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We shed light on the threshold for spike initiation in two-dimensional neuron models. A threshold
criterion that depends on both the membrane voltage and the recovery variable is proposed. This
approach provides a simple and unified framework that accounts for numerous voltage threshold
properties including adaptation, variability and time-dependent dynamics. In addition, neural fea-
tures such as accommodation, inhibition-induced spike, and post-inhibitory (-excitatory) facilitation
are the direct consequences of the existence of a threshold curve. Implications for neural modeling
are also discussed.

I. INTRODUCTION

The dynamics of spiking neurons is characterized by
two distinct regimes monitored by the membrane po-
tential, v, of the neuron: at moderate v values, typi-
cally lower than −55mV , the neuron acts as a linear
filter, while for greater values of the membrane volt-
age (> −40mV ) the dynamics is highly nonlinear and
follows a stereotyped trajectory, almost independent of
the input, that represents an action potential or spike.
At intermediate values, the neuron may switch in both
regimes, depending on its internal state and the input.
This feature defines the so-called neural excitability [1, 2]
and relies on the existence of a threshold effect that is
explicitly described in simple spiking neural models of
integrate-and-fire type by a strict voltage threshold of
the form v = θ where θ is a given voltage value, i.e., the
intermediate regime, −55mV < v < −40mV , is reduced
to a threshold line separating a subthreshold region from
a super-threshold region.
In contrast with standard integrate-and-fire neurons, de-
tailed biophysical models of the Hodgkin-Huxley type
do not have an explicit firing threshold and due to the
continuous nature of the underlying differential system,
there is a continuum of trajectories, from sharp action
potential to small depolarization, making the concept of
threshold ambiguous. However, it has been shown that
the switching to the super-threshold regime occurs in a
narrow range of input values, and a quasi-threshold [3]
effect is observed. This effect is commonly approximated
by a strict voltage threshold [4, 5]. The partition of the
phase space between a subthreshold region and a super-
threshold region is closely related to the separation of
time-scales between a fast action potential, with a time
scale of order 1ms, and a slower subthreshold dynamics
of input integration, of order greater than 10ms. When
the fast dynamics is assumed to be instantaneous, the
spike description is ignored, and the super-threshold dy-
namics is reduced to an instantaneous reset, making the
concept of threshold central in neural modeling as a syn-
thesis of all nonlinear effects.
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Several drawbacks are associated with using a clear-cut
voltage threshold. Properties such as threshold variabil-
ity or threshold dependence upon the spiking activity can
not be adequately described. To overcome these limita-
tions, time-dependent voltage thresholds have been in-
troduced as an ad-hoc description of threshold fluctua-
tions but lack rigorous derivation [6]. Recently, a voltage
threshold equation has been derived from a quasi-static
approximation of a Hodgkin-Huxley type model [7], and
a series of work has revisited the concept of threshold
manifolds in neural models [8–10]. Other threshold de-
scriptions, including stochastic threshold models, have
been introduced recently [11–15].
In this paper, we explore the threshold effect in bidimen-
sional neural models and show that the strict voltage
threshold v = θ [16] provides a poor approximation of
the neural excitability whereas a threshold curve of the
form g(v) = u, where u is a recovery (or adaptation) vari-
able and g a non-monotonic function, accurately captures
voltage threshold properties. Consequences for neural
dynamics and neural modeling are discussed.

