis is based on the observation that each parameter Ki defines a threshold plane
dividing the phase space into rectangular boxes, the so-called regulatory domains. Inside
each regulatory domain, the system is linear and the analysis is straightforward.

B.1 Fixed points

The three different oscillators may admit fixed points depending on parameter values. Due
to the discontinuity of the vector field, it is convenient to distinguish between two classes of
fixed points: “regular” steady points and “singular” steady points. Regular steady points are
defined following the well-established theory of smooth dynamical systems. Singular steady
states are characterized by the fact that at least one of its components lies on a threshold
and thus require a specific treatment.
Let Xss = (Ass, Bss, Css) be a fixed point. The regular fixed points of the No-oscillator and
the corresponding conditions of existence are given by

Ass = 1 for Css < K1 and Ass = K∗

2 otherwise,
Bss = 1 for Ass < K2 and Bss = K∗

3 otherwise,
Css = 1 for Bss < K3 and Css = K∗

1 otherwise.
.

It is easy to show that when a regular fixed point exists it is stable. Each species, A, B and
C, can formally admit two different values at its resting state and thus we can distinguish
between eight analytically different regular fixed points. The different possible steady states
are the so-called focal points (Glass and J.S. Pasternack 1978a, 1978B; Mestl et al. 1995a,b)
of the associated regulatory domain. If the focal point is inside its regulatory domain, it is
a stable steady state of the system. Otherwise the system will leave the current regulatory
domain and enter a new one that may have a different focal point.
The steady state Xss is a singular fixed point if 0 ∈ F(Xss) where F is the multi-valued
function obtained when the Heaviside function of the component value that lies on its
threshold is allowed to vary in (0, 1). For the No-oscillator, the only singular fixed point
is (K2,K3,K1) that exists when a solution (ΘA, ΘB , ΘC) ∈ [0, 1]3 can be found to the
following system:

k1(1−K3)− k2K3ΘC = 0, k3(1−K3)− k2K3ΘA = 0, k5(1−K3)− k2K3ΘB = 0.

We obtain the conditions

K∗

1 < K1 < 1, K∗

2 < K2 < 1,K∗

3 < K3 < 1,

that (as we will show hereinafter) coincide with the conditions for oscillations. The state
(K2,K3,K1) is the so-called loop characteristic state ((68)) of the No-oscillator. We show
in appendix B.4 that this singular fixed point is always unstable.
For the NN-oscillator, the values and the conditions for the existence of regular fixed points
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are identical to those obtained in the No-oscillator model for the two components Bss and
Css. For Ass we get

Ass = 1 for Css < K1 and K4 > 1,
Ass = K∗

4,b for Css < K1 and K4 < K∗

4,b,

Ass = K∗

2 for Css > K1 and K4 > K∗

2 ,
Ass = K∗

4,a for Css > K1 and K4 < K∗

4,a,

and, as for the No-oscillator, a regular fixed point, when it exists, is stable. Singular steady
points with at least one component on a discontinuity plane may exist. As previously the
loop characteristic state (K2,K3,K1) is a singular steady state, and for K4 > K2, the
conditions of existence remain the same than for the No-oscillator. If K4 < K2 conditions
of existence become

K∗

1 < K1 < 1, K∗

4,a < K2 < K∗

4,b, K∗

3 < K3 < 1.

We show in appendix B.4 that this singular fixed point is always unstable. Moreover, an
additional singular fixed point may occur on the discontinuity plane Ass = K4. This sin-
gular fixed point is induced by the additional self-feedback loop and defines a second loop
characteristic state of the oscillator. It is easy to show that this steady state exists and
is stable for K∗

4,b < K4 < 1 and Css < K1 or for K∗

4,a < K4 < 1 and Css > K1. The

A-component of the steady-state, Ass, can formally take five different values, so that we
distinguish between twenty analytically different stable fixed points for the NN-oscillator.
For the PN-oscillator, the steady state values Bss and Css and the corresponding condi-
tions of existence remain the same. For Ass we obtain the following values and conditions
of existence

Ass = 1 for Css < K1,
Ass = K∗

2 for Css > K1 and K4 > K∗

2 ,
Ass = K∗

4 for Css > K1 and K4 < K∗

4 .

