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Abstract. Precise spatiotemporal sequences of spikes are observed in many brain areas and
are thought to be involved in the neural processing of sensory stimuli. Here, we examine the ability
of spiking neural networks to propagate stably a spatiotemporal sequence of spikes in the limit
where each neuron fires only one spike. Compare to previous studies on propagation in neural
networks, we only assume homogeneous connectivity and do not use the continuum approximation.
When the propagation is associated to a simple traveling wave, or a one-spike sequence, we derive
some analytical results for the wave speed and show that its stability is determined by the Schur
criterion. The propagation of a sequence of several spikes corresponds to the existence of stable
composite waves, i.e. stable spatiotemporal periodic traveling waves. The stability of composite
waves is related to the roots of a system of multivariate polynomials. Using the simplest synaptic
architecture that supports composite waves, a three nearest-neighbor coupling feedforward network,
we analytically and numerically investigate the propagation of 2-composite waves, i.e. two-spikes
sequence propagation. The influence of the synaptic coupling, stochastic perturbations and neuron
parameters on the propagation of larger sequences is also investigated.

Key words. spiking neuron, propagation, traveling wave, spike sequence

AMS subject classifications. 92C20

1. Introduction. Precisely timed action potentials, or spikes, have been di-
rectly related to sensory stimuli indicating a possible role in the neural processing of
information [2, 25]. A coding scheme based on the spikes emitted by neurons allows
fast processing and direct experimental evidences of reliable and efficient spike coding
strategies have been emphasized [41, 25]. The implementation of spike coding schemes
has shown their ability to perform very rapid processing that precludes conventional
firing rate codes [39]. The spikes emitted by different neurons in the network form
a spatiotemporal pattern that is believed to be involved in the encoding of sensory
stimuli. In the locust antennal lobe, the odor-evoked activity patterns of the projec-
tion neurons are structured spatially and temporally in a stimulus-specific manner
[29]. In songbirds, the projection neurons in the premotor nucleus HVC (high vocal
centre) exhibit sequences of precise spike timings [18]. A code based on the precise
firing sequence of spikes requires a means to propagate the sequence while preserving
its temporal structure. The main question is thus whether a packet of precisely timed
action potentials can be transmitted reliably by spiking neural networks.
A number of studies have examined propagating activities using neural field models
[34, 7, 35, 40]. In spiking neural networks, the information is encoded in a firing

sequence (tfi ) where tfi is the firing time of neuron i. We will consider here only the
first spike of neurons. The one-spike simplification is relevant in the context of fast
processing where neurons have time to fire only one spike or in network with strong
synaptic depression where the initiation of waves is monitored by the first presynaptic
spike [38, 39, 11]. The issue of spike propagation has been mainly addressed in two
extreme cases. (i) The firing times in the sequence are simply related each other by

the relationship tfi+1 − tfi = 1/c; a traveling wave of velocity c propagates in the net-
work. Such a wave with a constant delay between the spike timings of two consecutive
neurons is referred to as a simple wave. Simple waves have been intensively studied in
spatially continuous networks of synaptically coupled spiking neurons [11, 5, 6, 16, 33].
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(ii) In the synchronous propagation of spiking activity, the sequence (tfi ) is made of
successive groups of nearly identical firing times. Such a propagation occurs in layered
feedforward networks, the so-called synfire chains [1], and numerical simulations show
that stable waves can propagate through the network [4, 10, 27].
A full synchrony is an extreme case of spike arrangement and the propagation of fir-
ing patterns with a detailed temporal structure has been hardly addressed. Let us
assume that information on a sensory stimulus is encoded in an interspike interval,
δ. Therefore, the basic problem is the following: how can δ be transmitted by a
spiking neural network ? Trivially, a spiking network composed of two non-connected
transmission lines performs such a processing (see Figure 1.1). A similar synaptic
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Fig. 1.1. How to transmit an interspike interval δ ? A trivial solution is a network (bottom
of the graph) made of two identical non-connected transmission lines where each transmission line
supports a traveling wave of velocity c. A propagation is initiated in the first transmission line at
time t0 and in the second one at time t0 + δ. The resulting traveling wave conveys the ISI, δ, at a
velocity c. The firing times of the neurons are plotted here as solid dots.

architecture combined with coincidence detectors has been used as a crude model of
the barn owl’s auditory system [24]. The inter-aural time difference is physically rep-
resented through two delay lines and is used to locate a sound with a high precision.
This specific architecture is highly restrictive and several delay lines have to be used
when several interspike intervals have to be transmitted at the same time.
In the present paper, we analyze the capability of a connected 1 spiking neural net-
work to transmit a spike sequence making relatively few assumptions on the synaptic
architecture. We examine the propagation using highly simplified neuronal model and
network connectivity. We consider a spatially structured network of leaky integrate-
and-fire neurons where the dynamics of the membrane potential of neuron i at time
t, vi(t), follows

dvi

dt
= − vi

τm
+ Ii + Iapp,(1.1)

where τm is the membrane time constant, Ii the total synaptic current for neuron i
and Iapp is an external drive. When the membrane potential reaches a threshold ϑ the

neuron fires a spike. We consider that each neuron only fires once and we denote tfi the

1the network is said to be connected in the sense of topological space, i.e. there is a path from
any neuron to any other neuron in the network
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time at which the neuron located at i fires. When a spike is emitted, the membrane
potential is reset to vr < ϑ. This framework allows analytical treatment of the
model and provides a first approximation for the study of more complex propagating
patterns. Note that a first step towards the investigation of multiple-spike activity
propagation has already been achieved in the continuous limit [32].
A change of variables allows us to set ϑ = 1 and τm = 1. Therefore, membrane
potential and time are dimensionless and the physical units are retrieved multyplying
voltage by a factor of 10mV and time by a factor of 10ms (for instance, a time
constant equal to 2 has a physical order of 20ms). In the absence of synaptic input,
two distinct regimes exist: when Iapp > 1 the neuron periodically fires and for Iapp < 1
the neuron requires inputs to fire. We consider here the excitable regime only and
we take Iapp = 0. A presynaptic spike induces a postsynaptic current (PSC) that is
described by a so-called α-function, α(t). The total synaptic current is taken to be of
the form

Ii(t) = gsyn

∑

j

wijα(t− tfj ),(1.2)

where gsyn is the total synaptic conductance and wij is the strength of the synaptic
connection from neuron j to neuron i. For the network connectivity, we use an infinite
chain of neurons, i ∈ Z, and we only assume that the synaptic strength depends on the
’distance’ between neurons wij = w(|i − j|), where w denotes the synaptic footprint
shape and |.| is the absolute value. For convenience we define wj = wi,i−j and weights
are normalized so that

∑

j |wj | = 1. The rapid processing treatment operated through
the first-spike strategy provides an evidence for a feedforward architecture [38] and
we take wj = 0 for j ≤ 0. We note N the number of presynaptic neurons. It
should be noted that our architecture significantly differs from synfire chain where
groups of neurons are specifically connected to form successive pools. Here, we focus
on a regular synaptic organization derived from a one-dimensional structure. Two-
dimensional networks exhibit similar activity but have a lot of paths between two given
neurons that make the propagation difficult to analyze especially due to the interplay
between paths. In the 1-D connectivity, the signal propagation has a limited pathway
[12] along a 1D-waveguide allowing a characterization of the key parameters that
monitor propagation.
The kinetics of synaptic currents play a fundamental role in spike propagation [13]. To
control efficiently the shape of the PSC, we consider the normalized piecewise linear
α-function

