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Abstract

In a previous paper [Tonnelier, 2002] we conjectured that a Liénard
system of the form ẋ = p(x) − y, ẏ = x where p is piecewise linear
on n + 1 intervals has up to 2n limit cycles. We construct here a
general class of functions p satisfying this conjecture. Limit cycles are
obtained from the bifurcation of the linear center.

Keywords: Limit cycles, piecewise linear systems.

1 Introduction and Main Result

A number of physical systems controlled by switching actions cannot be de-
scribed with smooth dynamical systems. Many applications in different part
of sciences are modeled by piecewise linear systems of ordinary differential
equations. Examples come from control engineering, design of electrical cir-
cuits, embedded software, mechanical systems. The modeling of systems that
operate in different linear modes with a transition between modes idealized
as an instantaneous one leads to piecewise linear differential equations. In
mechanical systems, for instance, dry friction, stick-slip oscillations and im-
pact are described with non-smooth dynamical systems (see e.g. [Leine et
al., 2000]).

On the other hand, piecewise linear functions are introduced as an ap-
proximation or a global linearization of a nonlinear dynamics. Taking the
advantage of their linear parts, piecewise linear systems lead to analytic cal-
culations and provide a better understanding of the richness of the nonlinear
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dynamics. Starting from linear systems, nonlinear dynamics are captured
quite naturally by working with piecewise linear equations. In neuroscience,
for instance, the subthreshold and superthreshold behavior of the neuron is
well approximate by a piecewise linear regime introduced as a generalization
of the integrate-and-fire model [Tonnelier & Gerstner, 2003].

The theory of smooth dynamical systems is the subject of numerous
works, see for instance [Guckenheimer and Holmes, 1983], [Kuznetsov, 1998].
Since the pioneering works of Filippov [1964] and Andronov et al. [1966], the
mathematical study of non-smooth dynamical systems have been developed.
More recent results can be found in [Aubin & Cellina, 1984; Kunze, 2000].
One of the most difficult problem in the qualitative study of dynamical sys-
tems is the question of the number and the location of limit cycles. One
expects that results from piecewise linear systems can lead to insights into
this problem. Most studies deal with planar systems with a limited number
of zones. The bifurcation set of continuous piecewise linear systems with two
zones and three zones have been studied in details [Freire et al., 1998; Freire
et al., 1999; Freire et al., 2002]. A complete study of systems with a line of
discontinuity is performed in [Giannakopoulos & Pliete, 2001]. In [Leine et
al., 2000] authors studied bifurcations in discontinuous dynamical systems.
There are few analytical results on systems with a large number of zones and
little is known about their dynamics. During the writing of this paper, two
works on this topic have been published [Llibre et al., 2003; Llibre & Ponce,
2003]. In the former, the Poincaré-Bendixson theory is used and in the lat-
ter averaging theorem is used that seems computationally equivalent to the
approach followed in the present paper. Given the difficulty of the general
problem, we will restrict our attention to the so-called Liénard system:

ẋ = εp(x) − y ,
(1)

ẏ = x ,

where (x, y) ∈ R2, p is a piecewise linear function and ε is a parameter that
we consider for convenience. The phase plane is divided into zones so that
the restriction of the system into each zone is a linear system with constant
coefficients. The boundaries between zones are parallel straight lines given
by the discontinuity points of the piecewise linear function p. One expects
that the number of limit cycles is closely related to the number of zones,
that is the number of parts of the phase plane where system (1) is linear. In
[Tonnelier, 2002] we proposed the two conjectures

Conjecture 1 The piecewise linear Liénard system (1) with n+1 zones has
up to 2n limit cycles.
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Conjecture 2 The continuous piecewise linear Liénard system (1) with n+1
zones has up to n limit cycles.

Let us discuss the simplest case where n = 1. The proof of conjecture
1 goes back to Andronov et al. (see [Giannakopoulos & Pliete, 2001 ] for a
complete treatment) and conjecture 2 is already stated in [Lum & Chua, 1992]
(see [Freire et al., 1998] for a proof). Note also that the case n = 2 is related
to the McKean caricature of the FitzHugh-Nagumo equation [McKean, 1970].
For n = 2, conjecture 2 is treated in [Freire et al., 2002]. For a large number
of zones, a piecewise continuous Liénard system with 2n + 3 zones and n
limit cycles has been proposed [Llibre & Ponce, 2003].

