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Abstract This article presents an analysis of planar four-bar mechanisms with joint clear-
ance when one joint is actuated by collocated open-loop or state feedback controllers
(proportional-derivative, state feedback linearization, passivity-based control). The study is
led with numerical simulations obtained with a projected Moreau–Jean’s event–capturing al-
gorithm. The contact/impact model uses kinematic coefficients of restitution and Coulomb’s
friction. The focus is put on how much the performance deteriorates when clearances are
added in the joints. It is shown that collocated feedback controllers behave in a very robust
way.

Keywords Four-bar mechanism · Clearance · Dynamic backlash · Unilateral constraints ·
Coulomb’s friction · Impacts · Feedback control · Passivity-based control · State feedback
linearization · Moreau–Jean time-stepping scheme

1 Introduction

A four-bar mechanism is the simplest form of closed chain linkage. It is widely used in
many industrial applications. A closed chain linkage may be used, for transmission or trans-
formation of motion, to precisely reach the desired position or orientation. Usually, the per-
formance of a closed chain linkage is not as desired due to the manufacturing tolerances on
links, clearance in the joints, and the assembly tolerances. However, the effects of clearance
in the joints are different from link dimensional tolerances. The link dimensional tolerance
leads to deviation in position and orientation, which are predictable and repeatable. A joint
clearance is a hard highly nonlinear disturbance inducing an increase of degrees of freedom,
and it may lead to uncertainty in the output position and motion, which may deteriorate the
performance of industrial applications [87].
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These deviations between design and real behavior motivated many researchers in me-
chanical engineering [18, 19, 22, 28, 32, 36, 37, 44, 48, 72, 73, 79] to study the revolute
joints with imperfections. Proper modeling of the joint clearances in a multibody mechani-
cal system is required to predict the behavior of real systems. Different contact models and
simulation tools are available [35]. In the experimental and numerical study of planar slider
crank and four-bar mechanism with multiple revolute clearance joints [24, 27, 32, 37], the
influence of clearances on the performance of the system is demonstrated. The degradation
of the system performance is always in the form of vibration, noise, very high reaction forces
at the joints, precision, and accuracy of the output. The dynamic response of the system due
to the joint clearances is more complex and tends to be chaotic in some situations [26, 28,
64, 71, 72, 75, 88]. To reduce or alleviate this chaotic behavior, delayed feedback control
[64], optimization of various physical parameters [23–25, 88], or redundant actuators that
guarantee suitable preload for backlash avoidance in parallel manipulators [60] have been
proposed.

In parallel with multibody modeling and numerical simulation, feedback controllers have
been proposed with the purpose of increasing the motion accuracy of systems with clear-
ances. This is called backlash compensation in the systems and control literature [45, 62].
Two major classes of models are used: dead-zone and hysteresis models, also called static
backlash [15, 81, 82, 90], which are suitable for feedback control design but completely
neglect the contact/impact dynamics, and dynamic backlash with compliant spring/dashpot
models [46, 61]. Few studies use dynamic backlash with nonsmooth, set-valued models [40,
52]. Static and dynamic models of backlash yield quite different harmonic properties [17].

Most, if not all, of the multibody-oriented above studies and some of the control-oriented
ones use the contact/impact phenomena in the clearances with compliant, linear, or nonlin-
ear spring/dashpot models (this is even sometimes stated as a basic modeling requirement
[65]) and regularized Coulomb’s friction [49, 88]. It is worth noting that we are dealing here
with contact that may be conformal, especially if clearances are small compared to bear-
ing and journal diameters. In such a case, the Hertz elasticity may not be suitable, to say
nothing about linear elasticity. An additional modeling issue concerns energy dissipation
via viscous friction and which damping model should be chosen: linear or nonlinear (like
the Hunt–Crossley or Kuwabara–Kono models [9, Chap. 2])? Other models using some kind
of bistiffness elasticity (like Walton–Braun, Lankarani–Nikravesh, and all their variants [9,
§4.2])? This remains quite unclear to us. Moreover, it is quite often a hard task to estimate
their parameters (equivalent stiffness and damping). A major drawback of such an approach
is that the numerical stabilization of contact forces and accelerations during the persistent
contact phases is not an easy task. Spurious oscillations may appear in the simulation of
these contact modes (see e.g. [30, 35, 43, 63, 80, 88], [29, Figs. 4.22, 4.23]). Moreover,
the regularization of Coulomb’s law at zero tangential velocity (i.e., in the two-dimensional
case, replacing the vertical segment of Coulomb’s law characteristic by some finite-slope
or sigmoid curve) has to be absolutely avoided since it cannot model properly the stick-
ing modes, which play a significant role in the contact dynamics. In addition, contrarily to
what is sometimes stated [67], very efficient numerical methods exist for the simulation of
set-valued characteristics that we use in this work. Finally, the contact parameter estima-
tion may be a hard task (especially, if both normal and tangential models depend on several
parameters and impacts are considered), and stiff differential equations may appear due to
very large contact equivalent stiffnesses. Therefore, nonsmooth, set-valued models that use
few parameters but retain the major contact dynamics features may be preferred in many
multibody multicontact applications.