α(t) =
2

τr + τd







t/τr , 0 ≤ t ≤ τr
1 + (τr − t)/τd , τr ≤ t ≤ τr + τd

0 , otherwise
(1.3)

where τr is the synaptic rise time and τd the synaptic decay time. However, the
theoretical analysis of spike propagation is done using an arbitrary α function and
the piecewise linear approximation is introduced to go further in the analysis and to
perform numerical simulations.
Writing the reset condition in (1.1) as the reset current Ir,i = −(1 − vr)δ(t − tfi ),
where δ is the Dirac function, and integrating (1.1) gives

vi(t) = η(t− tfi ) + gsyn

N
∑

j=1

wjǫ(t− tfi−j),(1.4)
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where η(t) = (vr − 1)e−tΘ(t) is the reset pulse and

ǫ(t) =

∫ t

0

α(s)e−(t−s)dsΘ(t)(1.5)

is the postsynaptic potential (PSP) developed in the neuron as a response to the post-
synaptic current (PSC). Here we note Θ is the Heaviside step function. Alternatively,
the PSP can be defined as the solution of the equation

ǫ′(t) + ǫ(t) = α(t)

and ǫ(0) = 0. Depending on the synaptic time constants, τr and τd, a wide range of
PSP kinetics are generated (see Figure 1.2).
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Fig. 1.2. Plot of postsynaptic potentials (PSPs) for different synaptic time constants. A large
variety of PSP kinetics are obtained using long, or short, rise time combined with long, or short,
decay time.

The paper is organized as follows. In section 2 we develop the theoretical framework
for the study of spike propagation. In section 3 we focus on the propagation of a
single interspike interval. Numerical simulations on larger sequences with realistic
conditions on model parameters are done in section 4. We finish with a discussion in
section 5.

2. Simple and composite traveling waves. Let us assume that a stimulation
initiates in the network a precisely timed sequence of p interspike intervals. The
sequence propagates in the network if there exists a velocity c such that the firing
times of neurons are given by

tfpi+k = (pi+ k)/c+ δk(2.1)

where i is the index of the ith repetition of the sequence, p is the sequence length,
k ∈ {0, . . . , p−1} is the label of the successive neurons in the sequence and δk are the
propagated interspike intervals, where δ0 = 0. The traveling wave that propagates
the sequence has a spatiotemporal periodicity: during propagation the sequence of
spikes is replayed with the same temporal structure along the network as shown in
Figure 2.1. Space is divided into ’spatial units’ of width p, i.e. made of a fixed
number, p, of associated neurons. We will name these waves composite waves to
stress that the propagation can be thought as the superimposition of several simple
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Fig. 2.1. Propagation of a composite wave in a spiking neural network. A packet of 5 precisely
timed spikes is transmitted (see the inset). The firing times are plotted as solid dots.

waves propagating with the same velocity but with different delays. It should be
noted that the effective interspike interval between the two consecutive neurons, k
and k + 1, within a sequence is ISIk = δk+1 − δk + 1/c. For convenience, instead of
ISIk, we use the quantity δk that physically measures the deviation from the simple
wave obtained for δk = 0, ∀k. Recall that we consider only the first spike of neurons
and therefore all the indexes used in the present study (i, p, k) are related to a spatial
location and do not describe the successive spikes of a neuron that may appear when
considering multiple-spike wave propagations [32].
In the following section we focus on simple waves where analytical results on the
wave speed are derived and illustrated using different synaptic weight distributions.
Stability analysis is also presented. Next, in section 2.2, we provide a framework for
the study of composite waves including their stability analysis.

2.1. Simple waves. Simple waves are obtained when δk = 0 or equivalently
p = 1 in (2.1), i.e. the propagated sequence is composed of one neuron. We look
for simple traveling wave solution of the form vi(t) = V (t − i/c) where c > 0 is the
velocity of the wave. Let ξ = t − i/c be the traveling wave coordinate. Simple wave
solutions satisfy

V (ξ) = η(ξ) + gsyn

N
∑

j=1

wjǫ(ξ + j/c).(2.2)

The velocity of the wave is obtained from the threshold condition V (0) = 1 that yields

gsyn

N
∑

j=1

wjǫ(j/c) = 1.(2.3)

The existence of the corresponding traveling wave requires that the causality criterion

V (ξ) < 1 for ξ < 0(2.4)
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is fulfilled.
An important question concerns how the wave speed depends on the parameters of
the network. Dependence of the wave speed on the synaptic conductance, gsyn, is
illustrated Figure 2.2 for different synaptic time constants and synaptic weights. In
all cases, there exists a minimal value of the total synaptic conductance, g∗syn, from
which propagation occurs. The speed at the onset of propagation has a well-defined
non-zero minimum. In purely excitatory network (Figure 2.2a-b) the speed curve is
made of one piece with an upper branch where the wave speed increases with gsyn and
tends toward infinity as gsyn grows. In excitatory-inhibitory network (Figure 2.2c-d)
the speed curve is made of several pieces depending on the respective strength and
distribution of positive and negative weights. We find two parts in Figure 2.2c using a
Mexican-hat type connectivity and four parts in Figure 2.2d with randomly choosen
weights (each componant of the vector (wi)i=1..N is randomly choosen). In both plots
(Figure 2.2c-d), the upper component of the speed curves has a shape similar to the
one obtained for purely excitatory network with, in particular, an unbounded wave
speed as gsyn → ∞ whereas the other components present bounded wave speed values.
It is worth noting that, numerically, we observe that the lower branch of each piece
of the speed curves, i.e. part of the curves where dc/dgsyn < 0, are prone to be
nonadmissible solutions. A necessary condition to satisfy criterion (2.4) is V ′(0) > 0,
i.e. the threshold is reached from below, that leads to

N
∑

j=1

wjǫ
′(j/c) > 0.(2.5)

Note also that branches where dgsyn/dc < 0 satisfy

N
∑

j=1

jwjǫ
′(j/c) < 0,

which is derived from the differentiation of equation (2.3).
Without loss of generality we take in the following gsyn > 0. To gain some insight into
the shape of the speed curves, let us consider the simplest case of a network where
each neuron has only one presynaptic neuron, i.e. N = 1. We have w1 = 1 (due to
normalization) and therefore we have to solve

ǫ(1/c) = 1/gsyn.

Qualitatively, from the shape of the postsynaptic potential, ǫ, it is obvious that two
solutions are found (for gsyn sufficiently large): one in the rising phase of ǫ and the
other one in the decaying phase. The solution in the decaying phase is not admissible
since (2.4) is not satisfied. Properties of the admissible solution are studied in the
following. Using the piecewise linear expression of the postsynaptic current α (1.3),
expression (1.5) gives

ǫ(t) =
2

τr + τd



















0, t < 0
1
τr

(t− 1 + e−t), 0 ≤ t ≤ τr

1 + τr+1−t
τd

+ 1
τr

e−t −
(

1
τr

+ 1
τd

)

e−t+τr , τr ≤ t ≤ τr + τd
(

1
τr

+ 1
τd

e(τr+τd) − ( 1
τr

+ 1
τd

)eτr

)

e−t, t > τr + τd

(2.6)
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Fig. 2.2. Simple wave speed as a function of gsyn in a chain of spiking neurons where
each neuron has N = 10 presynaptic neurons. Various synaptic time constants are used :
the symbol ◦ in red denotes simulations with τr = 1, τd = 2; the symbol × in blue is for
τr = 3, τd = 0.2; the symbol ⋄ in green is for τr = 2, τd = 4; the symbol ∗ in black is
for τr = 2.5, τd = 1. We take the following synaptic weights (a) constant, (b) exponential
wi = exp(−i), (c) Mexican-hat (short-range excitation and long-range inhibition for gsyn > 0),
wi = 3 exp(−i2/50)−2 exp(−i2/162) and (D) random using an uniform distribution on (−1/N, 1/N)
( here, W = (−0.1551, 0.1631,−0.0113,−0.1021,−0.1587, 0.1353,−0.0252, 0.0112, 0.1785, 0.0596)).
For each plot the corresponding synaptic weights are shown in the inset.