The singular fixed point (K2,K3,K1) when it exists is unstable (see appendix B.4). More-
over, as for the NN-oscillator, the additional self-feedback loop may induce the existence
of a singular fixed point on the discontinuity plane Ass = K4. It is easy to show that this
singular fixed point is always unstable. To sum up, the PN-oscillator has twelve different
forms of stable steady states. It is worth noting that for Css > K1 the two stable fixed
points Ass = K∗

2 and Ass = K∗

4 can coexist when K∗

2 < K4 < K∗

4 .
To summarize, when a regular fixed point exists, it is stable. In addition, singular fixed
points may exist but are unstable except the singular fixed point of the NN-oscillator sat-
isfying Ass = K4. It is worth mentioning that, for a given set of parameters, a stable fixed
point, when it exists, is unique except for the PN-oscillator where two stable fixed points
may coexist.

B.2 Oscillations

Based on the fixed points analysis done in Appendix B.1 it is possible to derive analytically
the conditions on parameters of the system for the existence of stable fixed points. These
conditions are monitored by the relative location between Ki, the unity, and the associated
critical value K∗

i . For instance, for the No-oscillator, it is easy to check that when K1 < K∗

1 ,
K2 > K∗

2 and K3 < 1, the point (K∗

2 , 1,K
∗

1 ) is a stable fixed point. It is thus possible
to derive exactly the sets of parameters for which there are no stable fixed points taking
the complementary of the sets for which stable fixed points exist. These sets are given by
(14), (15) and (16) for the three different oscillators, respectively. Since a trajectory cannot
escape from the box D = [0, 1]3, an oscillatory pattern exists inside the box. It is suspected
that this oscillatory activity corresponds to a limit cycle (see the discussion in the section
“Remarks on the oscillatory activities”).
It is worth noting that (i) the limit cycles do not occur through the destabilization of a
fixed point undergoing an Andronov-Hopf bifurcation and therefore we are not limited here
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to small size limit cycles. (ii) Multistability between two stable fixed points exists only for
the PN-oscillator: one fixed point satisfies Ass = K∗

4 and the other Ass = K∗

2 . This is
in agreement with the result stating that positive loops are responsible for multistability
((67)). (iii) When a regular fixed point exists, it is stable and only singular fixed points
can be unstable. In particular, the singular fixed point (K2,K3,K1) may exist for the three
different oscillators and is always unstable. For the NN- and PN-oscillator an additional
singular fixed point may occur on the switching surface A = K4 and can be stable for the
NN-oscillator whereas it is always unstable for the PN-oscillator.
If we discard bistability, the sufficient conditions for oscillations are necessary. However,
it is known that such a bistability-exclusion can be broken by additional interactions that
modify the cyclic nature or the monotonicity of the model and allow for multistability
between a fixed point and a limit cycle, chaotic solutions or dynamics not allowed in R2.
For instance bistability may occur in two-side interaction systems, i.e., there exists j such
that ẋj = fj(xj , xj−1, xj+1) ((48)), but not chaotic solutions (Elkhader, 1992). However,
if the monotonicity property fails then chaotic solutions may appear (Di Cera et l. 1989).
Moreover, a subcritical Hopf bifurcation generating bistability can be obtained in monotone
negative feedback systems with a variable self-feedback loop (Hasty et al., 2002) indicating
that bistability-exclusion probably requires monotonicity conditions on the self-interaction
term. However, bistability often occurs in a narrow region of parameter space (see (Hasty et
al., 2002) for instance) and one can expect that the probability of oscillations derived from
steady state analysis constitutes a good approximation.

B.3 Calculation of P (K2 < K∗

4,a)

We can easely check that

P (K2 < K∗

4,a) =
1

K̄2k̄1k̄2k̄7

(

G(k̄2 + k̄7)−G(k̄7)−G(k̄2) +G(0)
)

(33)

where

G(u) =
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Integrating by parts we obtain
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that completes the analytical expression of P (K2 < K∗

4,a).

Let rc = k1/k2 and rs = k1/k7, analytical calculations give
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B.4 Stability of the origin

For the No-oscillator, the stability of singular steady state (K2,K3,K1) is determined by
the stability of the origin of

ẋ = k1(1−K2 − x)− k2(x+K2)Θ(z),
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ẏ = k3(1−K3 − y)− k4(y +K3)Θ(x),

ż = k5(1−K1 − z)− k6(z +K1)Θ(y).

which is given by the study of the trajectories of the system

ẋ = k1(1−K2)− k2K2Θ(z),

ẏ = k3(1−K3)− k4K3Θ(x),

ż = k5(1−K1)− k6K1Θ(y).