II. A THRESHOLD CURVE FOR
BIDIMENSIONAL NEURAL MODELS

Sharp threshold models of neural firing offer an ap-
pealing framework to describe the neural activity and to
analyze the neural dynamics. However, it has been long
observed that the firing threshold is not a fixed number
but rather a manifold [3, 17]. Two well-known situa-
tions clearly illustrate the existence of a threshold mani-
fold that partitions the phase space into two regions. (i)
In type I neural models, where the stable resting state
coexists with a saddle node, the stable manifold of the
saddle point, called the threshold separatrix, is identified
as the locus of threshold phenomena [3, 17, 18]. (ii) In
singularly perturbed systems, the firing threshold can be
fairly well approximated by the middle branch of the N -
shaped v-nullcline [17]. In addition, a close link has been
recently established between the neural excitability and
the existence of canard trajectories [8, 9], emphasizing
the crucial role of the middle branch of the v-nullcline
together with the existence of multiple time scales.
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Here, we explore the concept of threshold in some popu-
lar neural models. For clarity and simplicity, we mainly
consider bidimensional (2D) neural models where the
time-dependent activity of the neuron is described by
the membrane potential, v(t), and an additional variable,
u(t), that accounts for adaptation, recovery processes, or,
more generally, voltage-gated channels dynamics (sodium
channel inactivation or potassium activation). Most of-
ten, the variable u acts as a negative feedback on v.
A well established stimulation paradigm for excitability-
threshold extraction uses an instantaneous voltage
change, i.e., a pulse of zero duration is applied to the
membrane potential equation. For membrane potential
above a critical voltage value, a spike is elicited and the
recorded value defines the fast-depolarization threshold
that may be obtained in-vitro using a short current pulse.
This differs from the slow-depolarization threshold even
though a close link exists between both thresholds [7].
In both cases, the recorded voltage threshold depends on
the state of the neuron at the time of the stimulation,
and we generalize the threshold-extraction method using
an instantaneous shock of all variables. Taking a point
in the phase space as an initial condition, we determine
if a spike is elicited or not. More precisely, we compute
the peak value of the membrane voltage, and a gray-
level is assigned to the result: black regions indicate a
spike and white stands for a small subthreshold response.
Intermediate gray levels are used for intermediate re-
sponses. An arbitrary long time horizon is used to detect
the peak value of the membrane voltage but, in prac-
tice, a maximum is reached in finite time, correspond-
ing to the so-called spike-latency. The response surface
of a linear system would be a grayscale gradient, i.e.,
with a clear distinction of all the intermediate responses,
whereas an idealized on-off neuron model would lead to a
binary black-and-white picture. The response surfaces of
the bidimensional Abbott-Kepler reduction [19, 20], the
Krinsky-Kokoz reduction [1, 21], the FitzHugh-Nagumo
model [22, 23], the Morris-Lecar model [24], the adap-
tive quadratic integrate-and-fire (QIF) model (Izhikevich
model [25]) and the adaptive exponential integrate-and-
fire (EIF) model [26, 27] are plotted in Fig.1. Some char-
acteristic elements are also displayed: the nullclines and
the stable manifold of the saddle fixed point, when it ex-
ists.
The plots clearly show the existence, in the phase plane,
of a tiny region where the peak value of the membrane
potential blows up, delimiting a subthreshold region from
a super-threshold region. This boundary defines a curve
which is poorly approximated by a vertical straight line,
v = θ, but rather by a threshold equation of the form

u = g(v) (1)

where one piece of the g curve is well fitted by the mid-
dle branch of the v nullcline. At hyperpolarized v values,
the threshold curve is flat (Fig. 1C, E, F) or shows a
hump (Fig. 1A, B). For a type I model (Fig. 1E, F), i.e.,
presenting a saddle point, the stable manifold of the sad-
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FIG. 1. Voltage response of bidimensional neural models. The
gray level of a pixel indicates the maximum value reached by
the membrane potential when the initial state of the neu-
ron is where that pixel is located in the phase plane (v, u)
(white is for low-voltage values and black is for high-voltage
values). The corresponding voltage response is shown for (A)
the 2D Abbott-Kepler reduction, (B) the Krinsky-Kokoz re-
duction, (C) the FitzHugh-Nagumo model, (D) the Morris-
Lecar model, (E) the adaptive QIF and (F) the adaptive EIF.
The nullclines are plotted (solid lines) together with the sta-
ble manifold of the saddle point (dashed lines) for the two
last models (almost indistinguishable from the black region
boundary).

dle point achieves a good approximation of the threshold
manifold, corroborating previous results on the charac-
terization of neural excitability. A reasonable choice for
the threshold curve (1) is the sigmoidal curve defined by
the Boltzmann function

g(v) =
a

1 + e−λ(v−θ)
+ b (2)

where b acts, at low v values, as a threshold on the re-
covery variable, θ determines the locus of the transition
of the sigmoidal function, and λ gives the stiffness of the
transition. A strict voltage threshold is retrieved in the
limit λ → ∞. To capture the fold that may occur near
the resting state, a combination of two sigmoidal curves
may be used. In this case, the function g in (1) is not
invertible, and it is not possible to derive a threshold
equation of the form v = h(u). To assess the validity of
the concept of threshold curve and to estimate the qual-
ity of its approximation by Boltzmann functions (2), an
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FIG. 2. Enlargement of the voltage response of (A) the
2D Abbott-Kepler reduction and (B) the FitzHugh-Nagumo
model together with the corresponding threshold-curve ap-
proximation with (B) one or (A) two Boltzmann functions.
The approximation closely matches the boundary between the
spike region (in black) and the small voltage-response region
(almost white). As in Fig. 1, the nullclines are shown.
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FIG. 3. Influence of the DC current on the threshold curve
for (A) the 2D Abbott-Kepler model and (B) the FitzHugh-
Nagumo model. From the bottom up, we used (A) I = 0, 2, 4
µA/cm2 and (B) I = 0, 0.1, 0.2.

