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Time-Stepping Numerical Simulation of Switched
Circuits Within the Nonsmooth Dynamical

Systems Approach
Vincent Acary, Olivier Bonnefon, and Bernard Brogliato

Abstract—The numerical integration of switching circuits is
known to be a tough issue when the number of switches is large,
or when sliding modes exist. Then, classical analog simulators
may behave poorly, or even fail. In this paper, it is shown on
two examples that the nonsmooth dynamical systems (NSDS) ap-
proach, which is made of: 1) a specific modeling of the piecewise-
linear electronic devices (ideal diodes, Zener diodes, transistors);
2) the Moreau’s time-stepping scheme; and 3) specific iterative
one-step solvers, supersedes simulators of the simulation program
with integrated circuit emphasis (SPICE) family and hybrid
simulators. An academic example constructed in [Maffezzoni,
et al., IEEE Trans. CADICS, vol 25, no. 11, Nov. 2006], so that
the Newton–Raphson scheme does not converge, and the buck
converter are used to make extensive comparisons between the
NSDS method and other methods of the SPICE family and
a hybrid-like method. The NSDS method, implemented in the
SICONOS platform developed at INRIA, proves to be on these
two examples much faster and more robust with respect to the
model parameter variations.

Index Terms—Analog simulation, backward Euler algorithm,
complementarity dynamical systems, complementarity problems,
multivalued systems, power converters, switching circuits, uni-
lateral state constraints.

I. Introduction

IT IS WELL known that conventional accurate analog
simulation tools, which are based on the Newton–Raphson

nonlinear solver, can have serious drawbacks when they are
used for the integration of nonsmooth circuits, containing
switches and piecewise linear components (like ideal diodes
and transistors). This is especially true when the number of
events becomes too large, or when sliding modes exist, which
is common in practice. Then, analog (SPICE-like) tools may
become very time-consuming, or provide very poor results
with chattering [28], or even fail [15], [18], [36], [37], [51].
The same applies to “hybrid” integrators that consider an
exhaustive enumeration of all the system’s modes, which have
a very limited scope of application because of the exponential
growth of the number of modes that have to be simulated
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separately. Along the same lines, event-driven schemes can
hardly simulate systems with a large number of events because
they soon become quite time-consuming and do not allow for
accumulations of events [4].

It is, therefore, clear that other types of numerical schemes
have to be applied for highly nonsmooth switching circuits.
Since a numerical method always relies on a specific modeling
approach, a logical path is to first reconsider the models of
nonsmooth components (diodes, switches, transistors, etc.) so
that efficient numerical solvers can be applied. The nonsmooth
dynamical systems (NSDS) approach, which is the one chosen
in this paper, appears to be a suitable framework for the
simulation of nonsmooth circuits, allowing one to efficiently
simulate systems with a very large number of events, and
sliding mode trajectories. It consists of modeling nonsmooth
components as piecewise-linear functions, with possible ver-
tical branches (inducing some unilaterality in the system,
hence possible state jumps, when these branches are infinite).
The time discretization of such nonsmooth systems then
yields various types of so-called one-step nonsmooth problems
(OSNSP), for instance (linear) complementarity problems or
nonlinear (or quadratic) programs with equality–inequality
constraints. The NSDS approach may then take advantage of
the quite important works that have been led by the Non-
linear Programming community concerning the development
of efficient solvers for complementarity problems [25] and
optimization tools [31], and also by the Contact Mechanics
community [4], where Moreau and Jean developed the so-
called nonsmooth contact dynamics (NSCD) method within
the theoretical framework of Moreau’s sweeping process [32],
[41], [42]. The numerical method that is used in this paper,
owes a lot to the NSCD method of mechanics, and will be
named Moreau’s time-stepping scheme. As alluded to above,
nonsmooth components are often represented with piecewise-
linear functions, or with complementarity relations, or with
inclusions into normal cones. The piecewise-linear modeling
approach in nonsmooth electrical circuits has been pioneered
by Chua et al. [33], and complementarity problems have been
introduced in [45], [46], and [47], followed by the works of
Leenaerts and van Bokhoven [34], [35], Vlach et al. [49], [50].
Camlibel et al. [16], [26] studied the convergence of backward
Euler methods, and comparisons with other (analog and hy-
brid) integrators are proposed in [48]. Glocker et al. [29], [38]
led interesting developments showing the analogy between
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mechanics and electricity for various types of nonsmooth com-
ponents, and also proposed a time-stepping method inspired
by Moreau’s algorithm for contact mechanics (consequently
quite close to the algorithm used in this paper). Variational
inequalities of the second kind and electrical superpotentials
were recently introduced in electronics in [9], [10], and [30]
to study the existence and uniqueness of solutions for static
circuits, or the equilibria of dynamical circuits with nonsmooth
devices. Other works may be found in [13] and [24].

The objective of this paper is twofold: firstly, it is shown on
academic example taken from [36] that the NSDS approach
allows one to simulate a nonsmooth system for which con-
ventional analog methods fail (roughly speaking, the itera-
tive solver for complementarity problems converges, whereas
Newton–Raphson’s method does not); secondly, numerical
results for a buck converter are presented and comparisons
with other (analog and hybrid) tools are done. The buck
converter example in fact demonstrates on a significant case
study that the proposed time-stepping method is efficient for
systems with a large number of events. Compared to previous
works [29], [48], the ideal switches are here modeled and
simulated for the first time in a completely implicit way, the
advantage of which will be explained. The simulations are
done with the SICONOS software platform1 of the INRIA [4],
[7], [8], which is an open-source software package dedicated
to nonsmooth dynamical systems.

This paper is organized as follows. In Section II. the model-
ing and general time discretization frameworks are recalled. In
Section III, an elementary closed-loop switching circuit taken
from [36] is simulated. In Section IV, an example exhibiting
a sliding mode is studied. In Section V, the buck converter
example is treated and comparisons are presented. Conclusion
ends the paper.

Notation: The following tools will be used in this paper. Let
K ⊆ IRn be a nonempty convex set. The normal cone to K at
x ∈ K is NK(x) = {z ∈ IRn|⟨z, ζ − x⟩ ! 0 for all ζ ∈ K}. The
most familiar example of normal cones is N[a,b](x) ⊂ IR, x ∈
IR, −∞ < a ! b < +∞ which for x ∈ [a, b] is given by

N[a,b](x) =

⎧
⎪⎨

⎪⎩

IR−, x = a

0, x ∈ (a, b)

IR+, x = b.

(1)

Its graph is depicted in Fig. 1(a).
For the particular value a = −1 and b = 1, the following

equivalence relation is satisfied

y ∈ sgn(x) ⇔ x ∈ N[−1,1](y) (2)

where the function sgn( · ) is the multivalued signum function
defined by

sgn(x) =

⎧
⎨

⎩

1 if x > 0
−1 if x < 0
[−1, 1] if x = 0

(3)

and depicted in Fig. 1(b). Let us consider another very
important case when one bound, say b, is equal to +∞. We
obtain

1See http://siconos.gforge.inria.fr/.