We define

αi = k2i−1(1−Ki+1),

βi = (k2i−1 + k2i)Ki+1 − k2i−1,

for i = 1, 2, 3 where we set here K4 = K1 for convenience. Conditions for the existence of a
singular fixed point at the origin lead to αi > 0 and βi > 0. The dynamics can be rewritten
as

ẋ = α1 if z < 0 and − β1 otherwise,

ẏ = α2 if x < 0 and − β2 otherwise,

ż = α3 if y < 0 and − β3 otherwise.

and we have sgn(ẋ) = −sgn(z), sgn(ẏ) = −sgn(x) and sgn(ż) = −sgn(y). Note that a
similar system is studied in Farcot and Gouzé (2009) but with different assumptions on the
parameters. Here we will show using basic calculus that the “local” system is unstable.
The trajectories make revolutions around the origin and pass many times into the plane
x = 0, intersecting it for y > 0 (and z < 0) and for y < 0 (and z > 0) for one revolution.
After possibly a transient, the sign of the components defining the trajectory will follow the
cycle (+,+,−) → (+,−,−) → (+,−,+) → (−,−,+) → (−,+,+) → (−,+,−) (see Fig. 6
where 1 corresponds to + and 0 to −).
The trajectory of the system defines a mapping of the half plane P0 (x0 = 0, y0 > 0, z0 < 0)
into itself. The solution with initial value x0 = 0, y0 > 0, z0 < 0 lies first in the region (110)
i.e. (x > 0, y > 0, z < 0), where the solution has the form

x(t) = α1t, y(t) = y0 − β2t, z(t) = z0 − β3t.

The trajectory intersects the plane y = 0 at time ta = y0/β2 at the point

xa = α1/β2y0, ya = 0, za = z0 − β3/β2y0,

and enters into the domain 100. Using similar arguments, we compute the different reaching
times, ta, . . . , tf , of the different regions (101, 001, 011, 010 and 110, respectively) together
with the corresponding intersection points. We find that from the point x0 = 0, y0 > 0,
z0 < 0 in P0 the trajectory first goes back into P0 at the point xf = 0, yf , zf where

(
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)

=
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(34)

with
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where we set ui = αi/βi.
Equation (34) defines a 2D-linear mapping. Let λ1 and λ2 be the two associated eigenvalues.
Since we have |λ1|+ |λ2| ≥ |λ1+λ2| = |a11+a22| > 4 then at least one eigenvalue is greater
than 1 in absolute value. Therefore, the origin is unstable. Numerical investigations suggest
than one eigenvalue is large whereas the other is less than one , in absolute value, indicating
a saddle configuration and the existence of a stable manifold associated with the origin.
For the two others oscillators, the NN-oscillator and the PN-oscillator, the situation remains
the same for K4 > K2. When K4 < K2 we define α1,NN = α1 − k7K2 and β1,NN =
β1+k7K2 for the NN-oscillator and α1,PN = α1+k7(1−K2) and β1,PN = β1−k7(1−K2)
for the PN-oscillator. Conditions for the existence of the singular fixed point (K2,K3,K1)
give α1,NN > 0, β1,NN > 0 and α1,PN > 0, β1,PN > 0. Study of stability proceeds along
the same lines than for the No-oscillator and we show that the origin is unstable.

C The random parameter sets

For the numerical simulation of the smooth oscillators, we used the same parameter distri-
butions as in (Tsai et al. 2008). All parameters are dimensionless and (H) holds (see (22))
with:

– K = 4, i.e., we used Ki ∼ U(0, 4), i = 1, 2, 3, 4,
– k = 10, i.e., we used k1, k3 ∼ U(0, 10),
– kc = 1000, i.e., we used k2, k4, k6 ∼ U(0, 1000)

except for k5 that has been fixed to 1. For the NN-oscillator and PN-oscillator, we used
k7 ∼ U(0, 100). Each Hill coefficient follows an uniform distribution over (1, 4).
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4. O. Buse, A. Kuznetsov, and R. Pérez, (2009), Existence of limit cycles in the repressilator
equations, Int. J. Bifurcat. Chaos 19, 4097-4106.
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