Thus, the wave speed is obtained solving the following equations

x+ e−x = β if x ≤ τr,

x+ γe−x = µ if τr ≤ x ≤ τr + τd

where x = 1/c and

β = 1 +
τr(τr + τd)

2gsyn
,

µ = 1 + τr + τd − τd(τr + τd)

2gsyn
,
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γ =

(

1 +
τd
τr

)

eτr − τd
τr
.

Therefore we have

c =
1

W0(−e−β) + β
, τ−1

r ≤ c(2.7)

c =
1

W−1(−γe−µ) + µ
, (τr + τd)

−1 ≤ c ≤ τ−1
r(2.8)

where Wk denotes the kth branch of the Lambert W function [8]. Expressions (2.7),
(2.8) describe the upper branch of the speed curve starting at the knee point

c∗ =

[

τr + ln

(

1 +
τr
τd

(1 − e−τr)

)]

−1

,

g∗syn = (τr + τd)

[

2 − 2

τd
ln

(

1 +
τd
τr

(1 − e−τr)

)]

−1

below which no propagation occurs. Note that the lower branch of the speed curve
corresponding to nonadmissible solutions is obtained from (2.8) replacingW−1 by W0.
Using the series expansion of W0 near the branch point z = e−1 [8]

W0(z) = −1 +
√

2(ez + 1) − 2

3
(ez + 1) +O(ez + 1)

we derive, for large gsyn values, the asymptotic behavior of the wave speed

c =

√

gsyn

τr(τr + τd)
− 1

6
+ O(1/

√
gsyn).

Let us now generalize the previous asymptotic expansion for N ≥ 1 presynaptic
neurons. For large gsyn values, it is expected to find large speed values, i.e. 1/c≪ 1.
Substituting the Taylor series of ǫ

ǫ(u) = ǫ(0) + uǫ′(0) +
u2

2
ǫ′′(0) +O(u3),

into (2.3) and using ǫ(0) = ǫ′(0) = 0, ǫ′′(0) = 2/(τr(τr + τd)) we find

gsyn

c2τr(τr + τd)
(w1 + 22w2 + . . .+ n2wn) +O(1/c3) = 1.

It follows that

c2 ∼ κ
N

∑

i=1

i2wi(2.9)

where the positive constant κ is given by

κ =
gsyn

τr(τr + τd)
.

It should be noted that the power law of the velocity as gsyn becomes large is deter-
mined by the first non-null derivative of the PSP taken at t = 0. From equation (2.9),
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we obtain the following results for the different synaptic connections:

Constant synaptic weights. For wi = 1/N , using
N
∑

i=1

i2 = 1/6N(N + 1)(2N + 1),

we obtain

c2 ∼ κ

6
(N + 1)(2N + 1).

Linearly and quadratically decreasing synaptic weights . For wi = 1/(|w|i)
where |w| is the normalization coefficient, we find

c2 ∼ κ

2|w|N(N + 1).

We have |w| = γ+ψ0(N + 1) where γ is the Euler-Mascheroni constant and ψ0 is the
digamma function (the logarithmic derivative of the gamma function [3]). Note that
|w| could be rewritten |w| = ψ0(N + 1) − ψ0(1).
For quadratically decreasing weights, wi = 1/(|w|i2), the asymptotic behavior of the
wave speed is given by

c2 ∼ κ

|w|N.

The normalization coefficient is |w| = π2

6 − ψ1(N + 1) = ψ1(1)− ψ1(N + 1) where ψ1

is the trigamma function (the derivative of the digamma function).
Exponential synaptic weights. Let wi = exp(−i/σ)/|w| where σ is a positive
constant that monitors the synaptic footprint length and |w| = z(1 − zN )/(1 − z)
where z = exp(−1/σ). The analytical expression of the asymptotic behavior of the
wave speed is given by

c2/κ ∼
N

∑

i=1

i2zi =
zN+1

(z − 1)3
(N2z2 + (1 − 2(N2 + 1))z + (N + 1)2) − z(z + 1)

(z − 1)3

For N large, the previous expression simplifies into c ∼
√

κ(1 + z)/(1 − z).
The accuracy of the different approximations is illustrated Figure 2.3. Numerically,
the asymptotic expansions are a good overapproximation of the wave speeds.

2.1.1. Stability of simple waves. Consider a simple traveling wave where neu-
rons successively fire at times tfj = j/c0. Suppose that the firing times are perturbed

such that t̃fj = j/c0 + uj . Asymptotic stability then corresponds to the condition
uj → 0 as j → ∞.
The perturbed traveling wave solution, ṽi(t), satisfies

ṽi(t) = gsyn

N
∑

j=1

wjǫ(t− (i− j)/c0 − ui−j).(2.10)

Expanding equation (2.10) to first order in ui yields

ṽi(t) = vi(t) − gsyn

N
∑

j=1

wjui−jǫ
′(t− (i− j)/c0).
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Fig. 2.3. Speed of the simple wave as a function of the number of presynaptic neurons, N. The
speed obtained with the numerical simulation of a network is compared with the analytical expression
derived in the limit of large gsyn values. The lines are for the analytical expression and have to be
compared with the corresponding (non linked) markers that are for the numerical results. Different
synaptic architectures are considered: circles (red) are for constant synaptic weights, stars (blue)
are for linearly decreasing weights, diamonds (green) are for quadratically decreasing weights and
crosses (black) are for exponentially decreasing weights. Parameters are gsyn = 30, τr = 0.1, τd = 2.
For these parameters, the behavior of the wave speed derived for exponentially decreasing weights as
N becomes large is c ∼ 22.1

Writing the threshold condition at the firing time, t̃fj , leads to the linear equation

N
∑

j=1

wj(ui − ui−j)ǫ
′(j/c0) = 0.(2.11)

Equation (2.11) defines a map that as a general solution of the form ui = λi. Substi-
tuting this equation in (2.11) yields the characteristic equation

N
∑

j=1

wj(1 − λ−j)ǫ′(j/c0) = 0.(2.12)

Les us recall that λ = 1 is a solution because of the translation invariance property
of traveling wave solutions.
Multiplying (2.12) by λN , the characteristic equation can be rewritten in the polyno-
mial form

P (λ) =

N
∑

i=0

aiλ
i = 0(2.13)



Propagation of spike sequences 11

where














aN =
N
∑

j=1

wjǫ
′( j

c0

)

ai = −wN−iǫ
′(N−i

c0

) for i = 0, . . . , N − 1.

(2.14)

A simple wave is stable if and only if the roots of (2.13) lie in the unit circle. The
wave is asymptotically stable if all the roots, except the unitary one, lie in the interior
of the unit circle. Let Q(λ) be the polynomial

P (λ) = (λ− 1)Q(λ).