Thümmel et al. [79] discussed the methodology for modeling mechanisms with clear-
ance, friction, and impact within the so-called nonsmooth contact dynamic method (NSCD)
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Fig. 1 Three types of four-bar mechanisms

introduced by Moreau and Jean [38, 39, 56, 58, 59]: the interaction between bodies is mod-
eled with unilateral constraints, complementarity conditions, kinematic or kinetic restitution
coefficients, and set-valued frictional models (like Coulomb’s law) [9, 34, 69]. Following
Moreau [57], the dynamics of rigid multibody systems is formulated at the velocity-impulse
level. The NSCD has proved to be a quite efficient numerical method, capable of handling
complementarity conditions, impacts, and set-valued friction laws [4, 78]. Further studies
using the nonsmooth contact dynamics methods may be found in [31, 44, 79]. Careful com-
parisons between numerical and experimental data are reported in [44, 79, 83–86]: they
show that the so-called time-stepping numerical schemes associated with set-valued force
laws possess very good forecast capabilities. This motivates us to use the NSCD method,
with the enhanced scheme derived in [2] and available in the INRIA open-source library
SICONOS [4]. It is worth noting that all of the above analysis (as well as the one in this pa-
per) deal with two-dimensional joints. Recently, the three-dimensional case has been tackled
in [49, 89]. In such a case, cylindrical contact/impact models may be considered [68].

In this article, we study three different examples of the four-bar mechanism (crank–
rocker, crank–crank, and rocker–rocker, see Fig. 1) controlled with six different inputs,
mainly through numerical simulations. From a general point of view, joint clearances intro-
duce nonsmooth, nonlinear perturbations and an increase of the system degrees of freedom,
which render the controlled system underactuated.1 Studying the robustness of (otherwise
globally exponentially stable when applied on the ideal, no clearance system) controllers
with respect to such hard disturbances is a tough task for at least two main reasons: (a) an-
alyzing the effects of impacts on the closed-loop system’s Lyapunov function derivative, is
in general uneasy, especially in a trajectory tracking framework, where complete solutions
have been proposed for fully actuated systems only [8, 11, 12, 33, 51, 54, 55]; (b) moreover,
the system dynamics is strongly changed also between impacts due to the increase of the
configuration space dimension, and the analysis of the ideal system Lyapunov function vari-
ation during the persistently constrained or unconstrained phases is also a hard task, which,
to the best of the authors’ knowledge, has never been tackled. Let us stress that our objective
is not to derive new control strategies for backlash compensation, but to study both qual-
itatively and quantitatively how the addition of clearances modifies the controlled system
behavior when well-known state feedback schemes are applied. Surprisingly enough, col-
located feedback inputs possess remarkable robustness and drastically improve the system
performance compared with open-loop control torques.

The article is organized follows. The dynamics are introduced in Sect. 2: the local kine-
matics that allows us to derive the gap functions in Sect. 2.1, the normal and tangential

1There are less actuators than degrees of freedom.
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Fig. 2 Planar revolute joint with
clearance in a multibody system

contact laws in Sect. 2.2, the Lagrange dynamics in Sect. 2.3, and a numerical scheme in
Sect. 2.4. Section 3 is dedicated to the analysis of the four-bar systems with time-dependent
open-loop control inputs. Four different feedback controllers are studied in Sect. 4: two
proportional-derivative (PD) inputs in Sect. 4.1, a state feedback linearization in Sect. 4.2,
and a passivity-based controller in Sect. 4.3. Conclusions end the article in Sect. 5. De-
tails on the system dynamics and the closed-loop system stability analysis are given in the
Appendix.

2 The Lagrange dynamics with unilateral constraints and Coulomb’s
friction

2.1 Modeling of revolute joints with 2D clearance

The local kinematics that allow us to derive the unilateral constraints are treated in detail in
[4, 34, 69]. Let us provide its formulation for a generic revolute joint with radial clearance c

as depicted in Fig. 2. In an ideal revolute joint, it is assumed that the centers of two intercon-
nected bodies (journal and bearing) coincide. A revolute joint with clearance separates these
two center points. It does not constrain any degree of freedom in the mechanical system like
the ideal revolute joint. However, it imposes kinematic restrictions on the journal motion.
Thus, an imperfect revolute joint introduces two degrees of freedom in the mechanical sys-
tem. The radial clearance is defined as c = r1 − r2, where r1 is the radius of bearing, and
r2 is the radius of journal (r1 > r2). In Fig. 2, O1 and O2 indicate the bearing and journal
centers, and C1 and C2 represent the potential contact points on the bearing and journal,
respectively. The (O, i, j) coordinate frame represents the inertial coordinate system (with
coordinates X and Y ). The vectors rC1 and rC2 ∈ R2 denote the positions of contact points
C1 and C2 in the inertial coordinate system. The centers of mass of bodies 1 and 2 are G1

and G2 with coordinates (X1, Y1) and (X2, Y2), respectively. The bodies orientations are the
angles θ1 and θ2. The vectors rG1 and rG2 ∈ R2 denote the positions of the bearing and jour-
nal centers of mass, whereas rO1 and rO2 ∈ R2 denote the positions of the centers of bearing
and journal, both in the inertial coordinate system. The normal and tangential vectors to the
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plane of collision between the bearing and the journal are defined by (n, t) ∈ R2. Note that
the unit vector n has the same direction as the line of the centers of the journal and bearing.
The orientation of n is chosen such that it always acts inward from the journal center to the
bearing center. The signed distance (or gap function) is calculated as

gN = (C1C2)
T n = c − (O2O1)