enlargement of the voltage response in a relevant area is
displayed in Fig. 2 for the Abbott-Kepler reduction and
the FitzHugh-Nagumo model.

To investigate the dependence of the threshold curve
on the applied constant input current (DC current), we
extract the threshold curve of the bidimensional Abbott-
Kepler model (Fig. 3A) and of the FitzHugh-Nagumo
model (Fig. 3B) for different input values. As can be
seen, the injected DC current does not affect significantly
the threshold curve except at hyperpolarized voltage val-
ues where a vertical shift of the threshold curve, i.e.,
along the u−axis, is observed. In addition, the sensi-
tivity to inhibitory input can be enhanced due to a more
pronounced hump as the DC current increased (Fig. 3A).
Two-dimensional reductions of detailed neural models
rely on the separation of time scales where it is commonly
assumed that the fast dynamics, typically the sodium ac-
tivation, is instantaneous. However, the sodium activa-
tion dynamics has an impact on the voltage trajectory of
the neuron, and the main discrepancy between the orig-
inal model and its reduction arises from the assumption

−80 −60 −40 −20
−70

−65

−60

−55

−50

−45

v (mV)

u
 (

m
V

)

FIG. 4. Influence of the fast-sodium activation on the thresh-
old curve. Projections of the threshold manifold of the three-
dimensionnal Abbott-Kepler reduction in the (v, u) plane for
different values of the sodium activation variablem, m = 0.01,
0.1, 0.2, 0.3 and 0.8 (from right to left).

that the fast time scale is instantaneous; i.e., the activa-
tion of sodium channels follows instantaneously the vari-
ation of the membrane potential [28]. To assess the im-
pact of fast dynamics on the threshold curve, we consider
the three-dimensional Abbott-Kepler reduction obtained
by lumping together the slow variables of the Hodgkin-
Huxley model and retaining the exact sodium activation
dynamics [28]. We compute the threshold manifold in the
three-dimensional state space, and we display in Fig. 4
five different projections (curves) on the (v, u) plane. We
see that, as the sodium activation increased, the thresh-
old curve is progressively shift to the left, i.e., the sen-
sitivity to excitatory input is enhanced. This effect may
be accounted for using θ ← θ + µm in (2) where m is
the sodium activation variable and µ > 0 measures the
sensitivity of the threshold surface to the sodium channel
dynamics.

III. GENERALIZATION AND CONSEQUENCES

Let x = (v, u1, . . . , un) be the vector describing the
neural activity where v is the membrane potential and
0 < ui < 1 are the activation or inactivation variables of
ionic channels. Spikes are generated whenever a thresh-
old condition is fulfilled that can be written in a gen-
eral and abstract setting as G(x)(t) = 0 where G is a
functional taking the trajectory x(s), s ≤ t as an input;
the excitability threshold at time t depends on the past
history of the neuron state variables. Integrate-and-fire
models assume the simplest form of threshold function
where G(x) = v − θ; the firing of a spike is determined
comparing the membrane potential at the present time
to a given fixed value. Based on the observations in the
previous section, we define the following threshold equa-
tion:

g(v(t)) =

n∑
i=1

αiui(t) (3)
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where the weights αi are constants whose sign determines
its influence on the threshold: a negative weight facili-
tates excitation whereas a positive weight decreases the
neural excitability, i.e., the effective voltage threshold is
shifted to the right (at depolarized voltage values).
In the following, we discuss the consequences of the
threshold equation (3) on both neural dynamics and neu-
ral modeling.