Fig. 1. Examples on familiar normal cones. (a) Normal cone Na,b(x).
(b) Multivalued signum function.

N[a,+∞)(x) =
{

IR−, x = a,

0, x ∈ (a, +∞).
(4)

This yields the so-called complementarity condition

−y ∈ N[a,+∞)(x) ⇐⇒ 0 ! x − a ⊥ y ≥ 0 (5)

where x ⊥ y means that xT y = 0. In the case of vectors
x, y ∈ IRn, the inequalities have to be understood component-
wise.

The projection in the euclidean metric of a vector x ∈ IRn

onto K is denoted as proj[K; x]. A singleton is denoted as {t}.
The identity matrix of IRm×m is denoted by Im and the zero
vector in IRm by 0m.

The following standard mathematical programming prob-
lems will be used throughout this paper.

Definition 1 (Variational Inequality [25]): Given a func-
tion F: IRp → IRp, and " a nonempty subset of IRp, the
variational inequality (VI) problem is to find a vector z ∈ IRp

such that

FT (z)(y − z) ≥ 0, ∀y ∈ ". (6)

❒
Definition 2 (Inclusion into a Normal Cone [43]): Given

a function F: IRp → IRp, and K a nonempty convex subset
of IRp, the inclusion into a normal cone problem is to find a
vector z ∈ IRp such that

0 ∈ F(z) + NK(z). (7)

❒
If K = " is a convex set, the inclusion (7) and the VI (6)

are equivalent.
Definition 3 (Mixed Complementarity Problem [22]): The

mixed complementarity problem (MCP) is defined as follows.
Given a function F: IRp → IRp, lower and upper bounds
l, u ∈ (IR ∪ {+∞, −∞})p, find z ∈ IRp, w, v ∈ IR

p
+, such that

{
F(z) = w − v

l ! z ! u, (z − l)T w = 0, (u − z)T v = 0.
(8)

❒
Notice that a solution of the MCP satisfies the inclusion
−F (z) ∈ N[l,u](z). If F( · ) in (8) is affine, which is
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Fig. 2. Nonsmooth models. (a) Diode symbol. (b) Ideal switch symbol. (c) Zener diode symbol. (d) Comparator symbol and model.

Fig. 3. Four models of diodes. (a) Smooth modeling. (b) Nonsmooth modeling. (c) Hybrid modeling. (d) Equivalent resistor model.

{
Mz + q = w − v

l ! z ! u, (z − l)T w = 0, (u − z)T v = 0
(9)

for some matrix M ∈ IRp×p and some vector q ∈ IRp, the
MCP (8) defines a mixed linear complementarity problem
(MLCP).

II. NSDS Approach

A. Nonsmooth Electronic Devices Modeling

The NSDS approach for the modeling of piecewise-linear
components in electrical circuits has been described in detail in
[4], [29], [32], [41], and [42], and will just be recalled here for
the sake of readability. The NSDS approach is a package that
consists of: 1) nonsmooth models; 2) Moreau’s time-stepping
algorithm; and 3) OSNSP solvers. The current–voltage laws
of nonsmooth electronic devices may all be represented as
inclusions into a normal cone to a convex set K, i.e., 0 ∈
#(y, λ, t) + NK(λ), where #( · ) is a function, y and λ are
implicitly defined from 0 = H(X, λ, t) and y = G(X, λ, t) for
some functions H( · ) and G( · ). The state vector of the circuit
X is composed of branch voltages and currents. A crucial point
for simulation efficiency, however, is to keep as less slack
variables, λ and y, as possible in the device representation.
In addition, some efficient OSNSP solvers (as they will be
described in Section II-D) use directly such inclusions into a
normal cone to a convex set, or the equivalent VI formulation.
This is the case for the direct MCP solvers that we used in
our simulations. Finally, it is noteworthy that the inclusion
modeling of the devices allows for nonlinear characteristics
which may not be represented by complementarity relations.

Let us illustrate this on the above four examples (ideal
diode, switch, transistor, and comparator).

1) Nonsmooth Diodes: The notation for the currents and
the potentials at the ports of the diode is depicted in Fig. 2(a).
Following four models of diodes are depicted in Fig. 3.

1) The smooth exponential Shockley model in Fig. 3(a)
defined by the smooth constitutive equation

i = is(e
v
α − 1) (10)

where is and α are physical parameters of the diode.
2) Ideal diodes with possible residual current b and voltage

a in Fig. 3(b) defined by the following complementarity
condition

0 ! i + b ⊥ a − v ≥ 0 ⇐⇒ −(i + b) ∈ N[−a,+∞)(−v).
(11)

3) The “hybrid” model, which considers the two modes
separately with, for instance, an associated Model-
ica [23] script in Fig. 3(c)

off = s < 0
v = if off then s else 0
i = if off then 0 else s.

(12)

4) A piecewise–linear model in Fig. 3(d) defined by

v =

{
Ron i if v < 0
Roff i if v ≥ 0

(13)

where Ron ≪ 1 and Roff ≫ 1 are the equivalent resistive
values of each branch.

The ideal diode model in Fig. 3(b) is chosen in this
paper. The drawback of the Shockley law is that it introduces
high stiffness in the dynamical equations. The hybrid model
becomes rapidly unusable if the number m of diodes increases,
since the number of modes to be described in the associated
script varies as 2m. The model in Fig. 3(d) leads a badly con-
ditioned algorithm used to solve the OSNSP in Section II-D.
On the contrary, the ideal model of Fig. 3(b) yields, when
introduced in the dynamics, well-conditioned complementarity
problems, that yield time-stepping methods for which efficient
solvers exist. Showing the efficiency of these methods is the
object of this paper.

From basic convex analysis one deduces that the ideal diode
of Fig. 3(b) has the following current/voltage law:
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i ∈ {−b} + N]−∞,a](v) ⇔ −v ∈ {−a} + N]−∞,b](−i). (14)

The piecewise-linear diode of Fig. 3(d) can be represented
as

{
v = 1

2 (1 + τ)Roni + 1
2 (1 − τ)Roffi

τ ∈ sgn(v) ⇔ v ∈ N[−1,1](τ)
(15)

that is consistent with the MLCP formulation in (9). The
piecewise-linear model yields a condition number of the re-
sulting MLCP matrix close to Roff/Ron, that causes trouble with
the numerical algorithms that are used to solve the OSNSP.
Inclusions as in (14) will be preferred as they can be directly
used in the numerical algorithm for MCP, yielding well-posed
and well-conditioned MCPs.