T n. (1)

The magnitude of eccentricity (clearance) vector O2O1 is denoted by ∥O2O1∥, and its ori-
entation is given by α. The unit normal vector n is given as n = O2O1

∥O2O1∥ with

O2O1 =
(

X1 + l1

2
cos θ1 − X2 + l2

2
cos θ2

)
i

+
(

Y1 + l1

2
sin θ1 − Y2 + l2

2
sin θ2

)
j, (2)

n = cosαi + sinαj, t = − sinαi + cosαj, (3)

cosα =
(

X1 + l1
2 cos θ1 − X2 + l2

2 cos θ2

∥O2O1∥

)
,

sinα =
(

Y1 + l1
2 sin θ1 − Y2 + l2

2 sin θ2

∥O2O1∥

)
.

(4)

If we denote the generalized coordinates of each body as qi = (Xi, Yi, θi )
T , i = 1,2, then

we obtain that gN = gN(q1, q2). We also have rC1 = rG1 +G1C1 = rG1 +G1O1 +O1C1 and
rC2 = rG2 + G2C2 = rG2 + G2O2 + O2C2. Differentiating these expressions with respect to
time yields

{
VC1 = d

dt
rG1 + d

dt
(G1C1) = d

dt
rG1 + d

dt
(G1O1) + d

dt
(O1C1),

VC2 = e d
dt

rG2 + d
dt

(G2C2) = d
dt

rG2 + d
dt

(G2O2) + d
dt

(O2C2),
(5)

which leads to
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

VC1 =
(

Ẋ1 − ( l1
2 sin(θ1) − r1 sin(α))θ̇1

Ẏ1 + ( l1
2 cos(θ1) − r1 cos(α))θ̇1

)

,

VC2 =
(

Ẋ2 − ( l2
2 sin(θ2) − r2 sin(α))θ̇2

Ẏ2 + ( l2
2 cos(θ2) − r2 cos(α))θ̇2

)

,

(6)

where VCi
∈ R2 (i = 1,2) are the absolute velocities of the contact points. Consequently, the

relative velocity of contact points is expressed in the local frame as

U =
(

UN

UT

)
=

(
(VC2 − VC1)

T n
(VC2 − VC1)

T t

)
. (7)

From (6) and (7) the normal and tangential components of the relative velocity can be cal-
culated:

(
UN

UT

)
=

(
cosα sinα l1

2 sinA − cosα − sinα l2
2 sinB

− sinα cosα − l1
2 cosA + r1 sinα − cosα − l2

2 cosB − r2

)(
q̇1

q̇2

)
, (8)

where A = (θ1 − α), B = (θ2 − α).
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2.2 Normal and tangential contact laws

The contact force is denoted R = (RN,RT )T ∈ R2 in the local frame (n, t). Due to the
impenetrability assumption, we have gN(q) ≥ 0. We also neglect adhesive effects, so that
RN ≥ 0. If RN > 0, then we impose gN(q) = 0, and when gN(q) > 0, the normal contact
force must vanish, that is, RN = 0 (no magnetic or distance forces) [1, 4, 9]. These conditions
yield a complementarity condition denoted compactly as

0 ≤ gN(q) ⊥ RN ≥ 0. (9)

The normal contact law at the velocity level is expressed as

0 ≤ U+
N + erU

−
N ⊥ RN ≥ 0 if gN(q) = 0, (10)

where U+
N = ∇gN(q)T q̇+ is the relative velocity after the collision, U−

N = ∇gN(q)T q̇− is
the relative velocity before the collision, and er ∈ [0,1] is the restitution coefficient.2 The
tangential contact law is based on Coulomb’s friction law and is defined locally at each
contact point (C1 = C2). In the 2D case Coulomb’s friction law is as follows:

−RT ∈ µ|RN | sgn(UT ), (11)

where µ ≥ 0 is the coefficient of friction, and sgn(·) is the set-valued signum function with
sgn(0) = [−1,1]. It is worth noting that the basic Coulomb law can be easily enhanced with
static and dynamic friction coefficients, varying friction coefficient (with Stribeck effects),
or micro-displacements during sticking modes, while staying in a set-valued context that is
suitable for a proper time-discretization including sticking modes [4, §3.9].