We have

Q(λ) =

N−1
∑

i=0

biλ
i

and

bi = −
i

∑

k=0

ak =

N
∑

k=N−i

wkǫ
′(k/c0).

where we use the definition (2.14). The simple wave is asymptotically stable if and
only if the polynomial Q(λ) is Schur stable : all roots of Q(λ) lie in the interior of the
unit circle. It is worth noting that the Schur stability of polynomials has important
applications to the problem of stability and stabilization of discrete time control sys-
tems. The so-called Schur-Cohn algorithm has been developped to determine whether
all roots of a polynomial are within the unit circle. Here, qualitatively, the stability
is determined by the timings of presynaptic spikes with respect to the derivative of
the post-synaptic potential weighted by wj . Moreover, a simple sufficient condition
for Schur stability is bN−1 > bN−2 > . . . > b0 > 0 that gives

wiǫ
′(i/c0) > 0, i ∈ {1, . . . , N}.(2.15)

Note that bN−1 = −a0 − a1 − . . .− aN−1 = aN , and therefore, the causality criterion
(2.5) leads to the necessary condition of existence aN > 0 or equivalently bN−1 > 0.
Condition (2.15) is satisfied in excitatory networks with sufficiently strong coupling.
Indeed, for gsyn strong enough, the wave speed is sufficiently large so that the arriving
times of the presynaptic spikes, i/c0, occur in the rising part of the PSP. This prop-
erty has interesting connection with the locking theorem stating that oscillations are
asymptotically stable if the postsynaptic potential is increasing in time as the neurons
fire [14]. Moreover, qualitatively, for moderate values of gsyn, it is expected that there
exists an index k such that, for i > k, i/c0 occurs in the decreasing part of the PSP,
ǫ′(i/c0) < 0. In this case, it is expected that long-range inhibition plays in favor of
the stability of simple waves.
For N = 1, the traveling wave solutions associated to the upper branch of the speed
curve (dc/dgsyn > 0) are stable since the only solution of the eigenvalue problem is
λ = 1. Therefore an admissible wave can destabilize only for N ≥ 2. For N = 2, we
have Q(λ) = b1λ+ b0. Thus, the stability is determined by

λ = b0/b1 = w2ǫ
′(2/c)/(w1ǫ

′(1/c) + w2ǫ
′(2/c)).(2.16)
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The simple wave is stable if and only if |λ| < 1. Let us discuss qualitatively the role
of the sign of the synaptic weights on the stability of simple waves. From (2.5), the
wave is admissible if w1ǫ

′(1/c) + w2ǫ
′(2/c) > 0. Therefore using (2.16) the necessary

condition for the stability of the wave, λ < 1, is rewritten w1ǫ
′(1/c) > 0. For clarity we

assume that the total synaptic input, gsyn, is sufficiently strong to have a wave speed
such that ǫ′(1/c) > 0. Therefore, a local inhibition, w1 < 0, (and therefore w2 > 0
otherwise the network is purely inhibitory and there is no activity) destabilizes the
simple wave and leads to a periodic propagating pattern of two consecutive neurons
where one neuron fires and the other stays quiescent. Such a wave is not captured
by the study of simple waves and originates from the non-connected network where
w1 = 0 and w2 > 0: a network made of two distinct 1D chains (as shown Figure 1.1).

2.2. Composite waves. A composite wave is characterized by a spatiotempo-
ral periodicity leading to a recurring pattern of spikes. The trajectories of membrane
potential of neurons within a group are repeated along the network and, during prop-
agation, the network activity is described by

vpi+k(t) = Vk(t− tfpi+k), k ∈ {0 . . . p− 1}(2.17)

where i is the index of the group, p is the size of the group that is the length of the
sequence, k is the index of the neuron within the group and the composite functions
Vk describe the time course of the kth neuron within the group. Firing times tfpi+k

satisfy (2.1). A composite wave is called a p-composite wave if p is the period of the
spiking activity in the moving wave, i.e the minimal integer value for which (2.1) is
satisfied. The spatiotemporal periodicity of the composite wave yields

tfj − j/c = δ̃j

where (δ̃j) denotes the periodic extension of period p of (δj).

Let ξ = t − tfpi be the traveling wave coordinate where the first neuron in the group

is arbitrary choosen as the origin. For convenience, we also define ξk = t − tfpi+k,
k ∈ {0, . . . , p − 1}, the traveling wave coordinate associated to neuron k within the
sequence. We have ξ0 = ξ, ξk + k/c + δk = ξ. Inserting in (1.4) a solution of the
form (2.17) and using the notations previously introduced, the composite function Vk

satisfies

Vk(ξk) = η(ξk) + gsyn

N
∑

j=1

wjǫ(ξk + j/c+ δk − δ̃k−j).

The unknown parameters, the velocity c together with the deviations δk from the
simple wave, are determined from the p threshold crossing conditions that are written

Vk(0) = 1, k ∈ {0, . . . , p− 1}
where each composite function Vk is expressed in its own traveling wave coordinate
ξk. We obtain the following system

gsyn

N
∑

j=1

wjǫ(j/c+ δk − δ̃k−j) = 1, k ∈ {0, . . . , p− 1}(2.18)

of p equations with p unknowns: δ1, . . . , δp−1, and the velocity, c. A solution is said
to be admissible if the causality criteria

Vk(ξ) < 1, for ξ < 0, k ∈ {0, . . . , p− 1}(2.19)
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are satisfied.
The stability analysis of composite waves is presented in the next section. Let us
close this section by the following remarks. The destabilization of the simple wave
previously discussed for N = 2 leads a 2-composite wave that corresponds to the
limiting case where δ1 = ∞. The composite wave observed Figure 2.1 is a 5-composite
wave, i.e. p = 5, and is supported by a network where each neuron has 10 presynaptic
neurons. It should be noted that the number of propagated ISIs is not imposed by
the number of presynaptic neurons. For instance, the propagation of a two-spikes
sequence shown Figure 2.4 is also obtained in a network with 10 presynaptic neurons
per neuron. This is in contrast to synfire chain where the size of the propagating
sequence is supervised by the number of neurons in the successive groups forming the
synfire chain.
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Fig. 2.4. Propagation of a sequence of two spikes in a feedforward network of spiking neurons.
After an initial transient, a composite wave made of a packet of 10 neurons propagates. In each
packet only two neurons are active while the others are quiescent (a dot is placed at time = 0 to
indicate quiescent neurons).

2.2.1. Stability of composite waves. The stability analysis of composite
waves is a generalization of the method used for the stability of simple waves and
proceeds along the same lines. We sketch here the main steps of the general analysis
and more details will be given in section 3 where the stability of the propagation of
an inter-spike interval is studied in depth. Consider a composite wave that propa-
gates in the network a firing sequence of length p. Neurons successively fire at times
tfpi+k = (pi+ k)/c0 + δk where k ∈ {0, . . . , p− 1}. Let

t̃fpi+k = (pi+ k)/c0 + δk + upi+k

be the perturbed firing times. Substituating this ansatz in Eq. (1.4) and using the
first order expansion of the PSP, ǫ(t), we obtain

ṽpi+k(t) = vpi+k(t) −
N

∑

j=1

wjupi+k−jǫ
′(t− tfpi+k−j)
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where ṽpi+k is the membrane potential of the perturbed composite wave and vpi+k(t)
is the unperturbed solution. Writing the threshold crossing at the perturbed firing
time t̃fpi+k = tfpi+k + upi+k and after linearization we end up with a linear system of
equations

N
∑

j=1

wj(upi+k − upi+k−j)ǫ
′(j/c0 + δk − δ̃k−j) = 0(2.20)

that defines p maps (upi+k)i for k = 0, . . . , p − 1. Note that we use (δ̃) the periodic
extension of (δ) previously defined. Considering the successive firings of neurons
during the propagation and due to the nonsymmetric nature of composite waves (with
respect to simple waves), we look for a solution of the form

upi+k = λi+1
1 . . . λi+1

k λi
k+1 . . . λ

i
p(2.21)

where λl ∈ C, l = 1, . . . , p. Asymptotic stability holds if all non-unitary solutions
(λ1, . . . , λp) satisfy

∣

∣

∣

∣

∣

p
∏

l=1

λl

∣

∣

∣

∣

∣

< 1.

Inserting (2.21) into (2.20) and multiplying each equation by the appropriate mono-
mial allows to transform (2.20) into a system of multivariate polynomial equations.
More details are given in the next section where the study is carried out in two di-
rections. First, we consider the propagation of a single ISI (p = 2); second, we study
the three nearest-neighbor coupling network (N = 3).