2) Nonsmooth Switches: The notation for the currents and
the potentials at the ports of the ideal switch is depicted in
Fig. 2(b). The switches are modeled in two ways in this paper.
The first model, which is applied to the elementary example
of Section III, consists of

v =
{

Roff i if vc < 0
Ron i if vc ≥ 0

(16)

where the voltage vc is a state variable of the overall dynamical
system, v is the voltage of the switch and i is the current
through the switch. The resistors Roff ≫ 1 and Ron ≪ 1 are
chosen by the designer. In the case of the buck converter
of Section V, the switch is modeled with transistors, as is
most common in the industrial practice. The switch in (16) is
modeled as follows:

⎧
⎨

⎩

v = 1
2 (1 + τ)Roni + 1

2 (1 − τ)Roffi

τ ∈ sgn(vc) ⇔ vc ∈ N[−1,1](τ)
(17)

which is equivalent to the 4-mode disjunctive formulation

⎧
⎪⎪⎨

⎪⎪⎩

if vc < 0 then τ = −1 and v = Roffi

if vc > 0 then τ = 1 and v = Roni

if vc = 0, i ≥ 0 then τ ∈ [−1, 1] and v ∈ [Roni, Roffi]
if vc = 0, i < 0 then τ ∈ [−1, 1] and v ∈ [Roffi, Roni].

(18)

The difference with respect to the diode (15) is that the “input”
to the inclusion is an external voltage. It is noteworthy that the
voltage v in (16) is discontinuous at vc = 0 for any i ̸= 0, the
jump magnitude being equal to |(Roff − Ron)i|. The choice that
is made in (17) implies that the discontinuities are “filled-in”
and the model is consequently multivalued at vc = 0, i ̸= 0.
This is precisely what allows one to smoothly simulate the
sliding modes [5].

The proposed model (17) is not a real ideal switch because
when the switch is open, there is still a resistor in operation
if Ron ̸= 0. There is no trouble in using Ron = 0 to obtain a
real ideal switch in open operation mode. In the sequel, the
value of Ron is different from 0 and this choice is motivated
by the industrial practice and the way switches are modeled
in Mentor Graphics’ ELDO software package,2 which is one

2See http://www.mentor.com/products/ic nanometer design/analog-
mixed-signal-verification/eldo/.

of the main analog simulation tool of the market and may be
considered as a reference for simulation results comparisons.

Remark 1: The ideal switch is modeled in [29] with a
relay multifunction whose threshold may vary between 0
and +∞, and the switch is controlled by a current variable
of the circuit, in an explicit way. Compared to [48] our
approach differs a lot since [48] models the switch through a
so-called cone complementarity problem, with an exogenous
excitation that makes the cones [" in (6) or K in (7)] switch
between {0} and IR or IR+. Another way to model switches
is to compute the topology changes after each “open” and
“close” operation. As pointed out above such an approach
rapidly becomes extremely time-consuming when the number
of switches grows (the number of different topologies grows
exponentially fast with the number of switches), and does not
allow for finite accumulations of switches or sliding mode
trajectories. An open issue is the implicit discretization of the
ideal switches models of [29] and [48] that is not directly
possible and is not tackled in this paper.

3) Nonsmooth Zener Diodes: Similar inclusions for ideal
Zener diodes may be found in [4] and [10], that take the
form −i ∈ N[0,vz](−v) for some vz > 0 with the convention
illustrated in Fig. 2(c).

4) Nonsmooth Comparator: The comparator device as
depicted in Fig. 2(d) is modeled as a piecewise-linear function
whose value is vmin if x < −ϵ V, vmin +(vmax −vmin)(x+ϵ)/(2ϵ)
if ϵ V > x > −ϵ V and vmax if x > ϵ V. Setting ϵ to 0 leads to
a relay function that is multivalued at 0. In this case, similarly
to the Zener diode the multivalued comparator is represented
as

v+ − v− ∈ N[vmin,vmax](voutput) (19)

where vmin and vmax are the saturation thresholds.

B. Dynamical Equations

Section II-A is devoted to present the electronic devices
models and their mathematical representations to be inserted in
the circuit dynamics in order to obtain a suitable formalism for
the subsequent time discretization. In particular, the OSNSP
solver to be used strongly influences the modeling choice. In
this section, we focus on the dynamical equations that are
suitable for the NSDS approach.

1) Nonsmooth Differential Algebraic Equations (DAE)
Formulation: The circuit with nonsmooth components repre-
sented as inclusions and equalities, and the smooth nonlinear
behavior of the network represented as DAE can be written
compactly as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M(X, t)Ẋ = F (X, t) + U(t)
]

DAE

0 = H(X, λ, t)
y = G(X, λ, t)

] Input/output relations on
nonsmooth components

0 ∈ #(y, λ, t) + NK(λ) “Inclusion rule”
(20)

where X ∈ IRn is the state composed of the potentials
and the currents in inductive, voltage-defined and nonsmooth
branches. The vectors y, λ ∈ IRm are the slack variables
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expressing the nonsmooth multivalued models of the compo-
nents. The functions M: IRn×IR → IRp×n, H : IRn×IRm×IR →
IRn−p, G: IRn ×IRm ×IR → IRm and #: IRm ×IRm ×IR → IRm

are assumed to be continuously differentiable functions. More
details will be given on the choice of state variables and the
structure of the functions in Section II-B2. One recognizes
two basic ingredients: the DAE part, which is coupled to
the nonsmooth electrical devices represented by inclusions
into normal cones as those developed in Section II-A. See
Section III for a concrete example of (20).

2) Automatic Generation of a Dedicated Formulation of the
Dynamical Equations: In this section, the choice of the state
variables and the formulation of the dynamical equations are
motivated by the compromise between the automatic character
of the equation formulation and the efficiency of the numerical
algorithm. The efficiency is based partly on the number of
state and slack variables and partly on the conditioning of the
formulation.

Let us describe briefly how the dynamical equations are
obtained for the two systems that are analyzed in this paper.
There are basically three choices for the state variables, based
on the charge approach, the flux approach, and the current–
voltage approach. The latter is chosen here.

