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Concurrent multiple impacts modelling:
Case study of a 3-ball chain

Vincent Acary ∗, Bernard Brogliato
INRIA Rhône-Alpes Projet BIP, ZIRST, 655 avenue de l’Europe, Montbonnot, 38334 St Ismier Cedex, France

Abstract

The aim of this work is to exhibit a multiple impact law for rigid body dynamical systems which meets the properties
of closing the non-smooth dynamical equations and of corroborating experiments. This law is based on the impulse
correlation ratio which is computed from an equivalent regularized model with compliant contact. A case-study on a 3-ball
chain and n-ball chain are delineated and results on finite dimensional system are stated.
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1. Introduction and motivations

Roughly speaking, a multiple impact can be defined
as the occurrence of several shocks at the same time on
various points of a mechanical system of rigid bodies.
A chain of balls or the Newton’s Cradle are academic
examples of systems where concurrent multiple impacts
occur.

When a rigid body mechanical system with perfect
unilateral constraints is subjected to impact, the definition
of an impact law allows one to compute the post-impact
velocity [1]. An impact law must possess the following
properties:
(1) It closes the system of non-smooth equations of motion

in the sense that it provides the post-impact velocities
and the percussions for any pre-impact conditions. The
fact that the dynamical system associated with an im-
pact law is mathematically well-posed is an additional
interesting feature.

(2) It corroborates the experimental observations, and the
set of parameters which enter the law must be mea-
surable and physically justified. Particularly, the law
must describe an energetic behavior which is com-
patible with the basic principles of thermodynamics,
and must provide post-impact velocities in agreement
with the experiments. Better, the parameters of the law
may be correlated with the geometrical and material
characteristics of the bodies in impact.
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The aim of this work is to exhibit an impact law which
meets both the preceding conditions.

When multiple impacts occur, most of the classical for-
mulations do not respect both requirements 1 and 2. The
algorithm of Han and Gilmore [2] provides a good en-
ergetic treatment but the existence of a solution is not
guaranteed [3]. Moreau [4] proposes an impact law, nu-
merically efficient, which always provides a solution, but
the post-impact velocities are not always satisfying from
an experimental point of view. Frémond [5] presents an
elegant and rigorous framework to add internal constraints
in mechanical systems, which are consistent with thermo-
dynamic principles. Motivated by an experimental work on
Newton’s cradle, Ceanga and Hurmuzlu [6] postulate the
existence of an impulse correlation ratio (ICR) α for a
triplet of balls. With the help of energetic restitution coeffi-
cients, the post-impact velocities are experimentally shown
to be well approximated. However, in the last two works a
precise physical definition of the parameters of such laws
somewhat lacks.

In this paper, we shed new light on the ICR by studying
the regularized system of a 3-ball chain with elastic contact
springs. The physical justification of this choice may be
found in the work of Falcon et al. [7] on one-dimensional
columns of beads. The industrial application of this work
is led through a fruitful collaboration with Abadie [8] from
Schneider Electric, concerning the virtual prototyping of
circuit breaker mechanisms, where a fine modelling of
impact is an essential step.
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2. Case study of a 3-ball chain regularized with elastic
springs

In this section, we focus our attention on 3-ball chains,
which are very interesting examples of systems with mul-
tiple impacts. A hard ball behaves as a rigid body with
massless springs at contact. In other words, the impact pro-
cess between hard balls does not excite the natural modes
of each ball. Furthermore, Hertz theory of contact is very
well correlated with the experiments at low velocity range
[7].

2.1. Rigid body model of a 3-ball chain

A dynamical system of three rigid balls of equal mass
m, described by their center of mass positions q1, q2, q3 and
velocities v1, v2, v3 is considered. Each ball slides without
friction on a straight line and the dynamics at the instant of
impact is:


m(v+
1 −v1) = −p1

m(v+
2 −v2) = p1 − p2

m(v+
3 −v3) = p2

(1)

where vi , v+
i are respectively the pre-impact and the post-

impact velocities and pi , the impulses. Without loss of
generality, the pre-impact velocity of the middle ball is
chosen equal to zero (v2 = 0). An additional law is given to
address the energetic behaviour at impact. For the conser-
vative case, we have:

v2
1 +v2

3 = (v+
1 )2 + (v+

2 )2 + (v+
3 )2 (2)

If a multiple impact occurs (i.e. the three balls are in
contact at the same instant), this system is not mathe-
matically well-posed. Indeed, for [v1,v3] = [1,0], one can
easily check that [v+

1 ,v+
2 ,v+

3 ] = [0,0,1] and [v+
1 ,v+

2 ,v+
3 ] =

[−1/3, 2/3, 2/3] can be solution of this system in applying
conservative Newton laws sequentially to the first or the
second pairs of balls [3].