3. Propagation of an ISI. A simple wave communicates a single timing, the
inverse of the wave speed, and is therefore a poor mean to transmit information about
the stimulus that initiates it. Basically, an ’all-or-none’ information is retained: there
is a propagation or a failure. A composite wave conveys more information and, for
instance, a very short ISI can be transmitted. We will say in the following that an
ISI is transmitted if ∃k, δk 6= 0 (even if a simple wave transmits an ISI that is the
inverse of the wave speed). Critical questions are (i) how is the ISI related to the
initiating stimulus ? (ii) How is the conveyed ISI determined by the connectivity and
the synaptic time constants of the network ? (iii) What is the relationship between
the velocities of composite wave and simple wave ? (iv) Is there multistability of the
system ?
An ISI is transmitted along the network or, equivalently, a 2-composite wave prop-
agates, if there exists two subthreshold time courses of the membrane potential, V1

and V2, such that

v2i(t) = V1(t− tf2i), v2i+1(t) = V2(t− tf2i+1)

where the two successive firing times tf2i, t
f
2i+1 are given by

tf2i =
2i

c
, tf2i+1 =

2i+ 1

c
+ δ

where c is the wave speed and δ is the transmitted timing. Note that, strictly speaking,
the network propagates two ISIs: 1/c + δ and 1/c − δ. The two parameters c and δ



Propagation of spike sequences 15

are obtained from the threshold crossing conditions which give

gsyn

N
∑

k=1

wkǫ(k/c− sk) = 1,

(3.1)

gsyn

N
∑

k=1

wkǫ(k/c+ sk) = 1

where sk = 0 if k is even and sk = δ if k is odd. A 2-composite wave exists if two
successives ISIs are differents, i.e. δ 6= 0. The time course of the two composite
functions V1 and V2 is given by

V1(ξ1) = η(ξ1) + gsyn

N
∑

k=1

wkǫ(ξ1 + k/c− sk),

V2(ξ2) = η(ξ2) + gsyn

N
∑

k=1

wkǫ(ξ2 + k/c+ sk).

Both wave expressions are given in their respective traveling wave coordinate ξ1, ξ2,
where we have ξ1 = ξ2 + 1/c+ δ.
For the study of the stability of 2-composite waves, the perturbation of firing times
takes the form t̃f2j = 2j/c0 + u2j and t̃f2j+1 = (2j + 1)/c0 + δ0 + u2j+1. Using (2.20)
with p = 2, the sequences (u2j) and (u2j+1) satisfy the following linear equations

N
∑

j=1

wj(u2i − u2i−j)ǫ
′(j/c0 − sj) = 0,

N
∑

j=1

wj(u2i+1 − u2i+1−j)ǫ
′(j/c0 + sj) = 0.

Substitution of a solution of the form u2p = λp
1λ

p
2 and u2p+1 = λp+1

1 λp
2 yields the

characteristic equations

[ N−1

2
]

∑

p=0

w2p+1(1 − λ−p
1 λ−p−1

2 )ǫ′((2p+ 1)/c0 − δ) +

[ N

2
]

∑

p=1

w2p(1 − λ−p
1 λ−p

2 )ǫ′(2p/c0) = 0,

(3.2)

[ N−1

2
]

∑

p=0

w2p+1(1 − λ−p
1 λ−p

2 )ǫ′((2p+ 1)/c0 + δ) +

[ N

2
]

∑

p=1

w2p(λ1 − λ−p+1
1 λ−p

2 )ǫ′(2p/c0) = 0

where [x] is the integer part of x. The 2-composite wave is asymptotically stable if
all non-unitary solutions (λ1, λ2) of (3.2) satisfy |λ1λ2| < 1.
Let us now investigate the simplest synaptic architecture that supports the propaga-
tion of a 2-composite wave. We consider an excitatory network where each neuron
has N presynaptic connections. For N = 1 the existence of a composite wave is given
by the two threshold conditions: gsynǫ(1/c− δ) = 1 and gsynǫ(1/c+ δ) = 1 together
with the causality conditions gsynǫ(ξ+1/c− δ) < 1 and gsynǫ(ξ+1/c+ δ) < 1, ∀ξ < 0.
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The case δ = 0 is associated to the simple traveling wave and we investigate δ 6= 0.
We have to solve

ǫ(1/c− δ) = ǫ(1/c+ δ).(3.3)

The PSP ǫ is a continuous function that starts at 0 reaches its peak value and goes
back to 0. It thus is possible to find only two distinct solutions, x, y, such that
ǫ(x) = ǫ(y) = 1/gsyn for 1/gsyn smaller than the maximum of ǫ. Clearly, these
solutions satisfy gsynǫ(x

−) < 1 and gsynǫ(y
−) > 1 where ǫ(x−) = limu→x,u<x ǫ(u).

Then solution y is not admissible since V2(ξ) = η(ξ) + gsynǫ(ξ + 1/c+ δ) reaches the
threshold from above, i.e. V2(0

−) > 1.
For N = 2, we have to solve

w1ǫ(1/c− δ) + w2ǫ(2/c) = 1/gsyn,

w1ǫ(1/c+ δ) + w2ǫ(2/c) = 1/gsyn.

We find (3.3) and a possible solution is the degenerated composite waves obtained
as δ → +∞ where the velocity is given by gsynw2ǫ(2/c) = 1. Such solutions are not
of interest for ISI propagation and we consider composite waves with finite δ that
require δ < 1/c (otherwise ǫ(1/c − δ) = 0). From the shape of the PSP ǫ we have
ǫ′(1/c − δ) > 0 and ǫ′(1/c + δ) < 0 (one solution is in the rising part of the PSP
and the other one is in the decaying part). Moreover since 2/c > 1/c + δ we have
ǫ′(2/c) < 0 and therefore the wave function V2 satisfies

V ′

2(0) = w1ǫ
′(1/c+ δ) + w2ǫ

′(2/c) < 0.(3.4)

Therefore condition (2.5) is not satisfied, i.e. the composite function V2 crosses the
threshold before ξ = 0, and therefore the solution is not admissible.
The simplest synaptic connectivity that may support the propagation of an ISI is a
network where each neuron has N = 3 presynaptic neurons. From (3.1), we define
the two auxiliary functions f and g as follows:

f(1/c, δ) = w1ǫ(1/c− δ) + w2ǫ(2/c) + w3ǫ(3/c− δ) − 1/gsyn(3.5)

g(1/c, δ) = f(1/c,−δ)(3.6)

The velocity, c, and the transmitted timing, δ, are determined from the threshold
conditions that give the equations:

f(1/c, δ) = 0, g(1/c, δ) = 0.(3.7)

An intersection point (1/c0, δ0) of the level curves (3.7) indicates a possible solution
and provide the speed, c, and the transmitted timing, δ, of a 2-composite wave.
However, every solution of (3.7) is not related to a composite wave and some solutions
can reach the threshold before ξ = 0 and, therefore, are nonadmissible. To obtain a
2-composite wave, the following causality conditions have to be fulfilled

V1(ξ) < 1 and V2(ξ) < 1 ∀ξ < 0.(3.8)

It is obvious from (3.6),(3.7) that if (c, δ) is a solution then (c,−δ) is also a solution.
In the following we restrict our attention to the case δ > 0.
Taking N = 3 in (3.2) and multiplying the first equation of system (3.2) by λ1λ