2.3 Lagrangian formulation with bilateral and unilateral constraints

Let us consider a Lagrangian mechanical system with generalized coordinate vector q ∈ Rn

and subjected to m constraints, with mb holonomic bilateral constraints gα
N = 0 and α ∈ E ,

mu unilateral constraints gα
N ≥ 0,α ∈ I , and m = mb + mu = |E| + |I|, and with 2D

Coulomb friction. The Lagrangian formalism of such a system is as follows [4, 69]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇(t) = v(t),

M(q(t))v̇(t) + F(t, q(t), v(t)) = G⊤
N(q(t))RN + G⊤

T (q(t))RT ,

gα
N(q(t)) = 0, α ∈ E,

gα
N(q(t)) ≥ 0, Rα

N ≥ 0, Rα
Ngα

N(q(t)) = 0,

Uα
N(t+) = −eα

r Uα
N(t−) if gα

N(q(t)) = 0 and Uα
N(t−) ≤ 0,

}

α ∈ I

−Rα
T ∈ µαRα

N sgn
(
Uα

T

)
if gα

N

(
q(t)

)
= 0,

(12)

where v(t) is the vector of generalized velocities, M(q) ∈ Rn×n is the mass matrix,
F(t, q, v) = C(q, v)v − g(q) − Bτ (t, q, v) ∈ Rn is the vector of generalized forces,
C(q, v)v ∈ Rn is the vector of Coriolis and gyroscopic forces, g(q) contains forces derived

2When friction is present during impacts, there is in general no reason that er should be upper bounded by 1;
see [9, Chap. 4]. Moreover, inertial couplings may introduce kinetic energy increase for nearly elastic impacts.
Finally, dynamical singularities like Painlevé paradoxes may occur during sliding motions [9, Chap. 5]. We
have not noticed such issues in the particular cases treated further with small friction coefficients.
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from a potential, B ∈ Rn is the input matrix, τ (t, q, v) is the scalar control torque applied
at joint J1 (see Fig. 3 below), and GN(q) = ∇gN(q)T ∈ Rm×n and GT (q) ∈ Rm×n are the
linear maps of local normal and tangent frames at the contact points (i.e., UT = GT (q)q̇ and
UN = GN(q)q̇; see (8)).

In the sequel, we consider only unilateral constraints since bilateral constraints are elimi-
nated by coordinate reduction. Details on the dynamics of the four-bar systems are provided
in Appendices A, A.1, and B.

Remark 1 (i) The mathematical well-posedness of the Lagrange dynamics in (12) has been
shown in the frictionless case in [6, 20, 21, 66]; in the case with friction, see [7, 76].
(ii) When there is no clearance, n = 1, and the system is fully actuated. When one clear-
ance is present (resp. two clearences), n = 3 (resp. n = 5), and the system becomes un-
deractuated. (iii) Various contact/impact models are compared in [29]. It is not obvious to
determine which model is the best. The approach chosen in this article seems to be a suitable
compromise for many physical effects occurring in joints with clearance and which are quite
difficult to encapsulate in a single contact/impact model with a reliable numerical method
(dissipation at impacts, friction, conforming/non conforming contacts). As alluded to above,
it may be enhanced while staying in the same overall rigid body framework.

2.4 The numerical integration method

The numerical time-integration scheme used in this article is an event–capturing time-
stepping method mainly based on the Moreau–Jean time-stepping scheme [38, 39, 56, 58,
59]; see also [70, 77] for a similar time-stepping scheme. As we said in the Introduction,
the method uses a formulation of the dynamics at the velocity/impulse level that enables
a very robust numerical time-integration of systems with a lot of impact events. Contrary
to event-driven schemes, the events are not accurately located in time but integrated within
the time-step. Although this leads to robust schemes, the treatment of the constraints and
the impact law at the velocity level yields drift at the position level. When we study multi-
body systems with clearances in joints with unilateral contact, we need to keep the drift of
the constraints as small as possible with respect to the characteristic lengths of the clear-
ances.

This is the reason why we use a scheme that satisfies constraints both at the velocity
and position levels. It is an extension of the Moreau–Jean scheme together with the Gear–
Gupta–Leimkuhler (GGL) method to systems with unilateral constraints and impacts [2].
Applying directly the GGL approach to unilateral constraint may yield to spurious oscil-
lations at contact that depend on the activation procedure of the constraints at the velocity
level. In [2], this issue is fixed by consistently activating the constraints within the time-step
in an iterative way. Especially, we want to avoid the projection onto a constraint if the asso-
ciated constraint at the velocity level is not activated. The so-called “combined scheme” is
based on the iterations denoted by ν of the following two steps:



108 N. Akhadkar et al.

1. The projection step is based on the solution of the following system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(qk+θ )(vk+1 − vk) − hFk+θ = G(qk+1)Pk+1,

qk+1 = qk + hvk+θ + G(qk+1)γk+1,

Uk+1 = G⊤(qk+1)vk+1,

gk+1 = g(qk+1),

for all α ∈ Iν,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ≤ Uα
N,k+1 + eUα

N,k ⊥ P α
N,k+1 ≥ 0,

−PT,k+1 ∈ µαP α
N,k+1 sgn(Uα

T ,k+1),

gα
k+1 = 0,γ α

k+1 if P α
N,k+1 > 0,

0 ≤ gα
k+1 ⊥ γ α

k+1 ≥ 0 otherwise,

(13)

for a given index set Iν of active constraints. The time-step is denoted by h, and the
notation xk+θ = (1 − θ)xk + θxk+1 is used for θ ∈ [0,1]. Compared to the Moreau–Jean
scheme, the multiplier γk+1 is added to improve the constraint drift. Note that Pk+1 is an
impulse that remains always bounded when an impact occurs.