A. Adapting Threshold

Let us consider the threshold hyperplane given by

v(t) = θ0 +

n∑
i=1

αiui(t) (4)

obtained from (3) using the threshold function g(v) =
v − θ0, which can be seen as a natural generalization of
the strict voltage criterion used in standard integrate-
and-fire models. Let us assume that each voltage-gated
variable ui follows the v-dependent first-order kinetics

τi(v)u̇i = u∞,i(v)− ui,

for i = 1, . . . , n, where in the subthreshold regime both
functions τi(v) and u∞,i(v) are assumed to be nearly con-
stant and, in the super-threshold regime, the dynamics
of ui is reduced to an instantaneous change ui ← ui+di,
i.e., ion channels rapidly open (or close) at high voltage
values (or equivalently τi(v) � 1 during a spike). Such
spike-induced currents are traditionally used to describe
adaptation or refractoriness.
Let tk be the successive firing times of the neuron. The
relaxation dynamics of ui between firing events combined
with the jump condition at firing times lead to

ui(t) = u∞,i +
∑
k

hi(t− tk), (5)

where

hi(t) = di exp(−t/τi)H(t),

with H is the Heaviside-step function. Using (5), the
threshold hyperplane equation (4) can be rewritten as a
dynamic voltage threshold v(t) = θ(t) where θ(t) is the
time-dependent threshold given by

θ(t) =
∑
k

h(t− tk) + θ̃0, (6)

where

h(t) =
n∑
i=1

αihi(t),

θ̃0 = θ0 +
n∑
i=1

αiu∞,i.

We recover here the multi-timescale adaptive threshold
(MAT) model introduced in [29] as a generalization of

the standard adapting threshold model.
The MAT model is therefore a specific instance of thresh-
old hyperplane models where the number of threshold
time constants is given by the number of voltage-gated
variables playing a role in the threshold hyperplane, the
different time scales of the MAT model are given by the
time constants of the gating variables, and the weights
associated with the time constants are given by the size
of the jump of the related activation (or inactivation)
variables (when the neuron assumes a spike) multiplied
by their weights in the threshold hyperplane equation.
From [29], it is expected that a threshold hyperplane with
two ionic currents, and thus having two distinct time
constants, is sufficient to achieve very good predictive
performances. For identical ionic time constants, i.e., ∀i
τi = τ , the threshold hyperplane is equivalent to the dy-
namic threshold

τ
dθ

dt
= θ̃0 − θ, (7)

with the instantaneous jump θ ← θ +
∑
i αidi each time

a spike is generated.

B. Dependence of the Voltage Threshold Upon the
Subthreshold Activity

The threshold curve, Eq. (3), induces a dependence
of the voltage threshold upon the subthreshold activity.
This is illustrated in Fig. 5 where the 2D Abbott-Kepler
reduction is stimulated by the subthreshold current

Isyn = gexc(v − Eexc) + ginh(v − Einh)

mimicking the stochastic arrival of excitatory and in-
hibitory presynaptic action potentials, modeled by ho-
mogeneous Poisson processes. Parameter gexc (ginh) is
the excitatory (inhibitory) conductance consisting of the
summed input from excitatory (inhibitory) synapses. Pa-
rameters Eexc and Einh are the corresponding rever-
sal potentials. The voltage trace is compared with the
voltage threshold extracted from the threshold curve of
the Abbott-Kepler model (see Fig 1A). The U shape of
the threshold curve implies the existence of two volt-
age thresholds: an excitatory threshold that is reached
for sufficiently strong excitation and an “inhibitory”
threshold that is reached for hyperpolarizing current.
Both thresholds show fluctuations that are correlated to
the subthreshold voltage trajectory. When inhibition is
blocked (at time t = 100ms, Fig. 5) a spike is emit-
ted as predicted by the crossing of the excitatory thresh-
old. After the spike, there is a short period where both
thresholds are not defined producing a natural refractory
period.
Most of voltage-dependent threshold models are, in fact,
spike-dependent where the threshold trajectory is up-
dated whenever a spike is emitted and subsequently de-
cays toward a resting value (as illustrated in sec. III A).
However, it has been observed for quite some time that
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FIG. 5. Voltage trajectory of the 2D Abbott-Kepler model
subject to conductance injection. The neuron is driven by an
excitatory-inhibitory balanced input that maintains the mem-
brane voltage between the two fluctuating voltage thresholds
shown in the dot-dashed line (upper) and in the dotted line
(lower). At time t = 100ms the inhibition is blocked and a
spike is elicited. The inset shows a zoom of the region where
the excitatory threshold is reached.

the threshold also depends on the subthreshold activ-
ity, and, remarkably, well before the precise knowledge
of neuronal ionic channels, Hill [30] proposed a dynamic
threshold that rises with the subthreshold voltage. A
threshold that depends on the voltage trajectory, and not
only on the spike events, produces a rich phenomenology
[31] and has been recently used to model post-inhibitory
facilitation (PIF) [32, 33] and type III excitability [34].
We show here (see Appendix A) that such dynami-
cal threshold models can be derived from bidimensional
integrate-and-fire models with a threshold line where the
dynamics of the recovery variable determines the prop-
erties of the voltage threshold.