If we introduce a value for the ICR, α = p1/p2, the
system becomes well-posed and the unique solution is
given by:



v+
1 = v1 − α(

1−α +α2
) [αv1 −v3]

v+
2 = α −1(

1−α +α2
) [αv1 −v3]

v+
3 = v3 + 1(

1−α +α2
) [αv1 −v3]

(3)

2.2. Numerical experiments

Let us consider an equivalent regularized system for the
3-ball chain. The interaction between two balls is no longer
rigid but realized through a Hertzian spring model. We are

interested in relative motion between the balls, therefore
we choose to write down the dynamical system in terms of
indentations, δi = qi+1 −qi , as:


mδ̈1 = −2 f1(δ1)+ f2(δ2)

mδ̈2 = −2 f2(δ2)+ f1(δ1)

0 ≤ f ⊥ f − K (δ)δ ≥ 0

(4)

where f = [ f1, f2]T represents the efforts between balls,
δ = [δ1,δ2]T the vector of collected indentations and K (δ)
is the stiffness matrix. For Hertzian contact, the stiffness
matrix takes the form:

K (δ) =

k1(δ1)1/2 0

0 k2(δ2)1/2


 (5)

where k1 = k and k2 = κk,κ ∈ R+ are the coefficients of
stiffness related to material and geometrical parameters.

The integration, which is intractable analytically, is per-
formed with Scilab© for various initial relative velocities
(choosing v2 = 0). Actually, the solution is sufficiently
smooth to allow the use of a traditional numerical ODE
solver.

On Fig. 1, some curves are given which draw the forces
between balls versus time. One can remark that the process
of collision is not trivial: several periods of contact may
occur before the balls separate definitively (see Fig. 1b,c),
or the contact period between two balls may not begin at
the first instant of contact (see Fig. 1d).

If we define a multiple impact in regularized systems as
the existence of a time interval where both contact forces
are different from zero, all of these processes lead to mul-
tiple impacts. Naturally, the rigid limit in a mathematical
sense requires additional care.

2.3. Analytical results for linear springs

Let us now analyze the 3-ball chain with linear springs.
This model is not consistent with the contact mechanics
between two balls, but it is useful if we want to perform
some analytical developments which are intractable with
the Hertz model.

For example, let us consider, v1 > 0, v2 = v3 = 0 with
κ > 1. We can demonstrate that there exists a non-zero
interval [0, t �] in which the system behaves as the following
bilateral system:


mδ̈1 = −2k(δ1)+κk(δ2)

mδ̈2 = −2κk(δ2)+k(δ1)

δ1(0) = δ2(0) = 0, δ̇1(0) = −v1, δ̇2(0) = v3

(6)

On [0, t �], the solution of (6) is:


δ1(t) = −v1

β −γ

(
β

ω1
sin(ω1t)− γ

ω2
sin(ω2t)

)

δ2(t) = −βγ v1

β −γ

(
1

ω2
sin(ω2t)− 1

ω1
sin(ω1t)

) (7)
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Fig. 1. Numerical integration of 3 balls chain. Forces between balls versus time. (a–d) Hertzian spring contact. (e-h) Linear spring.
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where (ωi ,φi ) are the natural modes of the system given
by:


ω2
1 = k

m

(
κ +1−√

κ2 −κ +1
)

,

φ1 = [β = κ −1+√
κ2 −κ +1,1]T

ω2
2 = k

m

(
κ +1+√

κ2 −κ +1
)

,

φ2 = [γ = κ −1−√
κ2 −κ +1,1]T

(8)

The first time one contact breaks, denoted as t �, is
provided by the smallest positive root of the transcendental
equations:

t12 = min
t∈R+∗

{
f1(t) = 0

with f1(t) = sin(ω1t)− ω1

ω2

γ

β
sin(ω2t)

}
(first pair of balls)

t23 = min
t∈R+∗

{
f2(t) = 0 with f2(t) = sin(ω1t)− ω1

ω2
sin(ω2t)

}

(second pair of balls)

Finding the smallest root with respect to the physical
parameters of the system is a painful work. However, for
this particular case, the following holds:

Proposition 1
If ω2/ω1 = j ∈ N

∗ then t12 = t23 = t � = π/ω1.
If ω2/ω1 ∈ ( j ; j + 1), j ∈ N

∗ and j odd (resp. even) then
t � = t12 < t23 (resp. t12 > t23 = t �).

For t > t �, only two balls are still in contact. The rest of
the process is easily integrable up to the final separation at
the time t f . Moreover, one can show that there is no further
contact between the balls as illustrated in Fig. 1e.