2. The activation step computes the index set Iν of active constraints by checking for a
given value of gk+1 if the constraint is satisfied or not. Starting form I0 = ∅, at each
iteration ν, the activation performs the following operation:

Iν+1 = Iν ∪
{
α ∈ I | gα

k+1 ≤ 0
}
. (14)

The iterates (qk+1, vk+1) of the solution depend on the iteration number ν. In order to avoid
useless complexity in the notation, we skip the superscript ν when there is no ambiguity.
Steps 1 and 2 are iterated until the index set Iν is constant. The algorithm can be extended
straightforwardly to the frictional case.

The contact events are not detected with high precision in such event–capturing methods,
and the number of calculated impacts depends on h. In the next section, the choice h =
10−5 s is made. Computations reported in [4, Table 14.2] show that this is a reasonable
time step, and smaller h is not necessary, because the collisions that are not detected have
negligible influence on the system dynamics (in particular, on the kinetic energy loss). The
simulations in this article have been led with the code implemented in the INRIA open-
source software SICONOS.3

Remark 2 Two major classes of numerical methods exist: event-driven and event–capturing
(or time-stepping) schemes. They both possess advantages and drawbacks. In case of sys-
tems that undergo a large number of events (like stick/slip transitions and impacts), event–
capturing methods are preferable despite their low order [4, 78] because event-driven strate-
gies rapidly become cumbersome to implement and too time-consuming. Moreover, event–
capturing methods have been proved to converge and to possess nice energetic properties [3].

2.5 Analysis methodology

Let us consider a four-bar mechanism (see Fig. 3(a,b)) with bodies of mass mi , length li ,
and inertia Ii , 1 ≤ i ≤ 3. An imperfect joint is defined by a unilateral constraint gj = (cj −
OjOj−1n) ≥ 0, j = 2 or 3, where cj is the radial clearance at the imperfect joint. The
four-bar mechanism with clearance in one revolute joint is described by three generalized

3http://siconos.gforge.inria.fr/.

http://siconos.gforge.inria.fr/
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Fig. 3 Four-bar mechanism with clearance in revolute joints

coordinates q = [θ1, θ2, θ3]T and that with clearance in two revolute joints it is described by
five generalized coordinates q = [θ1, θ2, θ3,X2, Y2]T . The four-bar mechanism is actuated
at the joint 1 (J1). We consider joints J1 and J4 to be perfect revolute joints, whereas the
joints J2 and J3 may be imperfect with radial clearances c2 and c3. The influence of different
clearance sizes c2 and c3, coefficient of restitution (er ), and coefficient of friction (µ) on the
mechanism performance is studied. Results are compared with the cases without clearance
and without friction. The presence of clearance in the revolute joint can lead to variation in
the initial conditions, and this variation depends on the value of the radial clearance. To this
aim, in the first step, we study the influence of the initial conditions on the system long-term
behavior with perfect revolute joints. Let ∥ · ∥∞ be defined as4 ∥X∥∞ = maxt∈[1,10] |X(t)|.
The percentage relative error in the angular position θ1(0) is given as

e0 = ∥θ i1
1 (t) − θ idl

1 (t)∥∞
∥θ idl

1 (t)∥∞
× 100, (15)

where θ idl
1 (t) is the angular position of links with the reference initial condition, and θ i1

1 (t)

is the angular position of links with different initial conditions. We plot the isolines of the
percentage relative error e0 with θ1(0) and θ̇1(0). In the second step, we analyze through nu-
merical simulations how much the presence of clearances deteriorates the system dynamical
behavior. The percentage relative error in the angular positions θ1 and θ3 is given as

e = max
p∈{1,3}

∥θ cl
p (t) − θ id

p (t)∥∞

∥θ id
p (t)∥∞

× 100, (16)

where θ id
p (t) is the angular position of links without joint clearance, and θ cl

p (t) is the angular
position of links with joint clearance. The contour plot with different levels of isolines rep-
resents the variation of error in the angular position. In the second step, the initial conditions
remain constant, and only radial clearances (c2 and c3) are varied for different values of
coefficients of restitution er and of friction µ. For all contour plots, simulations are carried
out for every 0.5 mm increment in joint clearance and for every 0.1 increment in coefficient
of restitution. Therefore, the error e allows us to analyze the loss of performance of a con-
troller when clearances are added and is different from the usual tracking error that is widely

4The first initial period [0,1] s is not included in the infinity norm in order to eliminate the transient period,
and we concentrate ourselves on the steady-state behavior of trajectories only.
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used in the control literature. It measures the proximity between the cases with and without
mechanical play.

