ENSIMAG 2A TD Systémes dynamiques

Systémes dynamiques non lisses. Feuille 2

V. Acary.

vincent.acary@inria.fr

2020-2021

Objectifs

L’objectif de ce TD est d’utiliser siconos http://siconos.gforge.inria.fr afin de simuler
des systémes dynamiques non réguliers issus de 1’électronique et de la mécanique.

On s’intéressera en premier a la régularité des solutions obtenues et a leur stabilité. Dans un
deuxiéme temps, on regardera un example ol ’état du systéme n’est pas continue comme la boule
rebondissante.

Procédure

Utilisation du binder.org
Si votre connexion a I'uga ne fonctionne pas, vous pouvez utiliser le site binder.org.

1. Aller a l’adresse suivante : https://github.com/siconos/siconos-tutorials

2. En bas de la page, clicker sur le logo "Launch binder »

E Changelog [examples] GPL -> Apache 3 years ago
B LICENSE Add LICENSE file a month ago
E) readme.md Update readme with binder ref a month ago

readme.md

The siconos tutorial

This repository contains all sources files and examples programs for Siconos software.

There you will find some tutorial (jupyter notebooks) and a list of examples for different areas of application.
Please

visit directory examples to find a simulation matching your field of interest or

visit directory siconos-notebooks and try EIEIEEEED 1o start an interactive python environment in which you can run
siconos.

Back to Siconos home page

3. Le chargement du serveur jupyter peut prendre quelques minutes. soyez patient

4. Selectionner le premier tutoriel A 4 diodes bridge wave rectifier

Pensez a sauvergarder réguliérement votre fichier en local (download /upload)
car le serveur binder ne fait pas de sauvegarde!!!

http://siconos.gforge.inria.fr
https://github.com/siconos/siconos-tutorials
https://jupyterhub.u-ga.fr/

ENSIMAG 2A TD Systémes dynamiques

Tutorial 1_DiodeBridge 05-12-17 9:38 a.m.

Siconos tutorial : A 4 diodes bridge wave
rectifier.

Prerequisites

Jupyter notebooks reminder
A notebook is a sequence of "cells" that can be executed.

Each cell can handle either python code or markdown for comments.

Edit a cell : Enter

Execute a cell: Shift + Enter

Run all cells : kernel menu (top of the page) --> Run all
Delete cell : DD

Add cell : Ctrl-mb

Shortcuts reminder : Ctrl-m h

List all magic commands : %lIsmagic

(https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#references)

Warning : cells can be executed in any order but results and variables are persistent (until a call to
Y%reset or kernel->restart)

Import siconos components

You may need to set PYTHONPATH or sys.path if siconos python packages are not in standard places.

In []: import sys
print(sys.path)
Update the following line depending on your siconos python instal
lation.
sys.path.append("/usr/local/lib/python3.5/site-packages/")
sys.path.append("~/Library/Python/3.5/1ib/python3.5/site-packages/"
)
import siconos.numerics as sn
import siconos.kernel as sk
import numpy as np

mifTutorial 1_t Pagina 1 de 11

Tutorial 1_DiodeBridge 05-12-17 9:38 a.m.

In []: # dynamical system parameters
Lvalue = le-2 # inductance
Cvalue = le-6 # capacitance
Rvalue = le3 # resistance
Vinit = 10.0 # initial voltage
x0 = [Vinit, 0.] # initial state
A matrix of the linear oscillator
A = np.zeros((2, 2), dtype=np.floaté64)
A.flat[...] = [0., -1.0/Cvalue, 1.0/Lvalue, 0.]

build the dynamical system
ds = sk.FirstOrderLinearTIDS(x0, A)

To get more details on this (or any other) class of DS, try:

In []: help(sk.FirstOrderLinearDs)

Tutorial 1. Pagina 3 de 11

Tutorial_1_DiodeBridge 05-12-17 9:38 a.m

I - Modeling : NonSmooth Dynamical Systems
(NSDS) definition

--> Dynamical systems, constraints, nonsmooth laws ...

The dynamical system

Consider the following example, a 4-diodes bridge wave rectifier

Using the Kirchhoff current and voltage laws and branch constitutive equations, the dynamics of the
system writes

. —VDRI
: - -1
[L.'c]: 0 = _[vr]+ 0 0 < L(. —VDR2
ir 7 0 i 0.0 0 Off ipm
ipr2
and if we denote
—VDR1 ,
V) —v) 0 = L
= [ZC] Sa=TPP L A= ., r= 00 = <,
ir, ipF1 i 0 00 0 0
ipr2
we get a first order linear system
X=Ax+r

Such systems are defined in Siconos with FirstOrderLinearDS, in a very simple way:

Tutorial_1_DiodeBridge

Tutorial 1.t Pagina 2 de 11

05-12-17 9:38 am

Nonsmooth laws and constraints

Now, the nonsmooth part of the system must be defined, namely what are the nonsmooth laws and
constraints between the variables. In Siconos, the definition of a nonsmooth law and a relation between
one or two dynamical systems is called an Interaction (see Interactions between dynamical systems).
Thus, the definition of a set of dynamical systems and of interactions between them will lead to the
complete nonsmooth dynamical system.