For t � = t12 < t23, the ICR is calculated as follows:

α = p1

p2

= 1

βγ

(−β

ω2
1

[
cos(ω1t12)−1

]− −γ

ω2
2

[
cos(ω2t12)−1

])

/[
1

ω2
2

(
cos(ω2t12)−1

)− 1

ω2
1

(
cos(ω1t12)−1

)

+ 1

ω′
2

2

(
cos(ω2t12)−cos(ω1t12)

)(
cos(ω′

2 t̂23)−1
)

− 1

ω′
2

(
1

ω2
sin(ω2t12)− 1

ω1
sin(ω1t12)

)(
sin(ω′

2t̂23)
)]

(9)

where ω′
2 = √

2κk/m is the natural pulsation of two balls
in contact and t̂23 = t23 − t �.

2.4. Preliminary conclusions

Other cases have been treated in the same way. It is
noteworthy that the occurrence of transcendental equations

in the resolution creates serious difficulties to integrate
analytically the process of collisions. Particularly, the time
and the order of interactions are not easily predictable.

Nevertheless, a preliminary conclusion can be stated, on
which more general results will be provided in Section 4:

Proposition 2
The instants of changes in the contact interactions, in an
adimensional scale of time, for instance, T = ωi t , and
the ratio of impulses, α, do not depend on the absolute
values of stiffness k and mass m. Moreover, the impulse
correlation ratio α is completely determined by the natural
modes of the regularized dynamical system and the pre-
impact velocities.

This conclusion outlines two important consequences:
• from a mechanical point of view, the introduction of an
impulse ratio enhances the model with some information
about the behavior of a dynamical system when it is bound
by elastic contact,
• from a numerical modelling point of view, the indepen-
dence of absolute value of k allows one to consider in a
consistent manner its applications to very large stiffnesses,
which are generally encountered in applications.

3. Some remarks on impulse correlation ratios in n-ball
chains

An important aspect of a correct impact law is that it
qualitatively represents the physical phenomena. For the
n-ball chain or Newton’s cradle, we know that conservation
of kinetic energy and momentum is not sufficient to explain
that there is no ball at rest after an impact [9]. The
introduction of a set of ICR in an n-ball chain as Ceanga
and Hurmuzlu [6] have done, describes qualitatively this
important phenomenon.

From a quantitative point of view, some remarks must
be made. Let us study the values of the ICR obtained
by numerical simulation of an n-ball chain made of steel
(E = 210 Mpa, ν = 0.3, ρ = 7800 kg/m3) regularized with
elastic Hertz model, where the first ball is dropped at 1 m/s
and the other balls are at rest.

On Fig. 2a, the number of balls of radius 10 mm in
the chain ranges from 3 to 21. For n balls, there are n −1
impulses and n −2 ICR, defined by:

αi = icr(i) = pi

pi+1
(10)

The first remark is that only the ICR which corresponds to
the last triplet in the chain (for instance, the point A for 8
balls) is very different from the others. Therefore, the value
of ICR measured from an experiment on a triplet cannot be
used for the n-ball chain.

On Fig. 2b, we observe the value of ICR in a 21-ball
chain where the tenth ball has been changed to a big ball
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Fig. 2. Impulse correlation ratios in an n-ball chain. (a) ICR versus the number of balls in the chain. (b) ICR versus the index of triplet in
the 21-ball chain. Comparison between chain of same balls and a chain with a big ball 10.

of radius 50 mm. The ICR corresponding to the percussion
on the big ball is different, but also the value of ICR for
the triplets 10 to 19. Moreover, the value of ICR computed
for a 3-ball with a middle big wall is about 63.47, which
is very different from the value computed in the whole
chain (point B). This shows that the ICR depends on the
dynamical features of the whole coupled system.

4. Towards an extension to finite dimensional systems –
major results and conclusion

The case study of a 3-ball chain is extended to finite
dimensional systems subjected to perfect unilateral con-
straints. The major results are:
(1) The post-impact velocity, computed with the multiple

impact law defined by impulse correlation ratio, is
provided in a unique way and the system becomes
mathematically well-posed.

(2) If the perfect constraints are regularized by a general
viscoelastic contact model corresponding to a linear
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viscoelastic bulk behavior [10,11] i.e.

f = K δn +Cδn−1 δ̇ (11)

then
(a) the ratio of impulse is finite and the subspace of the

state space defined by

E = {δ ≥ 0, δ̇ ≥ 0} (12)

is globally attractive. Moreover, the amplitude of
the force asymptotically tends towards zero and
the relative velocity δ̇ towards a finite constant.
This last point is very important from a numerical
point of view. Extending these results to finite time
convergence is still an issue.

(b) The ICRs are independent of the absolute value of
stiffness.

(3) If the perfect constraints are regularized by a linear
elastic model, i.e.

f = K δ (13)

then the ICRs depend only on natural modes of the
system and the pre-impact velocities.

(4) The augmented impact law, which consists of a set
of energetic coefficients and impulse correlation ratio
fits within Frémond’s thermodynamic framework [5].
It ensures that the principles of thermodynamics are
respected.
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