3 Open-loop control

In this section, two open-loop5 inputs τ are considered: a constant torque τ1 = 6.0 N m and
a sinusoidal torque τ2 = 6.0 sin(0.75π t) N m, applied at the joint J1 in counter-clockwise
direction. Since our main goal is comparison of feedback controllers and since the re-
sults we obtained for the three types of four-bar mechanisms were quite similar, only the
crank–rocker case is presented. Let us consider a crank–rocker mechanism as in Fig. 1(a),
where the input link l1 rotates fully (360◦), and the output link l3 oscillates through an-
gles θ3min and θ3max . Geometric and inertial properties of the crank–rocker four-bar mecha-
nism are given in Table 1. The initial conditions are θ1(0) = 1.571 rad, θ2(0) = 0.3533 rad,
θ3(0) = 1.2649 rad, and θ̇1(0) = θ̇2(0) = θ̇3(0) = 0.0 rad/s. The coordinates of the center of
gravity of link 2 are X2 = 1.8764 m, Y2 = 1.6919 m. The parameters used for the dynamic
simulation are given in Table 2. The deviation in the system performance is studied with the
percentage relative error in angular position e0 in (15) to find out the sensitivity to the initial
conditions. The results are depicted in Fig. 4. The major conclusion is that the system sen-
sitivity w.r.t. initial conditions changes drastically when the constant torque is replaced by a
sinusoidal one: Fig. 4(a) shows an ordered behavior with horizontal stripes (zero gradient of
e0(θ1(0))) and small gradient of e0(θ̇1(0)), whereas Fig. 4(b) shows a disordered behavior
with a high gradient of e0(θ1(q), θ̇1(0)) between the isolines, indicating high sensitivity.

Let us now analyze the case with one clearance in joint J2. The numerical simulations
are depicted in Figs. 5, 6, and 7. In Fig. 6, the trajectories θ1(t) for various clearances and
the variables gN(q(t)) and ġT (q(t)) are depicted. The normal contact force RN(t) is also
given for the case without friction. Finally, the isolines of the percentage relative error e as
given in (16) are plotted and depicted in Fig. 5. The results have been obtained, as indicated
in Table 2, for the range of values of restitution coefficient er ∈ [0.0,0.9]. Only one set of
simulations for er = 0.0 is shown in Fig. 6 because changing the restitution coefficient did
not change the results significantly in agreement with the results in Fig. 5. The major con-
clusions are: (i) For the input torque τ1, the impacts and thus the restitution coefficient er

Table 1 Geometric and inertial
properties of the crank–rocker
four-bar mechanism

Body Nr. Length [m] Mass [kg] Inertia [kg m2]

1 1.0 1.0 8.33 · 10−2

2 4.0 1.0 1.33

3 2.5 1.0 5.21 · 10−1

4 3.0 – –

Table 2 Parameters used in simulations

Nominal bearing radius r2 0.06 m Coefficient of restitution er [0,0.9]
Radial clearance c2 (or c3) [0.0,5 · 10−3] m Time step h 1 · 10−5 s

Coefficient of friction µ {0.0,0.1} Total time of simulation T 10 s

5The name open-loop control means that the torque τ is a function of time only, with no position or velocity
feedback.
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Fig. 4 Crank-rocker with ideal joints: contour plot of e0 with θ1(0) and θ̇1(0)

Fig. 5 Crank–rocker with clearance in J2: contour plot of e with c2 and er , τ1

play a negligible role for fixed clearance (vertical stripes in Fig. 5). This may be attributed
to too small values of the preimpact velocities and to a small number of collisions (see the
plots of gN(q) in Figs. 6(a,b,c)). Figures 7 also illustrate that the rebound/contact inside the
bearing is confined to small collisions mainly on one side of the bearing, almost indepen-
dently of er . (ii) The maximum values taken by gN(q) after impacts are most of the time
really smaller than the clearance (5 mm in Figs. 6(a,b,c)), in agreement with Fig. 7. (iii) The
combined projection scheme in (13) allows us to simulate persistent contact phases without
spurious oscillations and with very small drift. This is particularly visible in Figs. 6(a–c)
(see gN(q(t)) between the peaks). (iv) For the torque τ2, the system trajectories (see θ1 in
Fig. 6(c,d)) start deviating from a specific configuration marked as P1 on the plot, and af-
ter this point, the system starts behaving randomly. This is common behavior observed in
systems with unilateral constraints and impacts (see, e.g., [91, Figs. 11, 12]; see [16, 47] in
the broader context of bifurcation and chaos analysis). (v) Surprisingly enough, the num-
ber of impacts with the sinusoidal input torque τ2 is smaller than that with τ1 (see gN(q)

in Figs. 6(a,c)). (vi) As seen in Fig. 6(b), the system undergoes few stick/slip transitions in
the joint J2 (ġT (q(t)) is almost always positive) but with many variations of the tangential
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Fig. 6 Crank–rocker with clearance in J2: θ1, gN , ġT , and RN , er = 0.0

Fig. 7 Crank–rocker with clearance in J2: Journal center locus τ1

velocity at contact. (vii) For the driving torque τ1, the presence of small friction does not
modify much the dynamical behavior (see Fig. 5 and gN(q) in Figs. 6(a,b)).