2
2 and
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the second one by λ2
1λ2, the stability of the 2-composite wave is determined studying

the multivariate polynomial system

a12λ1λ
2
2 + a11λ1λ2 + a01λ2 + a00 = 0,

(3.9)
b21λ

2
1λ2 + b11λ1λ2 + b10λ1 + b00 = 0

where we employ the following definitions:

a12 = w1ǫ
′(1/c− δ) + w2ǫ

′(2/c) + w3ǫ
′(3/c− δ),

a11 = −w1ǫ
′(1/c− δ),

a01 = −w2ǫ
′(2/c),

a00 = −w3ǫ
′(3/c− δ),

and bij is obtained from aji replacing δ by −δ. The 2-composite wave is asymptoti-
cally stable if every roots (λ1, λ2) of (3.9) satisfy |λ1λ2| < 1.
Figure 3.1 shows the plot of the level curves f(δ, 1/c) = 0 and g(δ, 1/c) = 0 for a con-
stant synaptic coupling, wi = 1/3, i = 1, 2, 3. There are six intersection points but
only two are physically meaningful, i.e. admissible and stable. One corresponds to a
stable simple wave (marked SW) and the other one represents a stable 2-composite
wave (marked CW). Figure 3.1 also presents the plots of the traveling wave solu-
tions. The graph of an unadmissible solution where the threshold is crossed before
firing (crossing indicated by a circle) is depicted. The propagating pattern associated
to the two traveling waves is shown in Figure 3.2 where we simulate numerically a
network of 40 neurons. It should be noted that the simple wave is faster than the
2-composite wave but the two velocities do not significantly differ.
In the last part of this section, § (A)-(D), some properties of 2-composite waves are
analyzed using numerical simulations. Unless stated otherwise, parameters are those
of Figure 3.1.
(A) Bistability and basins of attraction. The coexistence observed Fig. 3.2 of a sta-
ble simple wave together with a stable composite wave shows the bistability of the
system. To understand with pattern is more easily initiated and to explore the link
between the propagating activity and the initial stimulus that initiates it, we simu-
late a network using an injected current into the first three neurons of the network
(’left’ of the network) such that the first three neurons fire successively at time t0,
t0 + ∆1 and t0 + ∆2 (we take t0 = 0). For ∆1 = 1/c and ∆2 = 2/c, the stimula-
tion mimics the arrival of a simple wave (with a velocity c) while for ∆1 = 1/c ± δ
and ∆2 = 2/c a 2-composite wave is initiated (with a velocity c and a transmitted
timing δ). Level curves are shown in both Figure 3.3a and b and the corresponding
basins of attraction of waves, in the plane (∆1,∆2), are depicted in Figure 3.3c and
d, respectively, for different synaptic weights. The location in the plane (∆1,∆2) of
the values corresponding to the simple wave and the 2-composite wave are shown
(denoted by green solid dots and marked SW and CW, respectively). A simple wave
is attracting for an initial stimulus in the black region whereas in the gray region
a 2-composite wave is initiated. Propagation failure occurs in the white region. In
Figure 3.3b and d, we investigate how 2-composite waves are affected by the coupling
function of the network and we consider the following perturbation of the previous
synaptic weights distribution: w1 = 1/3+α, w2 = 1/3 and w3 = 1/3−α where α > 0
is a small parameter that monitors the deviation from the constant synaptic coupling.
For α = 0 synaptic weights are constant. As α increases the interaction between
neurons presents a spatially decaying connectivity. Numerical simulations show that
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Fig. 3.1. Plot of the level curves f(1/c, δ) = 0 (red curve) and g(1/c, δ) = 0 (blue curve) on
the (1/c, δ) plane where c is the wave speed and δ the transmitted timing. The necessary conditions
for the existence of waves are fulfilled when the two curves intersect. The intersections emphasize
by two black dots denote stable traveling waves: SW stands for a simple wave and CW stands for
a 2-composite wave (composed of a sequence of 2 spikes). Other intersections represent unstable
or unfeasible waves. The wave functions corresponding to the stable simple wave, the stable 2-
composite wave (the two composite functions V1 and V2) and a nonadmissible wave are depicted
(insets) together with the temporal structure of the triplet of presynaptic spikes (vertical bars on the
ξ−axis). All the induced postsynaptic potentials are depicted (thin lines) and the total membrane
voltage is represented in fulled line. The arrow indicates the postsynaptic spike. Graph is done for
τr = 6, τd = 2, gsyn = 8.4, wi = 1/3 i = 1, 2, 3. The stable simple wave has a velocity c = 0.52.
The stable 2-composite wave propagates a time difference δ = 2.49 with a velocity c = 0.38.

for α = 0.104 the stable 2-composite wave deseappears. For α = 0.1, a simple wave
with a velocity c = 0.46 and a 2-composite wave, with c = 0.38 and δ = 1.23, can
propagate in the network. The locations of the stable waves are plotted (green dots)
together with the location of the unstable waves (red dots marked US).
(B) Wave speeds. The dependence of the wave speeds on the total synaptic con-
ductance, gsyn, is illustrated Figure 3.4. There are different critical values of gsyn:
the stable and unstable simple waves collapse for gsyn = 7.4 whereas the stable 2-
composite wave desappears near gsyn = 7.0. Conversely, as gsyn increases, the stable
2-composite wave vanishes, near gsyn = 9.1, whereas the simple wave propagates with
a velocity c that satisfies the asymptotic law c = K

√
gsyn, as predicted previously.

Moreover we observe the following properties: (i) the composite wave is slower than
the simple wave. (ii) Velocities of waves and 1/δ increase with gsyn. (iii) There is a
bistable regime in which the composite wave coexists with the simple wave, and (iv)
there are monostable regimes where a composite wave or a simple wave propagates
alone.
(C) Synaptic time constants. To investigate the dependence of the composite waves
on the time constants of the network, we compute the locus of existence and stability
of 2-composite waves in the (gsyn, τr) plane for different values of τd (see Figure 3.5a).
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Fig. 3.2. Bistability between (a) simple wave and (b) 2-composite wave in the network. The
dots represent the firing time of neurons. The wave is initiated using an injected current into a group
of 3 neurons on the left of the system. In (a) a simple wave propagates and in (b) a different initial
condition leads to the propagation of a 2-composite wave. Here, the 2-composite wave transmits
a very short interspike interval (the two corresponding spike timings are almost indistinguable).
Parameters are those of Figure 3.1.

The synaptic decay time τd affects the locus of existence of composite waves but the
global shape of the region is preserved. The propagation of composite waves critically
depends on τr: if τr is sufficiently large, i.e. the postsynaptic current (PSC) presents
a long increasing period before reaching its peak, a stable composite wave can prop-
agate for appropriate values of gsyn, independently of the duration of the decaying
phase of the PSC, τd. For large τr values, τr ≫ 1, the postsynaptic potential (PSP)
is triangular-shaped with a rising phase given by

ǫ(t) = 2t/τ2
r , 0 ≤ t ≤ τr.(3.10)

Inserting the linear expression of ǫ (3.10) into (3.5)-(3.6) and assuming that 3/c+ δ >
τr, it is easy to show that the speed, c, and the transmitted timing, δ, satisfy 1/c ≃ δ
and 1/c > δ. Therefore, in the traveling wave frame, two spikes arrive simultaneously
at ξ = 2/c and one at ξ = 0 for neurons characterized by the wave function V1, and
one at ξ = 4/c and two at ξ = 2/c for neurons described by V2. This approximation
is in good agreement with the numerical simulations depicted Figure 3.5b where we
find 1/c = 2.99, δ = 2.97 and, therefore, two of the three presynaptic spikes are
fairly indistinguishable (for convenience, we represent them Figure 3.5b using a small
time delay). The upper branch of the V -shaped curve delimiting the existence of
2-composite waves in the (gsyn, τr) plane is related to the minimal value of gsyn for
which a 2-composite wave exists. This value is reached when the arrival time of the
two nearly equal spikes is precisely the time-to-peak of the PSP, i.e. τr in the limit
τr ≫ 1. Therefore we have 2/c ≃ τr (assumption 3/c + δ > τr is thus a fortiori
satisfied) and from (3.5) we find