For the oscillator of fig 1: Diode bridge, there exist some linear relations (constraints) between voltage
and current inside the diode, given by

ipr1 0 0 = % =1 0] [-vm
ipn |_| 0 0 '[vc] fr &8 0 1] |-om
—Vpr1 -1 0 iL 1 0 0 0 ipr1
—VDR2 10 0o 1 o o/L i
with B
ipR1 % % -0
i 11
¥ ipr2 D = = ® 0 -1)
—VDFI 1 0 0 0
—VDR2 0 1 0 0
and recalling that
—VDR1
—VpF L1
PO) R U S R,
iDFI 00 0 0
ipr2

which is indeed a linear relation between (x, r) and (y, 1):

{y:CerDA,
r=Bi

implemented in siconos as:

Tutorial 1. Pagina 4 de 11

Tutorial 1_DiodeBridge 05-12-17 9:38 am.
In []: # B, C, D matrices of the relation

¢ = [ro., 0.3,
o, 0.1,
[-1., 0.1,
1., 0.1]

D = [[l./Rvalue, 1./Rvalue, -1., 0.],
[1./Rvalue, 1./Rvalue, 0., -1.],
1., 0., 0., 0.],
ro., 1., 0., 0.1]

B = [[0., 0., -1./Cvalue, 1./Cvalue],
ro., 0., 0., 0. 1]

set relation type
relation= sk.FirstOrderLinearTIR(C, B)
relation.setDPtr (D)

Each diode of the bridge is supposed to be ideal, with the behavior shown on left-hand sketch of the
figure below

Such a behavior can be described with a complementarity condition between current and reverse
voltage.

Complementarity between two variables y € R, A € R reads as
ifA=0 then y>0 and if 1> 0 then y=0

or, using L symbol,
0<yli>0

which means that yTl = 0. The inequalities must be considered component-wise.

Then, back to our circuit, the complementarity conditions, coming from the ideal diodes characteristics,
are given by:
0<-vpr1 L ipr1 20
0<-vwpr L ipp 20
0<ipr L —vpr1 20
0<ipre L —Vvpr2 20

Note that depending on the diode position in the bridge, y; stands for the reverse voltage across the
diode or for the diode current.

To represent such a nonsmooth law Siconos has a class ComplementarityConditionNSL (you will find
NSL in each class-name defining a nonsmooth law):

mifTutorial 1_t Pagina 5 de 11

Tutorial 1_DiodeBridge 05-12-17 9:38 a.m.

Il - Simulation definition

It's time to describe how our nonsmooth dynamical system will be discretized, formulated and solved.
We need first to define how the nonsmooth dynamical system will be integrated over time. This is the role
of the Simulation, which must define:

» how dynamical systems are discretized and integrated over a time step
» how the resulting One-Step NonSmooth Problem (OSNSP) will be formalized and solved

Two different strategies are available : event-capturing time-stepping schemes (a.k.a time stepping
schemes) and event-detecting time--stepping schemes (a.k.a event-driven schemes).

For the Diode Bridge example, an event-capturing strategy will be used, with an Euler-Moreau integrator
and a LCP (Linear Complementarity Problem) formulation for the OSNSP.

Let us start with the 'one-step integrator', i.e. the description of the discretisation and integration of the
dynamics over a time step, between time #; and #41. The integration of the equation over the time step
is based on a #-method, leads to:

Xebl = x{,’" +hW e
W= I — hoA)
M =+ AW (Ax + b)

implemented as:

In []: theta = 0.5
osi = sk.EulerMoreauOSI (theta)

Tutorial 1. Pagina 7 de 11

Tutorial 1_DiodeBridge 05-12-17 9:38 a.m

In []: interaction_size = 4 # number of constraints
nonsmooth_law = sk.ComplementarityConditionNSL(interaction_size)

A nonsmooth law and a relation define something called Interaction in Siconos

In []: interaction = sk.Interaction(nonsmooth_law, relation)

Notice that this interaction just describes some relations and laws but is not connected to any real
dynamical system, for the moment.

The modeling part is almost complete, since only one dynamical system and one interaction are needed
to describe the problem. They must be gathered into a specific object, the Model. A model contains a
nonsmooth dynamical system and the description of its simulation. The building of this object is quite
simple: just set the time window for the simulation, include dynamical systems and link them to the
correct interactions.

In []: # dynamical systems and interactions must be gathered into a model
t0 = 0. # initial time
T = 5.0e-3 # duration of the simulation
DiodeBridge = sk.Model(t0, T)
add the dynamical system in the nonsmooth dynamical system of the
model
DiodeBridge.nonSmoothDynamicalSystem().insertDynamicalSystem(ds)
link the interaction and the dynamical system
DiodeBridge.nonSmoothDynamicalSystem().link(interaction, ds)

Tutorial 1.t Pagina 6 de 11

Tutorial_1_DiodeBridge 05-12-17 9:38 am

Based on the simulation strategy and the time-integration, a one-step nonsmooth problem will be
formalized in Siconos.