In this paper we provide a general class of systems satisfying the first
conjecture. Moreover, we give a simple recursive algorithm to generate this
class of functions. The main result of our paper is the following one:

Theorem 1 Let n be a positive integer and p the piecewise linear function
(see Fig. 1)

p(x) = −x + µi if x ∈ (ai, ai+1), i ∈ {0, . . . , n}, (2)

where (a0 = −∞) < 0 < a1 < . . . < an(< an+1 = +∞) and (µi)i=0..n, are
two finite sequences of real numbers. For ε $= 0 sufficiently small, there exist
sequences (ai) and (µi) such that system (1) admits 2n limit cycles.

The change of variable ỹ = y − µ0ε enables us to consider the case µ0 = 0.
Note that p is discontinuous at the points (ai) and has a jump of discontinuity
equal to µi − µi−1. It should be noticed that ordinary differential equations
with discontinuous right-hand side can lead to trajectories that intersect the
set of discontinuity and remain on it. These so-called sliding solutions are
possible when µi+1 < µi. However, as we will show, the existence of 2n
limit cycles requires that the µi determine a non-decreasing sequence. Then
sliding solutions do not appear in our study and solutions of (1) are defined
in a classical manner.

The paper is organized as follows. In section 2 we introduce the math-
ematical tools needed to state and prove Theorem 1. We also provide a
recursive algorithm to generate a family of functions satisfying Theorem 1.
Section 3 is devoted to a discussion.

2 A Piecewise Linear Perturbation of the Lin-
ear Center

Melnikov’s theory has proved to be a powerful tool for predicting the number,
positions and multiplicities of limit cycles that bifurcate from homoclinic and
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heteroclinic orbits under perturbations [Guckenheimer & Holmes, 1983]. It
has been successfully applied for the occurrence of bifurcations in physical
systems (see references in [Sanjuán, 1998]). Basically, the theory associates a
function to a given dynamical system. The roots of this function are related
to the existence and location of limit cycles. Then, the differential problem
is reduced to an algebraic one that corresponds to a search for roots of a
function.

2.1 Melnikov theory

The Melnikov theory have been developed for the study of planar systems of
the form

u̇ = f(u) + εg(u) (3)

where u ∈ R2, ε % 1 and f , g are sufficiently smooth functions. It is assumed
that the unperturbed system, i.e. ε = 0, has a one-parameter family of
periodic solutions Γr: γr(t), r > 0 with period Tr. The Melnikov function for
system (3) is given by

M(r) =

∫ Tr

0

e−
R t
0 ∇f(γr(s))dsf ∧ g(γr(t))dt (4)

where the wedge product of u, v ∈ R2 is defined by u∧ v = u1v2 − v1u2. The
following theorem is proved in [Blows & Perko, 1994] (see also Guckenheimer
& Holmes, 1983),

Theorem 2 If there exists r1, r2, . . . , rn such that M(rj) = 0 and M ′(rj) $=
0, j = 1, . . . , n, then for all sufficiently small ε $= 0 system (3) has n hy-
perbolic limit cycles in an O(ε) neighborhood of Γrj that bifurcate from the
periodic orbits γrj(t). Furthermore if M(r0) $= 0, then for all sufficiently
small ε $= 0, system (3) has no cycle in an O(ε) neighborhood of Γr0.

2.2 The Melnikov function of the piecewise linear Liénard
system

For small ε, Eq. (1) is a perturbation of the linear center ẋ = −y, ẏ = x
that has a one-parameter family of periodic orbits Γr: (r cos t, r sin t), r > 0,
with a period Tr = 2π. Note that system (1) is invariant under the change of
variables (t, x, y, ε) → (−t, x,−y,−ε). Therefore the stability of limit cycles
changes with the sign of ε. Note also that the origin is the only fixed point of
the system and it is easy to check that the origin is an unstable focus when
ε < 0.
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Using ∇f(u) = 0, the Melnikov function (4) of the Liénard system (1) is
given by

M(r) =

∫ 2π

0

−r cos t p(r cos t) dt.

Using the change of variable t → 2π − t in the interval [π, 2π], we have

M(r) = 2

∫ π

0

−r cos t p(r cos t) dt.

Let r > 0 and q ∈ {0, . . . , n} be the integer such that aq < r < aq+1. We
define ti, i ∈ {0, . . . , q + 1}, the decreasing finite sequence given by t0 = π,

cos ti =
ai

r

for i = 1, . . . , q and tq+1 = 0. On (ti+1, ti), we have p(r cos t) = −r cos t + µi.
Therefore we obtain

M(r) = 2r2

∫ π

0

cos2 t dt − 2r
q∑

i=0

µi

∫ ti

ti+1

cos t dt.

Computing the integrals, we obtain the following:

M(r) = πr2 − 2
q−1∑

i=1

µi(
√

r2 − a2
i −

√
r2 − a2

i+1) − 2µq

√
r2 − a2

q .