C. Dependence of the Voltage Threshold Upon the
Input

An implicit dependence of the voltage threshold upon
the input is generated by the threshold criterion (3).
We illustrate here this property using the spike-response-
model

v(t) = η(t− tf ) +

∫ ∞
0

κ(s)I(t− s)ds (8)

where η describes the shape of the spike and κ the re-
sponse to an incoming short pulse. The spike timing tf
is the time at which the membrane potential crosses the
threshold that we define here as the threshold line

v(t) = θ0 + αu(t) (9)

where u is an auxiliary variable given by

u̇ = a(bv − u).
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FIG. 6. Dependence of the threshold upon the input. Stim-
ulation of the spike-response-model with a slow ramp input
current. When the membrane potential reaches the threshold
(dotted lines), a spike is emitted. The thin horizontal straight
line indicates the spike threshold obtained from a brief current
pulse.

Parameter a > 0 determines the time scale of u, and bv
describes the influence of the voltage subthreshold fluc-
tuations on u.
Integrating the u-dynamics, the threshold condition can
be rewritten as

v(t)− αab
∫ t

0

v(s)ea(s−t)ds = θ0, (10)

that depends on the voltage trajectory between spikes.
A non-zero initial value of u will translate into a shift
for θ0 in (10): if at time t = 0 variable u(t) is reset to

ur, the effective threshold becomes θ̃0 = θ0 + αur. In
Fig. 6 a slow ramp input is injected to the SRM model
(8) with the threshold condition (10). As can be seen,
the measured voltage for spike initiation is greater than
the one obtained from a short current pulse (horizontal
straight line).
Due to the strict voltage criterion commonly used in
SRM-type models, the threshold difference between a
slow ramp current and a short current pulse can not
be reproduced. This limitation is overcome using the
threshold line (9) where parameter α > 0 mimics the
influence of K+ activation or Na+ inactivation on the
spike threshold. A negative α value accounts for spike
facilitation.

D. Voltage Threshold Variability

We simulate the 2D Abbott-Kepler model with a
super-threshold current and indicate in Fig. 7 the voltage
values at which the threshold curve is crossed. In contrast
with strict voltage threshold models, the threshold curve
reproduces the small fluctuations of the critical voltage
for spike initiation.
The variations of the voltage threshold depend on the in-
put current making the prediction of spike timings with
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FIG. 7. Simulation of the 2D Abbott-Kepler reduction with
fluctuating conductances. Black dots indicate the voltage
value at which the threshold curve is reached. As predicted,
a spike is initiated when the threshold condition is fulfilled.

fixed voltage threshold models uncertain and very sensi-
tive to the firing value [4, 6]. In fact, the predictive qual-
ity of pure voltage threshold models severely degrades
for small amplitude fluctuations of the input current due
to a poor approximation of the effective threshold. One
expects that the use of a threshold curve overcomes the
issue of threshold fitting and provides a simple framework
to improve the accuracy of simple predictive models.

E. Model Reduction and After-Spike Resetting

To avoid the simulation of the peak and the down-
stroke of an action potential, threshold rules are desirable
to stop the simulation when a spike is initiated and to
restart the integration after the spike duration. There-
fore, in addition to the threshold criterion, one has to
determine a restarting time together with initial values
for state variables. Due to the low variability of spike du-
ration, a fixed refractory period is commonly used. This
period is followed by an update of the state variables
that may be a “hard” after-spike reset x← xr or an ad-
ditive process x ← x + d. The former is mainly used to
describe the after-spike update of the membrane poten-
tial, whereas the latter is commonly used for the recovery
variable to account for adaptation. The resulting models
belong to the class of integrate-and-fire models.
We propose here an integrate-and-fire approximation of
the 2D Abbott-Kepler model where the threshold curve
is defined as a combination of two sigmoidal functions.
The duration of a spike is assessed using different initial
conditions on the threshold curve, and the update rule
is fitted by a hard reset for both variables. Parameter
values of the reduced IF model are given in Appendix B.
To assess the quality of the approximated IF model, we
compare the trajectory of the original model with the one
of the reduced model, both driven by the same fluctuat-
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FIG. 8. Simulation of the 2D Abbott-Kepler model (dotted
lines) and the corresponding integrate-and-fire approximation
(solid line).