There are a lot of methods to build a smooth DAE formula-
tion of standard electrical circuits. To cite a few of them, the
sparse tableau analysis (STA) and the modified nodal analysis
(MNA) are the most widespread. An automatic circuit equation
generation system extending the MNA has been developed at
the INRIA, see the patent [2]. A straightforward extension of
the MNA (or of the STA) can be performed by directly replac-
ing the constitutive equations of the nonsmooth components
with the corresponding inclusion rule yielding the system (20).
Nevertheless, the fact that M(X, t) is not a square matrix and
the use of many superfluous variables and algebraic equations
has the following drawbacks: 1) the numerical efficiency of the
algorithms is weakened by the larger size of the problem; and
2) the OSNSP solvers can be in trouble due to the redundancy
of the constraints, which is difficult to circumvent in the
numerical procedure (mainly due to the machine accuracy
constraint). Many alternate formulations have been tested. It
has been concluded that a suitable adaptation of the MNA
leads to the following formulation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ = f1(x, z, t) + U(t)
0 = f2(x, z, t)

]
Semi-explicit DAE

0 = h(x, z, λ, t)
y = g(x, z, λ, t)

]
Input/output relations on
nonsmooth components

0 ∈ #(y, λ, t) + NK(λ) “Inclusion rule”
(21)

where x ∈ IRk corresponds to the currents in the inductive
branches and the voltages in the capacitive branches, z ∈ IRl

collects all the node potentials, the currents in the voltage-
defined and nonsmooth branches, and the currents in a subset
of the capacitive branches. The choice and the construction of
the latter subset of branches are described in details in [2]. The
automatic circuit equation formulation starts from the MNA:

it adds some unknowns to get a semi-explicit system and re-
places the constitutive equations of the nonsmooth components
by the corresponding inclusion rule. To avoid troubles related
to the index in DAE and the presence of capacitive loop and
inductive cut-sets, we exploit similar techniques as in [12] and
[11].

C. Moreau’s Time-Stepping Scheme

Starting from the dynamics in (20) Moreau’s time-stepping
scheme is as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M(Xk+θ, tk+θ)(Xk+1 − Xk) = hF (Xk+θ, tk+θ)
+hU(tk+θ)

0 = H(Xk+1, λk+1, tk+1)
yk+1 = G(Xk+1, λk+1, tk+1)

0 ∈ #(yk+1, λk+1, tk+1) + NK(λk+1)

(22)

for a time-step h > 0 and with the usual following notation:
For a function f (t), fk+1 ≈ f (tk+1) and fk+θ = θfk+1 + (1 −
θ)fk. Moreau’s time-stepping algorithm is made of a θ-method
with θ ∈ [0, 1] for the assumed sufficiently smooth terms, and
a fully implicit scheme for the inclusion rule which can be
nonsmooth. This choice is led by two fundamental reasons.
The first reason is the respect of the inclusion rule and its
intrinsic multivalued and unilateral character. As it has been
shown in [39], only a fully implicit scheme can satisfy the
unilateral constraints in discrete time. The second reason is
the possible nonsmoothness of the evolution which can be
numerically integrated in a consistent way by only implicit
low order schemes [4].

For the numerical purposes, let us rewrite the problem (22)
as a global inclusion

0 ∈ F(ζ) + NC(ζ) (23)

where the variable ζ = [XT
k+1, y

T
k+1, λ

T
k+1]T ∈ IRn+2m and the

function F:IRn+2n → IRn+2m is defined by

F(ζ) =

⎡

⎢⎢⎢⎢⎣

M(θXk+1 + (1 − θ)Xk, tk+θ)(Xk+1 − Xk)
−hF (θXk+1 + (1 − θ)Xk, tk+θ) − hU(tk+θ)

H(Xk+1, λk+1, tk+1)
G(Xk+1, λk+1, tk+1) − yk+1

#(yk+1, λk+1, tk+1)

⎤

⎥⎥⎥⎥⎦
.

(24)

The normal cone NC is the normal cone to the following
convex set

C = IRn × IRm × K ⊂ IRn+2m. (25)

We will see in the next section that the nonlinearity of F(.) can
be directly treated by the numerical one-step solver. Another
approach is to perform an outer Newton linearization of this
problem by searching the solution as the limit for α of the
following linearized problem

0 ∈ ∇ζF(ζα)(ζα+1 − ζα) + F(ζα) + NC(ζα+1) (26)
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for a given ζ0. At each time-step k and at each Newton iteration
α, the problem (26) appears to be affine in ζ.

D. Numerical Solvers for the OSNSP (22)

The problem (22) is a VI written in the form of an inclusion
into a normal cone to a convex set as in (23). The choice of
the numerical solver for (22) depends mainly on the structure
of the convex set K. Indeed, from a very general convex set
K to a particular choice of K, the numerical solvers range
from the numerical methods for VI to nonlinear equations,
passing through various complementarity problem solvers. The
convergence and the numerical efficiency are improved in
proportion as the structure of K becomes simpler. In the
sequel, majors choices of K will be given leading to various
classes of well-known problems in mathematical programming
theory. We refer to [25] for a thorough presentation of available
numerical solvers and to [4, Ch. 12] for a comprehensive
summary of numerical algorithms. In the numerical examples
presented in this paper, various numerical methods described
below are used according to the type of the OSNSP and will
be further precised.

1) K is a Finite Representable Convex Set: In practice,
the convex set is finitely represented by

K = {λ ∈ IRm | h(λ) = 0, g(λ) ≥ 0} (27)

where the functions h: IRm → IRm, g: IRm → IRm are assumed
to be smooth with nonvanishing Jacobians. More precisely, we
assume that the following constraints qualification holds:

∀λ ∈ K, ∃d ∈ IRm, such that

{
∇T hi(λ)d < 0, i = 1 . . . m

∇T gj(λ)d < 0, j ∈ I(λ)
(28)

where I(λ) is the set of active constraints at λ, which is

I(λ) = {j ∈ 1 . . . m, gj(λ) = 0}. (29)

In this case, general algorithms for VI can be used. To cite a
few, the minimization of the so-called regularized gap function
[27], [52], [53] or generalized Newton methods [25, Chs. 7 and
8] can be used. If F (.) is affine [possibly after the linearization
step described in (26)] and the functions h(.) and g(.) are also
affine, the VI is said to be an affine VI for which the standard
pivoting algorithms for linear complementarity problem (LCP)
[19] are extended in [17].

2) K is a Generalized Box: Let us consider the case that
K is a generalized box that is

K = {λ ∈ IRm | ai ! λi ! bi, ai ∈ IR, bi ∈ IR, i = 1 . . . m}
(30)

with IR = {IR∪ {+∞, −∞}}. In this case, the problem (23-25)
can be recast into a mixed complementarity problem (MCP)
by defining p = n + m + m + m and the bounds l, u as l =
[ 0n 0m 0m a ]T and u = [ 0n 0m 0m b ]T .

The MCP (8) can be solved by a large family of solvers
based on Newton-type methods and interior-points techniques.
In contrast to the interior-point methods, it is not difficult to
find comparisons of numerical methods based on Newton’s
method for solving MCPs. We refer to [14] for an impressive
comparison of the major classes of algorithms for solving
MCPs. If F(.) is affine, the MLCP is equivalent to a box-
constrained affine VI. For this problem, the standard pivoting
algorithm such the Lemke’s method is extended in [44]. A
special case of a generalized box is the positive orthant of IRm,
which is K = IRm

+ . Standard theory and most of the numerical
algorithms for LCPs apply in this MCLP case.