Let us recall that the previous expression is derived for aq < r < aq+1. Let
r > 0, the Melnikov function M is written

M(r) = πr2 − 2
i=n∑

i=1

di

√
r2 − a2

i H(r − ai) (5)

where di = µi − µi−1 for i ∈ {1, . . . , n} and H is the Heaviside step function
H(x) = 0 if x < 0 and H(x) = 1 if x > 0. We note that M(r) is continuous
but not C1(R+).

2.3 Proof of Theorem 1

Checking the proof of Theorem 2 in [Blows and Perko, 1994], we can see that
smoothness is required for f but the discontinuity of g at isolated values is not
a restriction for the use of Theorem 2. From Theorem 2 and the expression
(5) of the Melnikov function associated with the Liénard system (1),(2), the
following proposition holds.
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Proposition 1 The Liénard system (1),(2) has exactly p hyperbolic limit
cycles asymptotic to circles of radii rj as ε → 0 if and only if the function

fn(r2) = πr2 − 2
i=n∑

i=1

di

√
r2 − a2

i H(r2 − a2
i )

has p positives roots r = rj such that f ′
n(r2

j ) $= 0.

More specifically, to prove Theorem 1, we will show in the following that fn

has up to 2n roots. For n = 3, the typical shape of the Melnikov function
with three pairs of roots is shown in Fig. 2A.
Proof. We note x = r2 and we define the family of functions:

fk(x) = πx − 2
i=k∑

i=1

di

√
x − a2

i H(x − a2
i ), k = 1, . . . , n

Note that fk and fk+1 coincide on (0, ak+1). We construct recursively the
function fk, and thus p, choosing appropriate values for µk and ak in order
to ensure, at each step, the existence of two additional roots of fk in (ak, +∞).

Let us start with k = 1. We have

f1(x) = πx − 2d1

√
x − a2

1

for x > a2
1. It is easy to show that the equation f1(x) = 0 has two real

solutions if and only if d1 > πa1. We easily check that these solutions are
greater than a2

1. Note that a1 > 0 is arbitrary chosen.
In order to start the recurrence, we consider the case k = 2. We choose

a2 sufficiently big such that a2
2 is greater than the two roots of f1. This

requirement ensures that the two roots of f1 are also roots of f2. Note that we
have f2(a2

2) = f1(a2
2) > 0. We take d2 such that ∃x∗ > a2

2, f2(x∗) < 0. Notice
that this choice is always possible since for x > a2

2 and fixed, limd2→∞ f2(x) <
0 (note that f2(a2

2) does not depend on d2). Using limx→∞ f2(x) = +∞ and
the continuity of f2 on (a2

2, +∞) it is clear that f2 has two additional roots
in (a2

2, +∞).
We assume that we have constructed two finite sequences a1, . . . , ak−1

and µ1, . . . , µk−1 such that fk−1 has 2k − 2 roots on (a2
1, +∞). Then we

choose a2
k sufficiently big to be greater than the roots of fk−1. Then fk has

2k − 2 roots in (0, ak). Moreover we require fk(a2
k) > 0. We choose dk > 0

sufficiently big to ensure the existence of x∗ > a2
k such that fk(x∗) < 0. Since

limx→∞ fk(x) = +∞ it follows that fk has two additional roots in (ak, +∞).
!
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If we study the variations of fk, k ∈ {1, . . . , n}, we can refine the propo-
sition and show that 2n is the maximal number of limit cycles. Moreover, if
we note indifferently xk the two roots of fk in (ak, ak+1), by construction we
have f ′

n(xk) = f ′
k(xk) $= 0 and then the limit cycles are hyperbolic.

2.4 Some specific examples

In this section we derive explicit sufficient conditions on (ak) and (µk) for
the existence of 2n limit cycles. Note that shifting the y-axis in (1), we can
take µ0 = 0. A recursive construction of the function p is provided using the
following proposition

Proposition 2 If p is such that (ak) and (µk) satisfy

a1 > 0, µ1 > πa1, ak ≥ 2µk−1

π
, µk ≥ πak, k = {2, . . . , n}

then system (1),(2) has 2n hyperbolic limit cycles.

Proof. Let us recall that the equation f1(x) = πx− 2µ1

√
x − a2

1 = 0 has two
distinct real solutions on (a2

1, +∞) if and only if µ1 > πa1 (i.e. d1 > πa1).
Moreover these two solutions are given by

x2
± =

2µ2
1 ± 2µ1

√
µ2

1 − π2a2
1

π2
.