ing current. As shown in Fig. 8, the spike timings are
correctly predicted by the threshold curve. In addition
the subthreshold voltage trajectory is reproduced with a
very high precision (trajectories are almost indistinguish-
able) indicating that both a constant spike duration and
a hard reset for the two variables accurately capture the
behavior of the original model. Note that the simulation
restarts immediately after the sharp downstroke of the
action potential, i.e., the spike afterpotential is simulated
by the IF approximation.

F. Piecewise Approximation of Neural Models

A simple and numerically efficient approach to cap-
ture the threshold curves of spiking neurons is to use
an idealized piecewise linear U curve made of two dis-
tinct parts, located in the hyperpolarized and depo-
larized region, called, respectively, the left branch and
right branch hereafter. More precisely, the threshold
curve is split into two pieces, defined by x.ne = 0 and
x.ni = 0, that approximate the right and left branches
of the threshold curve, respectively (see Fig. 9), where x
is the state vector x = (v, u) (for convenience, the origin
is shifted to the turning point of the threshold curve),
ne = (− sin θe, cos θe), and ni = (sin θi, cos θi). Angles θe
and θi monitor the threshold location: θi is related to the
hyperpolarized spike threshold (or “inhibitory” thresh-
old), and θe measures the degree of excitability with re-
spect to excitation. For θi = 0, the left part of threshold
curve is flat, and inhibitory inputs can not elicit spikes.
When θe = π/2, we recover a pure voltage threshold ma-
terialized by a vertical straight line in the phase plane.
Depending on the branch of the threshold curve that is
reached during the activity, different spike shapes (in-
cluding different spike latencies) and different after-spike
rules may be used. In particular, the spike latency ob-
served in the 2D Abbott-Kepler model after a brief in-
hibitory input (simulations not shown) can be accounted
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FIG. 9. Piecewise linear threshold for bidimensional spiking
neuron. When the spike region is reached, i.e., the threshold
curve is crossed, the trajectory restarts from the reset curve
(v = −80mV ).

for in its integrate-and-fire reduction adding a given pre-
calculated latency.
Similarly to the piecewise-linear threshold, the nonlinear
spike-generating currents of bidimensional spiking mod-
els may also be approximated by piecewise-linear func-
tions defining a new class of IF models that are compu-
tationally cheap, amenable to event-driven simulations
and analytically tractable. In addition, they are en-
dowed with properties associated with fluctuating voltage
thresholds.
When the dynamics of the membrane potential is mainly
driven by the membrane voltage, i.e., u provides a negligi-
ble feedback on v, the auxiliary variable plays a role only
in the definition of the threshold curve and the model
can be further reduced to a one dimensional differential
equation where the influence of the auxiliary variable is
directly incorporated in the threshold criterion (see Eq.
10) where the convolution with the exponential kernel is
responsible for a dependence of the threshold on the past
to recent activity of the neuron.

G. Post-inhibitory Spikes, Accomodation and
Facilitation

The two distinct branches of the U-shaped thresh-
old curve are responsible for different dynamical fea-
tures. The left part of the threshold curve, mainly lo-
cated at hyperpolarized voltage values, induces post-
inhibitory spikes: a strong enough brief inhibition pushes
the trajectory leftward and drives the phase point across
the hyperpolarized threshold evoking a rebound spike.
Hyperpolarization-induced activity has been already re-
ported in different models. Voltage-dependent dynamic
threshold can exhibit spikes induced by fast inhibition
[31, 33]. A modified type I FitzHugh-Nagumo model may
fire at hyperpolarized states [35]. These post-inhibitory