When the circuit is simple and of low size in terms of the
number of state variables, it is sometimes possible to write the
DAE as an ordinary differential equation (ODE) and perform
the explicit substitution of X by y and λ in the formula-
tion (22). If the cone is also simply defined by a positive
orthant, we arrive then at a standard LCP [21]. Unfortunately,
the LCP formulation is not amenable for more complicated
cases where an automatic circuit equation formulation is used.

E. Specificities of Moreau’s Time-Stepping Method for
Circuits in the Form (21)

In this section, we give more details on the specificities of
the time integration with the Moreau scheme. Let us assume
that the solution in the unknowns x, z is sought depending on
the following cases.

1) Absolutely continuous solution case: In this case, the
function x( · ) (respectively z( · )) is assumed to be an
absolutely continuous function of time. More precisely,
its time-derivative ẋ( · ) (respectively ż( · )) is a right
continuous function of bounded variations in time such
that

x(t) = x(t0) +
∫ t

t0

ẋ(s) ds (31)

and ẋ(t) = ẋ+(t) = lims→t,s>t ẋ(s) (respectively for z( · )).
By consistency, the function λ( · ) (respectively y( · )) is a
right-continuous function of bounded variations in time.

2) Bounded variation solution case: The unknown state
vector x( · ) (respectively z( · )) is assumed to be a func-
tion of bounded variations in time. The time derivative
of x( · ) cannot be defined as a standard time-derivative
but as a differential measure dx that can contain a Dirac
measure. In the same way, z( · ), y( · ) are functions of
bounded variations and the multiplier λ is replaced by
dλ, which is also a measure. This case happens when the
initial conditions are not consistent and/or some jumps
are encountered due to inconsistent unknown vector with
unilateral constraints imposed by the inclusion.

Naturally, the above observations are slightly abusive and need
a rigorous mathematical framework, which is beyond the scope
of this paper. Nevertheless, we can cite the pioneering work
of Moreau on such subjects [39], [40] and its extension [6]
where the notion of relative degree plays a fundamental role
in the nature of solutions and therefore in the specificities of
the time integration.
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With the previous assumption on the (low) regularity on
the solution, several precautions have to be taken by the time
discretization. These precautions together with the mathemat-
ical framework introduced by Moreau are at the heart of the
approach. Let us explain the simplest case of an absolutely
continuous solution x( · ). The derivative ẋ( · ), which is of
bounded variations, is estimated by a rough backward Euler
scheme

hẋ(tk+1) ≈ xk+1 − xk. (32)

Note that a higher order approximation is a nonsense due to the
nonsmoothness of ẋ( · ). The functions of bounded variations
λ and y are estimated in a fully implicit way to satisfy the
inclusion rule at tk+1, which is
{

y = g(x, z, λ)
−y ∈ NK(λ)

≈
{

yk+1 = g(xk+1, zk+1, λk+1),
−yk+1 ∈ NK(λk+1).

(33)

This fact is crucial to ensure the convergence of the scheme
and a chattering-free discrete solution when a constraint re-
mains active. For the remaining part of the system (21), if
the regularity is sufficient we can choose a θ-method with
θ ∈ [0, 1] . The fully implicit case θ = 1 ensures the stability
for the stiff nonlinear terms and the fully explicit case θ = 0
ensures the efficiency in terms of CPU effort if the system is
nonstiff. A part of the stiff nonlinearity can be included in the
inclusion form and mildly nonlinear systems can be obtained.

All these remarks lead to the following integration scheme
for the original system (21):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+1 − xk = hf1(xk+θ, zk+θ, tk+1) + hU(tk+θ)
0 = f2(xk+1, zk+1, tk+1)

0 = h(xk+1, zk+1, λk+1, tk+1)
y = g(xk+1, zk+1, λk+1, tk+1)
0 ∈ #(yk+1, λk+1, tk+1) + NK(λk+1).

(34)

The case of bounded variation is written in terms of the
difference xk+1 − xk and the approximation of the measure of
the time interval is pk+1 = hdλ((tk, tk+1]). The value pk+1 is
homogeneous to an impulse of value hλk+1. This is the only
way to ensure the consistency of the scheme at jumps because
the value of λk+1 goes to infinity when the time-step h goes
to zero. Indeed, it reflects that the point-wise evaluation of a
measure is a nonsense.

Finally, some works are done to design adaptive time-step
strategies for the Moreau scheme. The absolutely continuous
case can be treated by standard practical apparatus for the
low order error estimations. In the case of bounded variations
solutions, some care has to be taken. A flavor of possible
solutions and open issues can be found for mechanical systems
with impacts in [1].

F. Software Implementation

Finally, some insights are given on the software imple-
mentation of the methods. A Netlist is a circuit textual
description used by many simulators such as SPICE and
ELDO. From a Netlist, the automatic generator builds all the
components defined in (21). The opensource SICONOS/KERNEL

library performs the time discretization following the Moreau

Fig. 4. Simple switched circuit.

time-stepping scheme (22) and formulates at each time-step
one instance of the inclusion problem (23)–(25). The numer-
ical algorithms for the latter problem are in the opensource
SICONOS/NUMERICS library. The output of the simulation is a
file containing the potential and current values in the SPICE

format.
The implementation is object-oriented and mainly in C++.

For each electrical component, group of equations and inclu-
sions in (22), a corresponding instance of a class is built. The
system is updated in memory at each iteration by the stamp
method of each component. In the linear case, these methods
are called only once, in the nonlinear case they may be called
at any time to update the system. The open-source platform
is under Gnu general public licence and can be freely used.
The equation generator is under private license and can be
obtained freely on demand for an academic use. Note that
the actual implementation of the software does not exploit
the inherent sparsity of the system. This is mainly due to
development effort restriction. It is clear that substantial gain
may be expected by using standard sparse library.

III. Elementary Switching Circuit

This section is devoted to the modeling and the simulation
of the circuit in Fig. 4. In [36], it is shown that Newton–
Raphson-based methods fail to converge on such a circuit,
with the switch model as in (16). The diode model is the
equivalent resistor model of Fig. 3(d). On the contrary, the
OSNSP solver correctly behaves on the same model.

A. Dynamical System

The dynamics of the circuit in Fig. 4 is obtained using the
algorithm of automatic circuit equation formulation. In a first
step, the vector of unknowns is built; in a second step, the
dynamical system is written; and in a last step, the nonsmooth
laws are added. Applying the automatic equations generation
algorithm leads to the following 9-D unknown (dynamic and
algebraic unknown) vector: X = (v1 v2 v3 v4 iL i03 i04 is id)T

in the system (20) or x = (iL) z = (v1 v2 v3 v4 i03 i04 is id)T

in the system (21), where the potentials and the currents
are depicted in Fig. 4. Building the dynamical equations
consists in writing the Kirchhoff current laws at each node, the
constitutive equation of the smooth branch, and the nonsmooth
law of the other branches. The two nonsmooth devices are the
diode and the switch. It yields the following system that fits
within the general framework in (21): for the semi-explicit
DAE, we obtain
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Fig. 5. Switched circuit simulations. (a) SICONOS simulation. (b) ELDO simulation.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

LdiL
dt

(t) = v1(t) − v2(t)

id(t) + is(t) − iL(t) = 0, iL(t) − v2(t)
R

= 0

i03(t) = 0, i04(t) − is(t) = 0

v4(t) = 20, v3 = e(t).