Let us now consider now the crank–rocker mechanism with clearance in joints J2 and J3

(see Fig. 3(b)). The isolines of the percentage relative error as given in (16) are plotted
for the radial clearances c2 and c3. The results for the input torques τ1 and τ2 are depicted
in Fig. 8(a,b). Some comments arise: (i) In case with torque τ1, the revolute joint J3 with
clearance c3 has more influence on the system performance as compared to joint J2 with
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Fig. 8 Crank–rocker with clearance in J2, J3: contour plot of e with er = 0.0, µ = 0.1

clearance c2. This may be attributed to the location of the applied torque. (ii) As expected,
the torque τ2 yields unpredictable behavior with high sensitivity of e(c2, c3) (Fig. 8(b)). We
infer from Figs. 4(b) and 8(b) that the system actuated with τ2 is quite sensitive to both
initial data and clearances values. The simulations for Fig. 8(b) were led over [0,100] s
in order to capture the long-term behavior of the trajectories (as seen in Figs. 6(c,d) with
c3 = 0; trajectories with and without clearance remain close one to each other for τ2 on the
first 10 s).

4 State-feedback control

The main conclusion from the foregoing section is that open-loop controllers may easily
lead to unpredictable behavior with high sensitivity to both initial data and clearance values
when nonconstant torques are applied. With such a high sensitivity, it is hopeless to try to
deduce some universal conclusions on the relative influence of the parameters (er ,µ, c2, c3)

on the behavior of the mechanism. It is of interest to investigate if adding a collocated feed-
back action at joint J1 may improve the system dynamical behavior when clearances are
present (the answer for the no-play case being trivially positive in case of the two nonlin-
ear controllers that guarantee the global exponential Lyapunov stability of the tracking error
system). We will in the following consider four types of feedback controllers with increas-
ing complexity: proportional-derivative (PD) plus gravity compensation, with and without
desired velocity, feedback linearization, and passivity-based inputs. There are many other
types of controllers that have been derived for Lagrangian systems, starting from the basic
PD and PID controllers; see, e.g., [5, 14, 41, 42, 74]. In this study, for obvious reasons, we
chose to focus ourselves on few of them only.

4.1 Proportional-derivative (PD) controllers

In this section two different types of PD controllers are considered:

τ3(θ1, θ̇1, t) = −K2θ̇1 − K1
(
θ1 − θd

1 (t)
)

(17)

and
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Fig. 9 PD control: maximum tracking error θd
1 (t) − θ1(t) vs. controller gains

τ4(θ1, θ̇1, t) = −K2
(
θ̇1 − θ̇d

1 (t)
)
− K1

(
θ1 − θd

1 (t)
)
, (18)

where K1 and K2 are positive control gains.
Since system (8) is nonlinear, PD controllers without any kind of feedforward compen-

sation do not a priori guarantee the global asymptotic trajectory tracking of the dynam-
ics (37) with (17) or (18). However, the input τ4 guarantees the global practical stability
[14, Theorem 1]. The choice of the gains may be made by varying the gains and com-
puting the maximum tracking error θ̃1

'= θ1 − θd
1 in each case, where the desired angle

has been chosen as θd
1 (t) = 6.0 sin(0.75π t) for the crank–rocker and the crank–crank and

θd
1 (t) = 3.0+2.5 sin(0.75π t) for the rocker–rocker mechanisms. The maximum tracking er-

rors on [0,10] s for the crank–rocker, crank–crank, and rocker–rocker four-bar mechanisms
are plotted for different values of the control gains K1 and K2 in Fig. 9. As expected from
[14, Theorem 1], the tracking error decreases as K1 and K2 increase and quickly attains an
almost constant value for the three mechanisms and both controllers. It is interesting to note
that the crank–crank mechanism shows the largest tracking error: this may be due to the
fact that the nonlinear torque N(θ1, θ̇1) in (37) has greater magnitude than for the other two
mechanisms. Also, the input τ4 permits to decrease significantly the tracking error for large
enough gains, whereas τ3 cannot: this demonstrates the usefulness of the feedforward veloc-
ity term K2θ̇

d
1 in (18). For comparison between the various feedback controllers, these gains

will also be used for the PD-part of the nonlinear inputs of Sects. 4.2 and 4.3. Thus, they
have to satisfy the conditions stated in Appendix C. The choice has been made as K1 = 2000
and K2 = 200 because larger values do not improve the performance as shown in Fig. 9. The
constant C in the Lyapunov function (42) can be chosen C = 10.