spikes are closely related to the fold of the threshold
curve near the rest state resulting in a second excita-
tion threshold at hyperpolarized membrane potential. It
is worth noting that this property differs from the well
known phenomenon of anodal break excitation (or post
inhibitory rebound) where a neuron fires after being re-
leased from a prolonged inhibition [36, 37].
The right branch of the threshold curve generates the
so-called phenomenon of accomodation [30]: the critical
voltage value for spike initiation obtained from slowly in-
creasing input current is greater than the one derived
from a very short current (see Sec. III C). The rise
of the voltage threshold is monitored by the time con-
stant of the recovery variable entering in the definition
of threshold line and poorly depends on the membrane
voltage equation. As v depolarizes, the auxiliary variable
grows and the effective voltage threshold becomes larger.
Therefore, spikes occur preferentially when the negative
feedback does not operate on the threshold, i.e., when
the rise of the voltage is sufficiently fast compared to the
auxiliary variable dynamics. Such a mechanism amplifies
coincident inputs [38].
An additionnal consequence of the excitatory thresh-
old curve is the PIF phenomenon [32]: a subthreshold
inhibitory event occuring in a favorable time window
can facilitate spiking in response to a subsequent sub-
threshold excitation. The slope of the right branch of
the threshold curve determines the degree of facilitation
whereas the window of opportunity is controlled by the
time constants of the model. The hyperexcitability pe-
riod occuring in a time window preceding a subthreshold
inhibitory input may result in a successful IE (inhibitory-
excitatory) pair, and, by a symmetric and similar mech-
anism, a successful EI pair may be obtained. In fact, due
to the U-shape of the threshold curve, post-excitatory
facilitation (PEF) may occur in symmetry to the PIF ef-
fect: a subthreshold inhibition may elicit a spike if a pre-
ceding excitation is applied in a favorable time-window.
However, the PEF phenomenon is less pronounced due
to the attenuation of the left part of the threshold curve
compared to its right part.
Interestingly these different features may be obtained in-
dependently of the nature of the rest state (node or focus,
i.e., resonant or not [37]). In particular, it is not nec-
essary to have an overshot of the membrane voltage to
observe post-inhibitory spikes or PIF. It is therefore pos-
sible to design an integrate-and-fire model of purely inte-
grator type that exhibits post-inhibitory facilitation and
may therefore prefer a certain resonant frequency. How-
ever, such a resonant behavior may be enhanced when
the neuron acts, near the rest state, as a damped oscilla-
tor [37].
The dynamical properties generated by the two branches
of the threshold curve may interplay. A resonant re-
sponse associated with the left branch of the threshold
curve (responsible for postinhibitory spikes) may inter-
fere with resonant properties related to the right branch
(responsible for postexcitatory spikes) leading to a com-
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plex sensitivity to inhibitory-excitatory inputs. More-
over, it is well known that a brief inhibition can sup-
press the neural response to a super-threshold excitatory
input. Conversely, a brief excitation can also cancel a
post-inhibitory spike and excitation can therefore reduce
the firing rate induced by inhibition [33]. Finally, PIF
and PEF can occur simultaneously, resulting in output
spikes evoked by combinations of subthreshold inhibitory
and/or subthreshold excitatory events (that would be be-
low threshold when delivered alone). This challenges the
classical view of the role of inhibition in shaping the pro-
cessing of spike trains [39].

IV. DISCUSSION

Due to its stereotyped nature, almost independent of
the input, and its weak role in neural processing, the
super-threshold regime of neural models is commonly re-
duced to a formal event, the so-called spike event. In
this view, hybrid dynamical systems (HDSs) naturally
arise [40, 41] to model the smooth excitable behavior
of subthreshold integration combined with an after-spike
update of the state variables (referred to as the jump
transition map in the HDS terminology) when a thresh-
old criterion (also defined as the autonomous jump set)
is fulfilled. The subthreshold properties of neural HDSs
have been largely discussed, and we place here our atten-
tion on the threshold equation, the so-called switching
manifold in control sciences.
In this paper, we analyze the threshold manifold of bidi-
mensional spiking neural models and show that the com-
monly used voltage equation v = θ poorly approximates
the switching manifold of neural models. We suggest
here a threshold criterion of the form u = g(v) (which
is preferable to v = h(u); i.e., g may be non invertible)
and show that such a threshold curve accounts for nu-
merous features of spiking neurons traditionally associ-
ated with dynamical voltage threshold models. However,
in contrast to conventional dynamical threshold models,
the voltage threshold, defined by the threshold curve,
may depend on subthreshold voltage fluctuations, and
not only on spiking activity.
Depending on the dynamics of the auxiliary variable en-
tering in the definition of the threshold criterion, different
properties can be observed. For subthreshold-activated
ionic channels (low-threshold currents), the associated
threshold curve leads to a dependence of the voltage
threshold upon the subthreshold activity and plays a sig-
nificant role in post-inhibitory facilitation, type III ex-
citability, and adaptation. Dynamical voltage thresholds
that depend on the spiking activity can be derived from
a threshold curve model where the auxiliary variable ac-
counts for spike-triggered currents. In this framework,
the time constants and the stationary value of the volt-
age threshold are directly related to the associated ionic
channels.
Different modeling perspectives are offered by the con-