Hence, it is sufficient to choose a2 such that a2 ≥ 2µ1/π. For d2 > 0, the study
of the derivative of f2 shows that there exists x∗

2 such that f2 is decreasing
on (a2

2, x
∗
2) and increasing on (x∗

2, +∞) (note that d2 < 0, i.e. µ2 < µ1, does
not allow the existence of roots of f2 in (a2

2, +∞) ). Then f2 has at most two
solutions on (a2

2, a
2
3). We have

f2(x) = πx − 2µ1

√
x − a2

1 − 2(µ2 − µ1)
√

x − a2
2

< πx − 2µ1

√
x − a2

2 − 2(µ2 − µ1)
√

x − a2
2.

Then the following (strict) inequality holds

f2(x) < πx − 2µ2

√
x − a2

2

Since πx − 2µ2

√
x − a2

2 has two real roots (greater than a2
2) if µ2 > πa2, we

conclude that a sufficient condition to have two roots in (a2
2, +∞) is µ2 ≥ πa2
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(in particular, µ2 > µ1). Now, the next step is to choose a2
3 greater than the

roots of f2. Noting that

f2(x) > πx − 2µ1

√
x − a2

1 − 2(µ2 − µ1)
√

x − a2
1 = πx − 2µ2

√
x − a2

1

it is clear that the two roots of f2 on (a2
2, +∞) are between the roots of

πx − 2µ2

√
x − a2

1. Thus, we choose a3 ≥ 2µ2/π, i.e. a2
3 is greater than the

roots of πx − 2µ2

√
x − a2

1. Note that f4(a2
3) > 0.

The study on the intervals (a2
3, a

2
4), . . . , (a

2
k−1, a

2
k) is very similar and it is not

difficult to prove that a sufficient condition for the existence of 2k roots for
fk is given by ak ≥ 2µk−1/π and µk ≥ πak. !
The following sequence is an example that fulfilled the conditions of Propo-
sition 2 :

a1 > 0, α > 1, ak = ra12
k−1, µk = αa1π2k−1.

In table 1 we numerically compute the location of the limit cycles for a1 = 1
and α = 2, i.e. ak = 2k, µk = π2k. Figure 3 shows, in the phase plane, three
pairs of limit cycles of the Liénard system obtained for ε = 0.01.

3 Discussion

Since they frequently appear in physical and biological systems, limit cycles
have attracted a wide attention. Limit cycles model self sustained oscillations
that are involved in numerous applications. The problem of finding the
number and the location of limit cycles is related to the already unsolved
Hilbert’s 16th problem. Piecewise linear systems capture the richness of
the dynamical behavior of general nonlinear systems, including limit cycles.
Taking the advantage of their linear parts, one expects to obtain insights into
the problem of the existence of limit cycles.

In this paper we have studied the number and the location of limit cycles
of a piecewise linear Liénard system. Given an even integer 2n, we construct
a planar piecewise linear system with 2n limit cycles. A piecewise linear
differential system with an arbitrary number of limit cycles has already been
proposed [Llibre & Ponce, 2003]. We give here a general class of functions
and present a recursive algorithm to generate it. Moreover we claim that
our system is minimal in the sense that a system with lesser linear parts,
i.e. lesser than n + 1, has lesser limit cycles. Moreover, based on numerical
simulations, we find that we also provide an example for Conjecture 2 taking
a continuous version of the function p with sufficiently small matching zones.
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Table

Table 1. Values of the radius of circles that approximate the limit
cycles of the Liénard system as ε → 0. These values are obtained as the
two roots rk,1, rk,2 of fn (see proposition 1) in (ak, ak+1), k ∈ {1, . . . , n}
for n = 7 discontinuities and a1 = 1, ak = 2k and µk = π2k.

k 1 2 3 4 5 6 7
ak 1 4 8 16 32 64 128
rk,1 1.1882 4.3147 8.0432 16.0534 32.1003 64.1990 128.3978
rk,2 1.8515 6.9042 14.4240 28.9705 57.9707 115.9489 231.8997
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Figure Legends

Figure 1: Graph of the piecewise linear function p with disconti-
nuities at a1, a2, . . . , an.

Figure 2: (A) Graph of the Melnikov function for the Liénard sys-
tem (1) where the function p is shown in panel (B). The nonzero roots of
the Melnikov function correspond to three pairs (unstable and stable) of
limit cycles. Parameters are those of Table 1.

Figure 3: Numerical computation of limit cycles in the phase plane of
the Liénard system ẋ = εp(x) − y, ẏ = x for ε = 0.01 and p given in
Table 1 (we restrict here to three discontinuities). The locations of the
limit cycles are predicted by the roots of the Melnikov function given in
Fig.2A. The full lines represent stable limit cycles and the dashed line
represent unstable limit cycles.
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