2gsynwǫ(τr) = 1
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Fig. 3.3. Plot of the level curves f(1/c, δ) = 0 (red curve) and g(1/c, δ) = 0 (blue curve) for (a)
α = 0 and (b) α = 0.1. ’CW’ denotes the location of a stable 2-composite wave and ’SW’ indicates
a stable simple wave. ’US’ is for an unstable solution and ’NA’ for a nonadmissible solution. The
basins of attraction of the stable propagating waves in the ∆1 − ∆2 plane are shown in (c) and (d)
for the stable solutions (SW and CW) found in (a) and (b), respectively. In the white region there
is no propagation. A stable 2-composite wave is produced in the gray region whereas the black region
represents the basin of attraction of the simple traveling wave. The small green dots stand for the
precise values of the simple wave (marked SW) and the 2-composite wave (marked CW) that are
obtained for ∆1 = 1/c, ∆2 = 2/c and ∆1 = 1/c±δ ∆2 = 2/c, respectively. Due to the symmetry, the
2-composite wave is associated to a pair of possible values in the ∆1 −∆2 plane and are represented
by the two green points with the same ordinate. The location ot the unstable solutions are shown in
red in the ∆1 − ∆2 plane: US1 leads to propagation failure, US2 to a simple wave and US3 to the
stable composite wave. Values of time constants are as in Fig.3.1.

for a constant synaptic strength wi = w = 1/3. Using (3.10) we derive the following
asymptotic behavior, for τr ≫ 1, of the upper branch of the curve delimiting the
region of existence of 2-composite waves

gsyn =
3

4
τr.(3.11)

The accuracy of the asymptotic approximation is illustrated Figure 3.5a. Summa-
rizing, the increasing part of the PSC plays a fundamental role in the existence and
stability of 2-composite waves and 2-composite waves disappear as τr becomes too
small. Numerical investigations (not shown) suggest that a necessary condition for
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of gsyn. The inverse of the transmitted timing ,1/δ, is also depicted (dotted line). Parameters are
those of Figure 3.1.
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Fig. 3.5. (a) Locus of existence and stability of 2-composite waves in the (gsyn, τr) parameters
plane (region inside the V -curves) for different values of τd. We use τd = 0.5, τd = 2 and τd = 8.
The red straight line denotes the predicted asymptotic behavior of the upper branches of the curves
delimiting the locus of existence of stable 2-composite waves. (b) Typical shape of the composite
functions, V1(ξ) and V2(ξ), for parameters near the upper branch of the V -curves. Spikes are
depicted in red. Incoming spikes are plotted as vertical bars on the ξ-axis and the postsynaptic spike
is depicted as an arrow. We take τd = 2, τr = 6 and gsyn = 7.2.

the existence of a stable composite wave is τr > τd.
(D) Facilitation and depression. Plasticity has a strong impact on the dynamics of
neural networks. Long-term plasticity operates at a time scale that is not relevant
here since we study one-spike propagation and we only consider short-term modifica-
tions. Two principal types of short-term plasticity are commonly used : depression
and facilitation. Facilitation and depression are presynaptic processes that modify the
synaptic changes. Let s be a variable that monitors synaptic changes. The synaptic
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current injected at a neuron i when the presynaptic neuron fires at tf now reads

Is(t) = gsynsi(t)α(t− tf )

where si is a depression, or facilitation, variable which is initially 1 and evolves as
si → βsi each time a spike is received and

dsi

dt
=

1 − si

τs

at any other time. Depression is obtained for β < 1 and facilitation for β > 1. The
time constant τs is at a time scale significantly larger than any other one related to the
first-spike propagation. Therefore, during the propagation, we neglect the relaxation
of si(t) after the arrival of the traveling wave. In this approximation, the influence of
short-term plasticity on the existence of 2-composite waves can be expressed through
the functions f (3.5) and g (3.6) as

f(δ, 1/c) = w1β
3ǫ(1/c− δ) + w2β

2ǫ(2/c) + w3βǫ(3/c− δ) − 1/gsyn

and g(δ, 1/c) = f(−δ, 1/c), for δ < 1/c. The influence of facilitation and depression is
assessed through parameter β and is shown Figure 3.6 where the region of existence
and stability of 2-composite waves is plotted in the (β, gsyn) plane. Both networks with
facilitating or depressing synapses support the propagation of 2-composite waves and,
for fixed parameter values, there exists only one stable 2-composite wave. Moreover,
there exists a bounded interval of gsyn values where both facilitation and depression
allow propagation of composite waves. However, networks with synaptic depression
can elicit composite waves for larger gsyn values. In contrast, with facilitation, a 2-
composite wave can propagate stably for smaller gsyn values. Moreover, in networks
with facilitation, the stable composite wave can coexist with two unstable composite
waves whereas in network with depression only one unstable composite wave can
coexist with the stable one.

4. Biological perspectives. In this section, we numerically study composite
waves through the exploration of more realistic biophysical conditions on the model.
In the following, unless stated otherwise, the illustrations are done with the numerical
simulation of a network where each neuron receives spikes from N = 20 presynaptic
neurons.

4.1. Constraints on time constants. One of the critical question is whether
a composite wave can propagate in a network with biologically plausible values of
parameters. As we have shown, in a network with 3-presynaptic neurons (per neuron),
stable composite waves exist but with severe constraints on the time constants of the
synaptic currents. In fact, it appears that the constraint τd < τr has to be fulfilled
which is not physiological and hence unrealistic. However, increasing the number
of presynaptic neurons allows to relax these constraints. This is numerically shown
Figure 4.1 where a synchronous sequence of five spikes propagates in a network with
the synaptic time contants τr = 0.1 and τd = 1, that correspond to a physical order of
1ms and 10ms, respectively. The simulation of the network is done by imposing the
firing time of the 20 first neurons (’left’ of the chain). A stimulation that mimics the
initiation of a wave of velocity c is done where c is the approximated value derived
previously for the simple wave. Some neurons in the initiation region are blocked
randomly.
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Fig. 3.6. Regimes of existence and stability of 2-composite waves in the (β, gsyn) plane where
β monitors the facilitation (β > 1) or the depression (β < 1) processes of the neurons. Inside the
region defines by the solid lines a composite wave exists and is stable. The dotted lines represent
the appearance, or the vanishing, of composite waves. The insets give the typical shape of the levels
curves, f(1/c, δ) = 0 (red curve) and g(1/c, δ) = 0 (blue curve), in the (1/c, δ) plane in the different
regions delimited by the dotted and the solid lines. Admissible composite waves are related to the
intersection points represented by a fulled circle: green circles are for stable solutions and the black
circles are for unstable ones. Nonadmissible intersection points are not emphasized.