cept of threshold manifold. For instance, a simple one-
variable leaky integrate-and-fire model can show hyper-
excitability provided that the threshold equation incor-
porates a voltage-gated feedback. Features that are intu-
itively associated with resonate-and-fire models can also
exist in integrator type models, as post-inhibitory spikes,
as post-inhibitory facilitation, or as sensitivity to dou-
blets.
A non-monotone threshold curve implies the existence of
two voltage thresholds at both hyperpolarized and de-
polarized voltage values, challenging the common view
of the role of inhibition in reducing excitability by push-
ing the system far from its spike threshold. This gives
a more subtle concept of nearness to threshold than the
one traditionally believed.

Appendix A: Integrate-and-Fire Neurons with a
Threshold Line to Model Post-inhibitory Facilitation

and Type III Excitability.

Let us consider the 2D integrate-and-fire model

dv

dt
= −v − εu+ i0 − isyn,

(A1)

du

dt
=
u∞(v)− u
τu(v)

where a spike is emitted when the threshold line v− u =
θ0 is crossed. Variable u provides a negative feedback on
v whose strength is determined by ε > 0. Let us assume
that the corresponding ionic current has little effect on
the subthreshold dynamics of v(t), i.e., ε� 1. Therefore
u acts on the dynamics only through the threshold crite-
rion. We further assume that (i) the relaxation time τu
is almost constant during the subthreshold regime and
(ii) the equilibrium function, u∞(v), is given by the sig-
moidal function

u∞(v) =
ua

1 + e−λ(v−va)
. (A2)

For small λ values the steady state function (A2) can be
approximated by:

u∞(v) ≈ ua
2

(
1 +

λ

2
v − λ

2
va
)
.

Let us define θ(t) = θ0 + u(t), α = uaλ/4, θ̃0 = ua/2 −
αva + θ0, and τθ = τu. Model (A1) can be rewritten as
the idealized PIF model introduced in [32]:

dv

dt
= −v + i0 − isyn,

τθ
dθ

dt
= αv − (θ − θ̃0)

with the voltage threshold condition v(t) = θ(t).
Similarly, the nonlinear threshold dynamics τθdθ/dt =
a+ eb(v−c) − θ used to describe type III excitability [34]
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can be recast as the nonlinear integrate-and-fire model
(A1) where the equilibrium function (A2) is now approx-
imated by

u∞(v) ≈ uaeλ(v−va)

which is obtained from (A2) for va-values larger than sub-
threshold voltage values, i.e., in the limit eλ(v−va) � 1.
In type III excitable neuron, the time scale of the voltage
threshold (which is the time scale of the negative feed-
back, u(t)) is comparable to the neuronal time constant
enabling a competition between the voltage rise and the
negative feedback, and precluding spiking if the rise of
the membrane voltage is too slow.

Appendix B: Integrate-and-fire Approximation of
the 2D Abbott-Kepler Model.

The threshold curve, u = g(v), of the 2D Abbott-
Kepler reduction is approximated by a linear combina-
tion of two Boltzmann functions where parameters are
determined using a least square method. We find

g(v) = −71 +
23.2

1 + e−0.18(v+54.4)
+

6.53

1 + e−0.24(v+72.2)
.

To estimate the spike duration and to derive the update
rules, we use several initial conditions on the threshold
curve. Two cases occur depending on the threshold cross-
ing location. When the left part of the threshold curve
is crossed, the spike shape shows different latencies, i.e.,
a delayed spike initiation is observed. The other part
shows a poor variability and a spike duration of around
2ms is observed. In all cases, the after spike update
is well approximated by a hard reset for the membrane
potential, vr = −76mV , and for the recovery variable,
ur = −46mV .
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