(35)

For the input/output relations on nonsmooth components, we
get

{
v1(t) = 1

2 (τ1(t) − 1)Roffid(t) − 1
2 (τ1(t) + 1)Ronid(t)

2(v4(t) − v1(t)) = [(1 + τ2(t))Roff + (1 − τ2(t))Ron]is(t).
(36)

Finally, the inclusion rule is written as

{
v1(t) ∈ −N[−1,1](τ1(t))

100(v3(t) − v2(t)) ∈ −N[−1,1](τ2(t)).
(37)

On this example, the fully implicit (θ = 1) Moreau’s scheme
reads as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(iL,k+1 − iL) = h(v1,k+1 − v2,k+1)
id,k+1 + is,k+1 − iL,k+1 = 0, iL,k+1 − 1

R
v2,k+1 = 0

i03,k+1 = 0, i04,k+1 − is,k+1 = 0
v4,k+1 = 20, v3,k+1 = e(tk+1)
2v1,k+1 = (τ1,k+1 − 1)Roffid,k+1 − (τ1,k+1 + 1)Ronid,k+1

2(v4,k+1 − v1,k+1)
=
[
(1 + τ2,k+1)Roff + (1 − τ2,k+1)Ron

]
is,k+1

v1,k+1 ∈ −N[−1,1](τ1,k+1)
100(v3,k+1 − v2,k+1) ∈ −N[−1,1](τ2,k+1).

(38)

B. Numerical Results With SICONOS

The time-step has been fixed to 0.1 ! s, the values of
the parameters are R = 1 ", Ron = 0.001 ", Roff = 1000 ",
L = 2.10−4 H, and the initial condition is iL(0) = 0 A. Fig. 5(a)
depicts the current evolution through the inductor L. In [36],
it has been shown that the Newton–Raphson algorithm fails
when the state of the diode and of the switch changes at
t = ts in Fig. 5(a). Indeed, the linearization performed at each
Newton–Raphson iteration leads to an oscillation between two

Fig. 6. RLC Zener diodes circuit.

incorrect states and never converges to the correct one. The
Newton–Raphson iterations enter into a infinite loop without
converging. Using the NSDS approach the OSNSP solver
converges and computes the correct state. For such a simple
system, any OSNSP solver gives a correct solution. We have
used indifferently PATH and a semi-smooth Newton method.

Remark 2: In [36], an event-driven numerical method is
proposed to solve the nonconvergence issue. However it is re-
liable only if the switching times can be precisely estimated, a
shortcoming not encountered with the NSDS and the Moreau’s
time-stepping method.

C. Numerical Results With ELDO

ELDO does not provide any nonsmooth switch model. But
it furnishes the “VSWITCH” one described in (39), where RS

is the controlled resistor value of the switch, and vc the voltage
control yielding to the model

RS(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ron if vc(t) ≥ von

Roff if vc(t) ! voff

(vc(t)(Roff − Ron ) + Ron voff

−Roff von)/(voff − von) otherwise

(39)

setting voff to 0, and choosing a small value for von lead to a
model close to (16) for the chosen parameters.
Simulations have been done using different sets of parameters.
It is noteworthy that the behavior of ELDO depends on
these values. For example, using a Backward Euler with the
time-step fixed to 0.1 ! s and von = 10−4V, voff = 0 V,
Roff = 1000 ", Ron = 0.001 " causes trouble during the
ELDO simulation: “Newton no-convergence” messages
appear. Fig. 5(b) shows the ELDO simulation. The values are
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Fig. 7. Simulation of the circuit with sliding mode. (a) Nonsmooth model in SICONOS and hybrid model in VERILOG/ELDO simulation. (b) Regularized
model in ELDO. Zoom in the neighborhood of the switching time.

very close to the SICONOS simulation, except for the steps
corresponding to the “no-convergence” messages. In this
case, the resulting current value is absurd.

This academic example demonstrates that analog tools can
fail to simulate a switched circuit.

IV. Example Showing a Sliding Mode

The goal of this section is to focus on the very interesting
feature of the nonsmooth approach: the possibility to simulate
consistently multivalued components and then coherently ideal
components. The point is not to show that ideal components
are better for the physical modeling accuracy, but rather
that the regularization or standard hybrid approaches are not
convenient for a high-level description and design. Our goal is
to show that it is better to have a right simulation with an ideal
model rather than a simulation that does not work correctly
with a regularized model and pseudo-physics.

Let us consider a multivalued component, more precisely,
we choose a multivalued behavior of a couple of Zener diodes.
The goal is to outline the efficiency of the nonsmooth model by
inclusions to handle such a behavior, even when a sliding mode
occurs. In this context, the sliding mode has to be understood
as a mode whose operating point of the component is in the
multivalued part. The circuit is depicted in Fig. 6.

A. Models and Dynamical Systems

The choice of the vector of unknowns is [i, vcap]T and yields

L
di(t)
dt

= −Ri(t) − vcap(t) + v(t), C
dvcap(t)

dt
= i(t). (40)

1) Nonsmooth Model of Double Opposite Zener Diodes:
For simplicity’s sake, the two Zener diodes D1 and D2 in
Fig. 6 are modeled as a single component. The behavior of
the whole component is given by

−i ∈ N[−vz,vz](v) (41)

which can be equivalently written as a complementarity prob-
lem
⎧
⎪⎪⎨

⎪⎪⎩

v = λ2 − vz

y1 = vz − v,

y2 = i + λ1

and 0 !
(

y1

y2

)
⊥
(

λ1

λ2

)
≥ 0.

(42)

2) Hybrid Single-Valued Ideal Model in VERILOG/ELDO:
Using a Netlist and a Verilog description of the relation (43)
to represent the couple of Zener diodes, a hybrid single-valued
model reads as

v =

⎧
⎪⎪⎨

⎪⎪⎩

vz if i < 0

0 if i = 0

−vz if i > 0.

(43)

B. Smooth Model Using Hyperbolic Tangent Function in
ELDO

Another approach consists in using the hyperbolic tangent
function to approximate the multivalued components D1 and
D2. The relation between v and i is v = −vz tanh(av). The
coefficient a is chosen sufficiently large in order to neglect
the influence of the regularization. We chose the value 105 to
simulate the circuit using ELDO.

