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SUMMARY

The Non Smooth Contact Dynamics Method (NSCD or CD) is presented in this paper.

The purpose of this method is to deal with large collections of rigid or deformable bodies

in contact with unilateral constraints and large friction. The method is applied to monu-

ments made of blocks. The relevance of the modelling is discussed. Several examples of

buildings statically or dynamically loaded are presented.

1 INTRODUCTION

When buildings made of stone blocks jointed or not with mortar are submitted to dyna-

mical loadings such as earthquakes or quasi-static loadings such as ground level motions,

large local stresses are generated in the building causing cracks to appear. Cracks, together

with large enough deformations may result in the collapse of the building. On the contrary,

cracks may be the manifestation of small displacements between blocks and are not

necessarily the premonitory signs of some dangerous situation to happen, displacements

between blocks relaxing stresses, and allowing the building to adapt changes in loading.

Even sophisticated structures as air planes develop cracks the e�ect of many of them is

relaxing stresses. A reliable structure is thus, not a structure which does not develop

cracks, but which generates well distributed not propagating cracks.

Finite elements method applied to a building, considered at �rst as a single piece

continuous body, may provide very interesting results concerning the deformations and

the location of largest stresses. Since masonry materials are not much able to bear tensile

stresses, a forward step in the analysis would be to cut the meshing where tensile stresses

are to appear which usually goes together with a complete remeshing of the damaged area.

Since the distribution of stresses is changed when remeshing, a new computation has to

be done checking again if tensile stresses are still appearing and if some interpenetration is

occurring between contacting elements. Elements have thus to be cut or glued according to
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the tensile or the interpenetration status. The process is performed until those unilateral

constraints are satis�ed. Such a "try and error" method is currently used to solve

unilateral constraints problems. It may be complicated so as to take into account dry

friction. Remeshing is a costly operation and it might happen that the iterative scheme

does not converge. It might also give very good results using few iterations. Some special

behaviour laws for non tensile materials have also been developed together with Newton-

Raphson algorithms to solve quasi-static problems, [8].

The idea of describing a structure as it is, a collection of isolated blocks with unilateral

frictional contact between blocks, is thus natural. The overwhelming success of the "Finite

Element Method" obliges to name against it "Distinct Elements Method" this modeling

method. Distinct elements method goes back to the pioneering work of P. Cundall, [1] and

al. used at �rst to model rocky aggregates, then walls and granular materials, in softwares

such as TRUBAL,PFC2D,UDEC,TRIDEC. The Non Smooth Contact Dynamics method

or shortly Contact Dynamics (NSCD) has been initiated and developed by M. Jean and

J.J. Moreau during the last decade, [5, 6, 7, 2, 4]. M. Jean has developed this method

within a Fortran software LMGC. It is a distinct element method but technically quite

di�erent from P. Cundall and al. method (PC): roughly, in NSCD, Signorini relation for

unilateral conditions and Coulomb law as a dry friction law are adopted together with

an implicit algorithm scheme for the dynamical equation, while smooth approximations

of these laws are used in PC, together with an explicit scheme. Consequently NSCD

uses few large time steps, deals with numerous simultaneous contacts, and needs many

iterations at each time step, while PC uses many small time steps, and few iterations

at each time step. These methods propagate waves which may be numerically damped

in PC to approach quasi-static situations, while NSCD deals with dynamics with small

time steps or statics with large time steps and genuine numerical damping generated by

implicit methods.

In the next section, the NSCDmethod is presented. Modelling of buildings is discussed,

and some illustrative examples are presented.

2 HINTS ON THE NSCD METHOD

2.1 The frictional contact model, the dynamical equation

More details may be found in [4]. Let O,O

0

, be two neighbouring bodies P 2 O and

P

0

2 O

0

, be candidate and antagonist proximal particles. (See �gure 1(a)) The vector

��!

P

0

P is a unit normal vector

~

N directed from the antagonist object toward the allowed

region for the candidate particle. The vector

~

N is equipped with two other vectors to form

an orthonormal frame, so called local frame. Normal components of vectors in the local

frame are denoted with the subscript

N

and tangential components orthogonal to

~

N with

the subscript

T

. The following mechanical items are used in order to write a frictional

contact law:

the components of the relative velocity of P with respect to O

0

: U = (U

T

; U

N

),

the components of the reaction force exerted by O

0

on O : R = (R

T

; R

N

),

the gap: g = P

0

P .
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Figure 1:

Unilateral conditions are:

impenetrability: g � 0,

no attraction is acting between objects: R

N

� 0,

the reaction force vanishes when the objects are not contacting: g > 0) R

N

= 0.