4.2. Robustness of the spike sequence propagation. We have already
shown that stable composite waves can propagate through the network and there-
fore are robust to small deterministic perturbations. However, there are many other
sources of variability in neural systems that can affect the transmission of temporally
precise sequence of neuronal spikes. Noise is often added in neuronal dynamics to
account for the high degree of irregularity observed in in vivo recordings. A simple
way to account for variability in spiking neuron model is to consider the following
time evolution of the membrane potential

vi(t) = η(t− tfi ) + gsyn

N
∑

j=1

wjǫ(t− tfi−j) +Xi(t)(4.1)

where (Xi(t)) are independent random processes that are assumed to be uniformly
distributed in (−σ, σ). This approach is equivalent to a ’noisy threshold’ also called
escape model [15]. To assess the robustness of the propagation, a subset of neurons
in the chain is affected by the stochastic perturbation of their membrane potential
(4.1) and, consequently, their firing times are affected. We simulate here a chain of
150 neurons and apply the perturbation to neurons from 60 to 90. For moderate
values of σ and after a transient, the composite wave is re-formed. A typical result is
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Fig. 4.1. Propagation of a composite wave in a network where each neuron is connected to the
N = 20 left side nearest neurons. After an initial transient a stable sequence of 4 synchronous spikes
propagates. Parameters are τr = 0.1, τd = 1 and gsyn = 4.. The synaptic weights are constant:
wi = 1/N , i = 1, . . . , N , where N = 20.

shown in Figure 4.2a. Note that one could expect to have, after traversing the noisy
region, a propagation failure or the formation of a simple wave. The simulations over
repeated trials suggest that the synchronous propagation is very robust to localized
noisy threshold perturbations. In Figure 4.2b the probability of propagation failure
is computed with respect to σ. The numerical simulations reveal a sigmoid-like shape
for the probability of propagation failure of the spike sequence as a function of σ. For
small σ values the composite wave propagates (probability of failure near 0) whereas
large σ values lead to a propagation failure. The transition occurs for σ ∈ (0.4, 1.1)
and follows a linear increase. Recall that the membrane potential has a resting value
of v0 = 0 and the threshold, ϑ, has been set to 1. Therefore σ = 0.4 means a
perturbation that could be of an order equal to 40 percent of the total membrane
potential amplitude.
It is of interest to note that taking the mean of the firing times over repeated trials for
each neuron does not reveal the underlying time structure of the propagating activity
as shown Figure 4.3. The reason is that the labels of the neurons in the synchronous
groups may differ from one trial to another even if a propagating group is still made
of four synchronous spikes. This property is related to the translational invariance
of traveling waves and has important consequences on the analysis of the multitrial
recordings since such an averaging process destroys the underlying precise sequence
propagation.

4.3. A chain of Hodgkin-Huxley neurons. The propagation of a spike se-
quence has been investigated using a highly simplified neural model. An important
issue is the existence of composite waves in more detailed models. To show that
composite waves are not inherent to integrate-and-fire models, we simulate a chain of
synaptically coupled Hodgkin-Huxley neurons. A trial proceeds as follows. A subset
of randomly choosen neurons at the begenning of the network is enforced to fire at
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Fig. 4.2. Robustness of spike sequence propagation. (a) The influence of noise on the propa-
gation of a spike sequence is assessed by applying a stochastic perturbation to the subset of neurons
indicated by the straight line (σ = 0.3). (b) Probability of propagation failure of the spike sequence
as a function of σ. For each point, the probability is computed as a mean over 100 trials. Param-
eters are those of Figure 4.1. The straight line is not fit but is only a guide to visualize the linear
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40 60 80 100 120 140
0.5

1

1.5

2

2.5

3

3.5

4

neurons

tim
e

Fig. 4.3. Mean spike times of the neurons across 100 trials. For each individual trial, a group
of four synchronous spikes propagates (see Figure 4.2a) but the averaging masks the underlying
precise temporal structure.

given times. The maximal size of the initiating subset is the number of presynaptic
neurons in the network and the firing times of the neurons are chosen so as to mimic
the initiation of a simple wave. In order to explore a large panel of initiating patterns
of spikes, variability is added through a random noise on the imposed firing times. We
then investigate the existence of stable composite waves. The numerical simulations
(not shown) indicate that precise patterns of spikes propagate in the network. We
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observe that (i) small sequences are more easily initiated (the larger the sequence,
the smaller its basin of attraction) and (ii) composite waves that convey synchronous
discharges are more robust.

5. Discussion. Repetitions of temporally precise sequences of spikes have been
observed in many brain areas, variously referred to as ’sequences’ [31], ’temporal
modules’ [20], or ’recurring patterns’ [37]. Modeling strategies that support precise
repetitions of sequences have focused on synfire chains where spike sequences are
generated and propagated along a chain of connected pools. However synfire chains
require a highly specific topology where the propagation is achieved through the syn-
chronous activation of successive pools. In this paper, we use a very simple model, a
1-D line of ’one-spike’ leaky integrate-and-fire neurons with a spatially homogeneous
discrete nearest neighbor coupling. In line with the results for the spatially continu-
ous approximation, fast simple waves propagate in the network and, here, we derive
analytically some properties of these waves. More interestingly, we find a novel type
of traveling waves, the composite waves, i.e. spatiotemporal periodic traveling waves,
that support the propagation of precise sequence of spikes. In particular, we show that
a time-difference other than the one naturally encoded in the velocity of the wave can
be transmitted. Such patterns are an emergent property of the network and do not
require conduction delays unlike the polychronous wavefronts recently studied [21].
It should be noted that spatiotemporal periodic waves have been already reported in
spatially continuous network through lurching waves [17], [9], [36]. However lurching
waves differ from composite waves in at least two important ways. First, a lurch-
ing wave is characterized by a recruitment cycle that requires inhibition or coupling
with large delays which are not necessary in our network. Second, lurching waves
propagate slowly with a characteristic lurching period unlike composite waves. Here,
critical elements for the stable propagation of composite waves are the synaptic time
constants, the total synaptic input and the shape of the synaptic weights. In partic-
ular, in networks where neurons have few presynaptic connections, a large synaptic
rise time is necessary to observe composite waves. This requirement vanishes when
the number of presynaptic neurons increases.
Spiking neural networks exhibit a large variety of spatiotemporal activities that are,
in some still debated manner, involved in the neural processing of information. The
selective synchronization of neurons supports the oscillatory coding hypothesis and
has been intensively studied. However the possible role of traveling waves (also re-
ported as correlated activities) in neural coding has been less investigated. Previous
theoretical studies have underlined the ability of spatiotemporal sequences of spikes
to encode information [22], [23], [30]. One may speculate that the first-spike prop-
agation is involved in fast processing like the fast recognition and categorization of
stimuli. Basically, the stimulus-induced propagation along a transmission line implies
its recognition and the propagation failure leads to the non-recognition of the stimu-
lus. A more elaborate processing requires additional information that may be encoded
in the time structure of the propagating sequence. It should be noted that a coding
scheme based on traveling waves is independent of the precise label of neurons and
has a space-time invariant property: the spike sequence could be ’translated’ along
the network without changing its information content. We restrict here on the prop-
agation of one spike along a single channel but it is expected that several channels
and multiple spikes are implied into complex processing. A framework for the study
of waves with arbitrary collections of spike times has already been proposed in the
continuum approximation [32]. However the generalization to a discrete structure and
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multiple channels (two-dimensional network) remains to be done. Note that it prob-
ably exists a trade off between the number of presynaptic connections, the number of
propagating patterns and their robustness. One may speculate that sparse coupling
leads to the reliable propagation of a limited number of patterns.
During propagation, the activity is characterized by the repetition of the same pattern
along the successive groups involved in the tansmission. Recurring spatiotemporal
patterns have been experimentally observed [31], [37] and are supposed to be involved
in a mechanism of learning through spike time dependent plasticity. Such a learning
role of waves has to be understood in the light of the recently reported developmental
role of traveling waves [42].
It is interesting to compare the processing performed by traveling waves with the
processing in Hopfield networks [19] where the computation is achieved through the
convergence of the underlying dynamical system towards a fixed point. Here, attrac-
tors are traveling waves, i.e. spatiotemporal attractors, and the idea of associative
memory can be generalized in this context. Challenging problems to understand the
computation made through traveling waves are the estimation of the attraction basins
of composite waves, i.e. the link between the initial stimulation and the propagating
pattern, and the learning rules that endow the network with composite waves. What-
ever that may be, the ability of spiking neural networks to propagate a spike sequence
opens up a whole new range of coding options.
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