C. Simulation and Comparisons

The initial conditions are chosen as i(0) = 0 A, vcap(0) =
−10 V and the value of vz is 0.5 V.The simulation using the
linear complementarity problem is successfully achieved with
SICONOS. The result is shown in Fig. 7(a). This electrical
circuit dissipates some energy, so vcap oscillates with a de-
creasing amplitude up to a threshold value vz. After the first
event at t = tb, the current i vanishes and the voltage through
the capacitor vcap is stabilized to a nonzero value, equal to v

through the double Zener diodes component. Note that this
equilibrium point is located in the multivalued part of the
characteristic.

Such a behavior exactly corresponds to the dynamics (40–
41), for which the segment {(i, vcap) | i = 0, −vz ! vcap ! vz}
is an attractive sliding surface, attained in a finite time. When
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Fig. 8. Buck converter.

i = 0, it follows from (41) that vcap ∈ [−vz, vz]. See [5] for
more details.

Fig. 7(a) shows also the ELDO simulation using the Netlist
and the VERILOG relation (43). In this case, the simulation
is correctly done until tb. At the first event at time tb, the
simulation cannot be continued because the equilibrium point
of the circuit is not handled by the model.

The simulation using the hyperbolic function has been made
using ELDO. We focus our attention on the difference due
to the regularization of the multivalued model. The Fig. 7(b)
zooms on the moment where the current vanishes. At this
instant, the circuit is equivalent to an RLC circuit where the
value of R is the coefficient of the tangent to the hyperbolic
curve a. Note that using a coefficient a larger than 105

leads to an artificial v oscillation around the value of vcap.
The conclusion is that we cannot expect to observe the
convergence toward an ideal behavior with such a regulari-
zation.

V. Results on the Buck Converter

We conclude the numerical experiments with the less aca-
demic example of a buck converter described in Fig. 8. The
components are modeled with linear, or piecewise-smooth, or
set-valued relations yielding a nonsmooth dynamical system of
the linear time invariant complementarity systems class. The
features of the models are given thereafter.

A. Nonsmooth MOSFET Transistors

Following [34], let us consider the Sah model of the nMOS
static characteristic:

ids =
K
2
· (f (vg − vs − vt) − f (vg − vd − vt)) (44)

Fig. 9. nMOS transistor symbol.

with K = µ
ϵOX

tOX

W

L
, µ mobility of majority carriers, W and L

channel width and length, ϵOX the permissivity of the silicon
oxide of thickness tOX. The voltage vt is the threshold voltage
depending on the technology. The notation for the currents
and the potentials at the ports of the nMOS is as in Fig. 9.
The function f : R −→ R in (44) is defined as

f (x) =
{

0 if x < 0
x2 if x ≥ 0.

(45)

1) Piecewise-Linear Model: The piecewise and quadratic
nature of this function is approximated by the following s + 2
segments piecewise-linear function [34]:

fpwl(x) = αix + βi, for ai ! x ! ai+1, i = −1, . . . , s + 1 (46)

with a−1 = −∞ and as+1 = +∞. The complete model of
the piecewise-linear nMOS transistor with s + 2 segments
in (46) can be recast under the following mixed linear
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complementarity form:

y(t) =

⎡

⎣
0 . . . 0

−b . . . −b
︸ ︷︷ ︸

×s+1

−b . . . −b

0 . . . 0
︸ ︷︷ ︸

×s+1

⎤

⎦

T

v(t) + λ(t)

+
[

h1 . . . hs−1 h1 . . . hs−1
]T

0 = I3 i(t) +

⎡

⎣
−c1 . . . −cs−1 c1 . . . cs−1

0 0 0 0 0
c1 . . . cs−1 −c1 . . . − cs−1

⎤

⎦ λ(t)

0 ! y(t) ⊥ λ(t) ≥ 0

v(t) =
[
vgd(t) = vg(t) − vd(t)
vgs(t) = vg(t) − vs(t)

]
, i(t) =

⎡

⎣
id(t)
ig(t)
is(t)

⎤

⎦ .

(47)

The parameters are given as follows: b = K
2 , hi = b(vt +

ai), i = 1 . . . s. The values ci are computed from the linear
approximation in (46). Using some basic convex analysis, one
obtains the compact formulation of (47)

⎧
⎪⎪⎨

⎪⎪⎩

−y(t) ∈ NK(λ(t))

y(t) = Bu(t) + λ(t) + h(t)

0 = i(t) + Cλ(t)

(48)

with K = (IR+)2(s+1). In the case of the MOSFET transistor,
the inclusion is an equality as expected since its piecewise-
linear characteristic is single valued. The pMOS transistor is
represented in the same way, changing the values of hi, i(t)
to −i(t) and b to −b.

Contrarily to the other models of components, the comple-
mentarity variables y and λ have no direct physical meaning.
They are just slackness variables that permit us to express the
presence of the operating point in the different segments of the
model. For more details on the construction and the calibration
of such a model, we refer to [34].

Remark 3: The piecewise-linear model in (46) has s + 2
segments. Multiple choices are possible in order to adjust the
number of slack variables and consequently the size of the
OSNSP-MLCP to be solved at each step with respect to the
accuracy. In practice, one should therefore be very careful
about choosing a reasonable piecewise-linear approximation of
the devices so that the MLCP size does not increase too much.

2) Piecewise-Nonlinear Model: The model (44) can be
modeled using the piecewise-nonlinear model (49). This leads
to a nonlinear MCP

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ids = K
2 (λ4(vg − vs − vt)2 − λ2(vg − vd − vt)2)

y1 = 1 − λ2

y2 = vt − vg + vd + λ1

y3 = 1 − λ4

y4 = vt − vg + vs + λ3

(49)

and 0 ! y ⊥ λ ≥ 0. More generally, within the MCP
framework, the models are not reduced to be piecewise-linear,
but any piecewise-smooth function can be treated.

B. Parameters and Models Used for the Simulation

1) Power MOSFETs pMOS/nMOS: they are described
as an assembly of a piecewise-linear current source ids =
f (vgs, vds), and the intrinsic diode (DpMOS and DnMOS) with
an ideal characteristic. The capacitances were not taken into
account. The diodes residual voltage is 0.8V. The MOSFETs
transconductance K was set to 10 A ·V−2 and their threshold
voltage to respectively vt = −2 V for the pMOS and vt = 2 V
for the nMOS. One can notice that the sum of their absolute
values largely exceeds the supply voltage vi = 3 V, thus pro-
viding nonoverlapping conduction times. The other physical
parameters are chosen as follows: µ = 750 cm2 ·V−1 · s−1

for a nMOS and µ = 250 cm2 ·V−1 · s−1 for a pMOS,
ϵOX = ϵr SiO2 · ϵ0 with ϵr SiO2 ≈ 3.9, tOX ≈ 4 nm W = 130 nm
L = 180 nm.