This set of relations may be summarized in the following equivalent complementary

relation, the so called Signorini condition:

g � 0 R

N

� 0 gR

N

= 0 : (1)

The graph of this relation is displayed �gure 1(b). When dynamical situations between

rigid bodies are expected, the following relation so-called velocity Signorini condition is

suitable,

at some initial time t

0

; g(t

0

) = 0 ;

for all t 2 I; if g(t) = 0 then U

+

N

(t) � 0 R

N

(t) � 0 U

+

N

(t) R

N

(t) = 0 : (2)

U

+

is the right relative velocity, the relative velocity after the instant of impact, if any.

This relation implies 1 and the satisfaction of the inelastic shock law, (if t is an instant of

impact, then U

+

N

(t) = 0). This shock law seems appropriate for contact between blocks.

Cohesion between blocks may be taken into account replacing R

N

by R

N

+ Coh in the

above relations, where Coh is some constant which is set to zero as soon as the considered

contact is broken.

The basic features of Coulomb dry friction are:

the friction force lies in Coulomb cone: kR

T

k � �R

N

, � friction coe�cient,

if the sliding velocity is di�erent from zero, the friction force is opposed to the sliding

velocity with magnitude �R

N

: U

+

T

6= 0) R

T

= �R

N

U

+

T

kU

+

T

k

.

These two conditions may be summarized under the form of a maximum dissipation

principle:

R

T

2 D(�R

N

) 8S 2 D(�R

N

) (S �R

T

) U

+

T

� 0 ; (3)

where, U

+

T

is the right sliding velocity, D(R

N

) is the section of Coulomb cone, the disk

with center 0 and radius �R

N

. More complicated friction laws may be introduced, for
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instance making di�erences between static and dynamic friction coe�cient. Coulomb

law graph is displayed �gure 1(c). Both Signorini and Coulomb graphs are monotonous

multi-mapping graphs. The above relations are familiar in the context of Convex Analysis.

The systems under consideration are either collections of rigid blocks or discrete models

of deformable blocks. Thus the con�guration of the building is given by some generalized

variable q, for instance the assembled vector of coordinates of the centers of gravity and

rotational components of rigid blocks, or the assembled vector of the node displacements

in a �nite element description of isolated deformable blocks. Some continuous parts of the

building may be described as well using �nite elements. The time derivative is denoted _q

(a function of time with bounded variations). For smooth motions the dynamical equation

writes:

M(q)�q = F (q; _q; t) + r ; (4)

where M(q) is the mass matrix; F (q; _q; t) represents internal forces, elastic forces for

instance, external forces, and quadratic acceleration terms; r is the representative of local

reaction forces. Since shocks are expected, the derivatives in the above equation are to

be understood in the sense of distributions.

Superscripts

� �

are used to denote some candidates to contact �; � 2 1; :::; �. It

comes from classical kinematic analysis that the relative velocity U

�

at some contact �,

the derivative of the generalized variable _q, the representative r

�

of the local reaction

force R

�

for the generalized variable system satisfy the kinematic relations,

U

�

= H

��

(q) _q ; r

�

= H

�

(q)R

�

: (5)

The mappings H

�

(q); H

��

(q); are linear and H

��

(q) is the transposed mapping of H

�

(q).

For instance, in the case of a node candidate to contact with a line between two other

nodes, the mapping H involve change of variables from the local frame to the general

frame and interpolation between velocities of the three nodes. The following relation

expressing that the normal component of the relative velocity is the time derivative of the

gap function is a key relation as far as discrete forms of unilateral conditions are to be

de�ned,

_g

�

= U

�

N

: (6)

2.2 Discrete forms of the dynamical frictional contact problem

When time discretization is performed, an elementary subinterval ]t

i

; t

i+1

] of length h is

considered. Integrating both sides of the dynamical equation yields:

8

>

>

<

>

>

:

M( _q(t

i+1

)� _q(t

i

)) =

Z

t

i+1

t

i

F (t; q; _q) ds+

Z

]t

i

;t

i+1

]

rd�;

q(t

i+1

) = q(t

i

) +

Z

t

i+1

t

i

_qds:

(7)

The mean value impulse denoted r(i+ 1),

r(i+ 1) =

1

h

Z

]t

i

;t

i+1

]

rd� ; (8)
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emerges as a primary unknown. A numerical scheme is de�ned by a choice of approximate

expressions for the two other integrals in 7. To avoid details needed when embracing the

general problem of collections of bodies, the presentation is restricted to the case of small

perturbations of rigid or elastic bodies. In this case the mass matrix M(q) is considered

as a constant and F takes the form:

F (q; _q; t) = �V _q �Kq + P (t) ;

where V is the damping matrix and K is the sti�ness matrix. Setting _q(i), q(i), _q(i+ 1),

q(i + 1), respectively approximations of _q(t

i

), q(t

i

), _q(t

i+1

), q(t

i+1

), the Euler implicit

scheme writes:

8

>

>

<

>

>

:

_q(i+ 1)� _q(i) = w(�hV _q(i)� hK(q(i) + h _q(i)) + hP (i+ 1) + hr(i+ 1)) ;

q(i+ 1)� q(i) = h _q(i+ 1) ;

where

w = (M + hV + h

2

K)

�1

; P (i+ 1) = P (t

i+1

) :

(9)

It is assumed that the matrix M + hV + h

2

K is invertible, assumption which is satis�ed

since M is positive de�nite and V and K are positive.

Writing discrete forms of frictional contact relations needs much care since consistency

is to be preserved. According to the above relations 5, the following approximate relative

velocities, U

�

(i+ 1), U

�

(i), are de�ned as,

U

�

(i+ 1) = H

��

(�q) _q(i+ 1) ; U

�

(i) = H

��

(�q) _q(i) ; (10)

where �q is some auxiliary intermediate value of q, �q = q(i) being a possible choice.

Similarly the following impulses are introduced

R

�

(i+ 1) =

1

h

Z

]t

i

;t

i+1

]

R

�

d� ; r

�

(i+ 1) = H

�

(�q)R

�

(i+ 1) ; (11)

The construction formula for q(i + 1) together with the kinematic relation 6 suggests a

predictive formula for the approximate gap,

g

�

(i+ 1) = g

�

(i) + hU

�

N

(i+ 1) : (12)

The proposed discrete forms of the Signorini condition 1 and of the velocity Signorini

condition 2 are,

g(i+ 1) � 0 R

N

(i+ 1) � 0 g(i+ 1)R

N

(i + 1) = 0 ; (13)

if some contact is forecast within the interval [i; i + 1] then

U

N

(i+ 1) � 0 R

N

(i + 1) � 0 U

N

(i+ 1) R

N

(i + 1) = 0 : (14)

The proposed discrete form for Coulomb law is:

R

�

T

(i + 1) 2 D(�R

�

N

(i+ 1))

8S 2 D(�R

�

N

(i+ 1)) (S � R

�

T

(i+ 1)) U

�

T

(i + 1) � 0 ; (15)

Any of these Signorini conditions, together with Coulomb law may be shortly referred to

as

SignCoul (i; U

�

(i+ 1); R

�

(i + 1)) : (16)

The index i stands for data, q(i); _q(i); and the gaps known from geometric computations

when updating the local frames.
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2.3 Solving the basic frictional contact problem

Using the kinematic relations, a linear equation relating relative velocities and mean-

values of the impulses may be derived from the discrete form of the linearized equation

9, to be written together with frictional contact equations,

U

�

(i + 1) = U

�

free

+

P

�

W

��

hR

�

(i + 1) ; (17)

SignCoul (i; U

�

(i+ 1); R

�

(i+ 1)) ; (18)

with,

W

��

= H

��

(�q) w H

�

(�q) ; U

�

free

= H

��

(�q) v

free

;

v

free

= _q(i) + w(�hV _q(i)� hK(q(i) + h _q(i)) + hP (i+ 1)) :

The data are q(i); _q(i); and the gaps known from geometric computations when updating

the local frames. The unknowns are U

�

(i + 1); R

�

(i+ 1). The algorithm is:

step 1: for a candidate �, assume provisional values of, U

�

; R

�

, known from the current

iteration for � < � and known from the previous iteration for � > � ; a straightforward

solution U

�

; R

�

, is found discussing the intersection of graphs of a�ne mappings (an

alternative equivalent form of Signorini Coulomb relations);

step 2: update and proceed to the next candidate;

run over the list of candidates until satisfactory convergence.

This algorithm is similar to a block non-linear Gauss-Seidel algorithm and converges under

reasonable mechanical assumptions.

3 MODELING BUILDINGS MADE OF BLOCKS

When studying buildings made of blocks much attention is paid to motions, global

deformations and possible appearance of cracks, i.e. openings of joints. The distribution

of stresses within and between blocks is more questionable. It is expected, and actually

numerically observed, that the results depend very much on the modelling of blocks, on

the actual state of stresses within the building, on the way loading is applied and on the

kind of algorithm used for the numerical simulation. This particular feature is mainly

due to Coulomb frictional contact which may allow an in�nity of equilibrium solutions.

Physical situations are so. The selected state depends on the history of loading. The

choice of an algorithm and the way it is monitored is also in some way part of the history

of loading. Nevertheless, numerical simulation shows that some global results may be

relevant in spite of the uncertainty mentioned above.