Considering the following discretization of the previously defined relations and nonsmooth law

Vel = Cxirr + D)kt
Rict1 = Bl
0<ys1 L s 20
we get
Vit = q+Misn

0yt L 4120
withg = Cx)f, M= hCW~'B+D
This is known as a Linear Complementarity Problem, written in siconos thanks LCP class.
As usual, check user documentation for a complete review of the nonsmooth problems formulations

available in Siconos.

In []: osnspb = sk.LCP()

Depending on the chosen formulation, different solvers are available. You can for example change the
default (Lemke) for a non-symmetric QP, as below. A complete list of available solvers can be found in
documentation (LCP solvers: http://siconos.gforge.inria.fr/users_guide/lcp_solvers.html#lcp-solvers
(http://siconos.gforge.inria.fr/users_guide/lcp_solvers.html#lcp-solvers)).

In []: osnspb = sk.LCP(sn.SICONOS_LCP_NSQP)

Then the last step consists in the simulation creation, with its time discretisation

In []: # simulation and time discretisation
time_step = 1.0e-6
td = sk.TimeDiscretisation(t0, time_step)
simu = sk.TimeStepping(td, osi, osnspb)

The connection with the nonsmooth dynamical system is done through the Model

In []: DiodeBridge.setSimulation(simu)
DiodeBridge.initialize()

Tutorial 1. Pagina 8 de 11

Tutorial 1_DiodeBridge

05-12-17 9:38 a.m.

The model is now complete and ready to run
Il - Running the simulation

There are several options to run the simulation. The most simple is as follows. In this version, the events
are the instants of the time discretization but other events of differents may be scheduled.

In []: #while simu.hasNextEvent():
simu.computeOneStep() # Solve the LCP
simu.nextStep() # Save current vars and prepare next step

For the present case, x,y and A at each time step are needed for postprocessing. Here is an example on
how to get and save them in a numpy array

In []: N = int((T - t0) / simu.timeStep()) + 1
data_plot = np.zeros((N, 8))
y = interaction.y(0)
lamb = interaction.lambda_(0)
x = ds.x()
k=0

data_plot[k, 1] =
data_plot[k, 2]
data_plot[k, 3]
data_plot([k, 4]
data_plot[k, 5]
data_plot[k, 6] =
data_plot[k, 7] =
k += 1

x[0] # inductor voltage

x[1] # inductor current

y[0] # diode R1 current

-lamb[0] # diode R1 voltage
-lamb[1] # diode F2 voltage
lamb[2] # diode F1 current

y[0] + lamb[2] # resistor current

while simu.hasNextEvent():
simu.computeOneStep() # Solve the LCP
data_plot[k, 0] = simu.nextTime()

data_plot[k, 1] = x[0]
data_plot[k, 2] x[1]
data_plot[k, 3] = y[0]
data_plot[k, 4] = - lamb[0]
data_plot[k, 5] = - lamb[1]
data_plot(k, 6] = lamb[2]

data_plot[k, 7]
k += 1
simu.nextStep() # Save current vars and prepare next step

y[0] + lamb[2]

Pagina 9 de 11

Tutorial 1_DiodeBridge

mifTutorial 1_t

05-12-17 9:38 a.m.

V - Questions
Let us consider the following function V : R? — R:
1
Vix) = ExTPx

c 0
with P =

0 L
. Plot the phase portrait of the system
. Compute the equilibria of the system
. Plot the contour (level set) of the function V
. Show that the system is passive.
. Is the equilibrium is stable in the sense of Lyapunov ?

o s wN

Pagina 11 de 11

Tutorial 1.

Tutorial 1_DiodeBridge

« hasNextEvent() is true as long as there are events to be considered, i.e. until T is reached
* nextStep() is mainly used to increment the time step, save current state and prepare initial
values for next step.

computeOneStep() performs computation over the current time step. In the Moreau's time

stepping case, it will first integrate the dynamics to obtain the so-called free-state, that is
without non-smooth effects, then it will formalize and solve a LCP before re-integrate the
dynamics using the LCP results.

The results can now be postprocessed, using matplotlib pyplot for example

IV - Post-processing

In

[

1

import matplotlib.pyplot as plt

%matplotlib inline

plt.figure(figsize=(15,10))

plt.subplot(411)

plt.title('inductor voltage')
plt.plot(data_plot[l:k - 1, 0], data_plot[l:k - 1,
plt.grid()

plt.subplot(412)

plt.title('inductor current')
plt.plot(data_plot[1l:k - 1, 0], data_plot[l:k - 1, 2])
plt.grid()

plt.subplot(413)

plt.title('diode Rl (blue) and F2 (green) voltage')
plt.plot(data_plot[l:k - 1, 0], -data_plot[l:k - 1, 4])
plt.plot(data_plot[1l:k - 1, 0], data_plot[l:k - 1, 5])
plt.grid()

plt.subplot(414)

plt.title('resistor current')

plt.plot(data_plot[l:k - 1, 0], data_plot[l:k - 1, 7])
plt.grid()

11)

Tutorial 1.t

05-12-17 9:38 a.m

Pagina 10 de 11