The piecewise-linear model we choose has 6 segments
(s = 4) given by the following data: c1 = 0.09, c2 =
0.2238, c3 = 0.4666, c4 = 1.1605, c5 = 2.8863, a1 = 0, a2 =
0.1, a3 = 0.2487, a4 = 0.6182, and a5 = 1.5383. The
relative error between f ( · ) and fpwl( · ) is kept below 0.1 for
0.1 ! x < 3.82. The absolute error is less than 2 · 10−3

for 0 ! x < 0.1 and 0 for negative x. In practice, the
values of vg, vs, vd, vt in logic integrated circuits allow a good
approximation of f ( · ) by fpwl( · ).

2) Other Components:
a) Compensator Amplifier: It is modeled as a 105 gain

and an output low-pass filter with a cutoff frequency of
30 MHz, composed of Rp = 1 " and Cp = 5.3 nF.

b) Comparator: It is modeled as a piecewise-linear
function whose value is 0 if x < −ϵV and 3 if x > ϵ V,
with ϵ = 0.15.

c) Ramp Voltage: The frequency is 600 kHz and the
bounds are 0 and 0.75vi = 2.25 V. The rise time is 1.655 ns
and the fall time is 10 ns.

d) Standard Values for Other Components:
vi = 3 V, L = 10 ! H, C = 22 ! F, Rload = 10 ", R11 =
15.58 k", R12 = 227.8 k", R21 = 5.613 M", C11 = 20 pF,

C21 = 1.9 pF.
The reference voltage Vref rises from 0 to 1.8 V in 0.1 ms

at the beginning of the simulation. The output voltage voutput

is regulated to track the reference voltage vref when vi or vref

or the load current vary. The error voltage verror is a filtered
value of the difference between voutput and vref . This voltage
signal is converted into a time length thanks to a comparison
with the periodic ramp signal. The comparator drives the
pMOS transistor which in turn provides more or less charge
to the output depending on the error level. The operation of a
buck converter involves both a relatively slow dynamics when
the switching elements (MOS and diodes) are keeping their
conducting state, and a fast dynamics when the states change.
The orders of magnitude are 50 ps for some switching details,
1 ! s for a slow variation period and 100 ! s at least for a
settling period of the whole circuit requiring a simulation.

C. Dynamical Equations

The nonsmooth DAE has been generated using the
automatic circuit equation formulation described in
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Fig. 10. SICONOS buck simulation using standard parameters. (a) vload. (b) iL. (c) pMOS drain potential. (d) vramp and verror .

Section II-B2. It leads to a dynamical system described
in (21) composed of five dynamical equations and 12 algebraic
equations. The unknowns are x = (vcapp vcap21 vcap11 vcap iL)T

and z = (v1 v2 vcomp vramp vref v11 v14 iref iramp ialim iampli)T ,
where the unknowns are depicted in Fig. 8. The dimension
of the inclusion rule is 24.

D. Simulation With SICONOS

The start-up of the converter was simulated thanks to
SICONOS. As initial conditions, all state variables are zeroed.
The detailed analysis of the switching events requires to use a
time-step as small as 50 ps. The simulations are carried with a
fixed time-step, 4.106 steps are then computed for the 200 µs
long settling of the output voltage. The OSNSP solvers are
PATH with a convergence tolerance of 10−7, and a semi-
smooth Newton method based on the Fischer–Burmeister
reformulation [20] that is our own implementation using a
convergence tolerance of 10−12. The overall result is shown
on the Fig. 10.

Simulation time: The CPU time required to achieve the
simulation is 60 s on a Pentium IV processor clocked at 3 GHz.
It includes 19 s in the MLCP solvers, and 40 s in matrices
products. The time to export the resulting data is not included.

1) Fig. 10(a) is the output potential, following the ramp vref.
2) Fig. 10(b) is the current through the inductor. Until

0.0001s, iL is loading the capacitor C. After 0.0001s,
iL has to keep the capacitor charge constant.

3) Fig. 10(c) zooms on the pMOS drain potential with
standard parameters.

4) Fig. 10(d) zooms on the verror and vramp voltages.
The simulation has been tested with many parameters val-

ues. The robustness of the nonsmooth modeling and solving
algorithms enables one to perform with the same CPU time
the simulation of such cases. All the SICONOS simulations
presented in this paper have been obtained in one-shot from the
dynamical equations automatically generated from the Netlist,
without any further parameter tuning.

In [3], several simulations are made with some parameters
values that exhibit sliding mode trajectories. Furthermore,
some comparisons with the models and the simulations of
ELDO, NGSPICE, and PLECS can be found in [3].3 Sim-
ulations and comparisons are very encouraging in terms of
the computational efficiency as well as the robustness and the
accuracy of the simulation.

E. Simulation Using the Piecewise-Nonlinear Model (49)

The accuracy of the piecewise-linear model in (46) as
function of the number of segments is given in Fig. 11. It
consists in comparing the simulations to a reference simulation
using the piecewise-nonlinear model (49). Fig. 11 shows the
average and the maximum error of the state vector as function
of the number of segments. Although the convergence is
achieved, the number of segments, when it is small, can have

3A hybrid simulator developed by Plexim http://www.plexim.com/.
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Fig. 11. Global error versus the number of segments.

an important effect on the behavior of the component and the
convergence is not monotone. If the accuracy is an important
criteria, the piecewise-nonlinear model (49) has to be used.

VI. Conclusion

In this paper, we have presented numerical simulations of
switched circuits obtained with a suitable time-stepping im-
plicit method, named Moreau’s time-stepping algorithm. This
method is based on the NSDS modeling approach, and relies
heavily on complementarity problems (equivalently, inclusions
into normal cones) solvers. The advantages of such a method
are that it allows one to:

1) avoid computing the dynamics changes due to topology
variations, since the circuits are treated as a global
system with a fixed state dimension; modes transitions
are taken care of by the complementarity problems
solvers, which practically are polynomial in time;

2) simulate circuits with very large number of events with-
out slowing down too much the simulation;

3) avoid regularization and consequently stiff systems of
ODEs;

4) accurately simulate sliding mode trajectories without
spurious oscillations around the switching surface.

Among the other great interests for such an approach that
have not been developed in this article, we can cite:

5) the accurate calculation of the steady state of the system
(see [10]);

6) the computation of the state jumps (initial jumps due to
inconsistent states, or in the course of the integration),
see simple circuits examples in [4].

The major drawback of the used method is its low order, so
that its accuracy may be less good on smooth portions of the
trajectories. In this paper, it is first shown that Moreau’s time-
stepping scheme allows one to integrate an academic example
on which Newton–Raphson’s method fails. Then, it is shown
on a simple circuit that the scheme allows to perfectly handle
sliding mode trajectories. Finally, the buck converter system
is simulated. The simulations have been led with the SICONOS

software package of the INRIA, an open source platform
dedicated to nonsmooth multivalued dynamical systems.
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