The algorithm used to compute the reaction forces in this application has some

particular features. Firstly, as far as the interest is to describe near equilibrium or loosing

equilibrium situations, excluding the collapse of the building, small perturbations may

be assumed. Secondly, since the number of nodes of each block is very small, and since

blocks are independent, the matrix K is a block diagonal matrix, with small band width.

The inverse matrix w = (M + h

2

K)

�1

is also a block diagonal matrix with small band

width. It results that the elementary operations,

v

�

= w hr

�

; U

�

= H

��

v

�

; r

�

= H

�

R

�

;

involve a small number of 
oating point operations. The fully implicit non linear block

Gauss-Seidel algorithm presented above is thus reasonably time consuming.
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The global behaviour of the building may be analyzed using the deformation of the

building, the crack pattern and the stress �eld. Introduce the moment stress tensor of a

rigid or deformable block B,

� =

1

V

X

�2B

��!

OP

�




�!

r

�

;

where

�!

r

�

is the reaction force exerted on the particle candidate to contact P

�

belonging

to the considered block B, O is any point, practically the center of gravity of the block,

V is the volume of the block. This tensor is symmetric when the block is at equilibrium.

It is practically equal to the mean value of the Cauchy stress tensor on the block. The

direction and magnitude of principal stresses are useful results very alike "the thrust line"

used in classical idealistic graphic analysis.

A typical model of block used in the presented numerical simulations is described in

�gure 2. This 2-dimensional block is composed of 8 T3 �nite elements. The dots shows

midpoints candidates to frictional contact. Some possible choices in the modeling are,

1) the re�nement of the block mesh,

2) the use of a consistent mass matrix or a lumped mass matrix or a nodal mass

matrix,

3) the use of co-rotational coordinates, i.e. the motion is decomposed into a rigid

motion plus a complementary deformation motion, (there exists many such decompositions

according to the considered problem and the corresponding mechanical assumptions),

4) the spatial discretization of contact zones, in particular the choice of candidates to

contact,

5) the choice of physical modeling, elasticity of blocks, friction coe�cients, initial

stresses, boundary conditions such as ground level, etc,

6) the monitoring of the computation, accuracy, error criterion, number of iterations,

time step, etc.

The block shapes are not perfectly but approximatively polygonal. The physical data in

items 5 are usually badly known. Items 2 or 3 have not much in
uence in quasi-static

situations or as far as low frequencies are concerned. The most sensitive item is the choice

of candidates to contact where frictional contact forces are concentrated. A good choice

is to concentrate these forces on the supposed center of pressure. Nevertheless due to the

meshing, supplementary points may be useful though generating kinematic constraints.

In the examples below (50cm�25cm) elastic blocks, � = 2700 Kg=m

3

, E = 0:61O

6

Pa,

� = 0:27, are lying on some rigid foundation. They are roughly meshed as shown in the

pictures, using 8 T3 elements for each blocks, see �gure 2. The friction coe�cient is 0:5

between blocks and blocks and foundation. The gravity load is applied. Pictures show the

deformed structure, the distribution of contact forces, and the principal stresses, under

various loadings. In those presented simulations item 3 has been used.
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(a) Equilibrium under gravity load - Reactions (magni�cation= 30000) (b) Velocity and stresses during shear wave excitation (magni�cation= 200)

(c) Equilibrium under gravity load - Stresses (magni�cation= 30000) (d) Stresses at equilibrium after shear wave damage (magni�cation= 200)

Figure 3: Behaviour of an arch under various loads
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(a) Stresses after a settlement of ground (-4cm on the right side, magni�cation = 10)

(b) Stresses in piers and abutments under gravity load (magni�cation = 300)

Figure 4:
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4 CONCLUSION

Other quasi-static or dynamical examples have been treated in the 2 or 3 dimensional

cases, [3]. Some 4 T3 elements meshes have also been used. In the 3 dimensional

case blocks have been meshed with 8 H8 elements, or more roughly with one single

H8 element. There is no inconvenience to use a mixed description, some parts being

considered as composed of meshed single piece homogeneous material, other parts where

cracks are to appear as composed of distinct blocks. Models of elastic cohesive mortar

may be introduced in the frictional contact law. A line of research in collaboration with

GAMSAU/MAP, Ecole d'architecture de Marseille-Luminy, France, is to use encoded data

from stereophotogrametric pictures to generate �nite and discrete elements as to satisfy

both mechanics and architecture. Though the numerical simulations produce mechanical

likelihood, it is necessary to validate the theoretical model comparing with experimental

results. The comparison with experimental results from models of walls made of wood

blocks in ESM2, Marseille, France, are encouraging.
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