4.1.1 Crank–rocker mechanism

Let us consider a crank–rocker mechanism with clearance in one and two revolute joints
(see Figs. 1(a) and 3(a,b)). The Lagrange dynamics is given as in Appendices A.1 and B,
respectively, and the system is underactuated with collocated input at joint J1. The geomet-
ric and inertial properties, parameters used for simulation, and initial conditions are given
in Sect. 3. The isolines of e in (16), which allow us to compare the cases with and with-
out clearances, are depicted in Fig. 10. They were found to be identical for both τ3 and τ4,
which shows that the addition of θ̇d

1 (t) in τ4 may improve the tracking capabilities, whereas
the system precision deterioration is unchanged when clearances are added. Only one set
of simulations is shown because changing er and µ did not change the results significantly.
Comparison of Figs. 8(b) and 10(b) shows a significant discrepancy between open-loop
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Fig. 10 Crank–rocker with PD control: contour plot of e, µ ∈ {0.0,0.1}, τ3, and τ4

Table 3 Geometric and inertial
properties of the crank–crank
four-bar mechanism

Body Nr. Length [m] Mass [kg] Inertia [kg m2]

1 1.2 1.0 1.20 · 10−1

2 1.2 1.0 1.20 · 10−1

3 1.2 1.0 1.20 · 10−1

4 1.0 – –

and state feedback controllers. Actually, the Lyapunov stability of closed-loop systems with
state feedback controllers drastically changes their dynamical behavior when clearances are
present. It is worth noting that the coefficient of restitution plays no role in the variation of e

(see Fig. 10(a)), and there exists a symmetry of the behavior with respect to clearances c2

and c3 (see Fig. 10(b)). From Fig. 12 we conclude that, similarly to the case of input τ1,
the journal spends most of the time almost in contact with the bearing, with very small re-
bounds excepted in few cases where the journal crosses the whole bearing, when the desired
trajectory changes its direction (see Fig. 12(b)).

4.1.2 Crank–crank and rocker–rocker mechanisms

Let us consider a crank–crank mechanism with clearance in one and two revolute joints
(see Figs. 1(b) and 3(a,b)). The geometric and inertial properties are given in Table 3. The
control gains are unchanged. The initial conditions are θ1(0) = 1.658 rad, θ2(0) = 1.607 ·
10−4 rad, θ3(0) = 1.488 rad, θ̇1(0) = θ̇2(0) = θ̇3(0) = 0.0 rad/s. The control performances
are depicted in Figs. 13 and 14. The counterparts of Figs. 10 and 13 for the rocker–rocker
mechanism are not shown because they are quite similar to the other two.

4.1.3 Conclusion on PD control

It is visible in Figs. 10 and 13 that: (i) the closed-loop behavior of both PD controllers in (17)
and (18) is predictable (the restitution coefficient er has negligible influence on e, whereas a
symmetric influence of c2 and c3 is observed); (ii) the values of e are however much smaller
than those for τ1, indicating that the PD feedback has a significant influence on the systems
dynamics in the presence of clearances; (iii) the tracking error is decreasing when τ4 is used
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Fig. 11 Crank–rocker with PD control: θ1 and θ̃1 (er = 0.0, µ = 0.1, τ = τ4)

Fig. 12 Crank–rocker with PD control: journal locus inside the bearing

Fig. 13 Crank–crank with PD control: contour plot of e, µ ∈ {0.0,0.1}, τ3, and τ4

instead of τ3 (see Fig. 9); however, this has little influence on e: both controllers gave the
same results in Figs. 10 and 13; (iv) from Figs. 9, 10, 11, 13, and 14 it follows that the crank–
rocker mechanism provides better performance than the crank–crank one, both for e and the
precision at the velocity sign changes (see the zoomed parts in Figs. 11(a) and 14); (v) as
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Fig. 14 Crank–crank: PD
control with clearance in two
joints (J2, J3): θ1
(er = 0.0,µ = 0.1, τ = τ4)

expected, the loss of precision occurs when the desired trajectory changes the direction (see
Fig. 14). This motivated some extensions of the PD controllers to improve the accuracy [40].

4.2 State feedback linearization

The smooth part of the dynamic equations of the four-bar mechanism with minimal coordi-
nate is

M(θ1)θ̈1 + N(θ1, θ̇1) + g(θ1) = τ5. (19)

Details on how to obtain this minimal coordinate dynamics are given in Appendix A. Let us
choose the control torque as

τ5(θ1, θ̇1,U) = M(θ1)U + N(θ1, θ̇1) + g(θ1). (20)

The control law (20) is a simple instance of state feedback linearization. Since M(θ1) > 0,
the closed-loop system (19)–(20) reduces to the double-integrator θ̈1 = U . The input U

is chosen as the PD controller U(θ1, θ̇1, t) = −K1θ1 − K2θ̇1 + r(t). For a given desired
trajectory (θd

1 (t), θ̇d
1 (t)), we set r(t) = θ̈d

1 (t) + K2θ̇
d
1 (t) + K1θ

d
1 (t). Then the tracking error

satisfies the closed-loop dynamics

(
θ̈1 − θ̈d

1 (t)
)
+ K2

(
θ̇1 − θ̇d

1 (t)
)
+ K1

(
θ1 − θd

1 (t)
)
= 0, (21)

which is globally exponentially stable, with convergence rate depending on the choice of the
controller gains. The controller gains have to satisfy the conditions stated in Appendix C.
Since the controller may be seen as a PD input with some nonlinearities compensation, the
gains will be chosen as for the PD controllers K1 = 2000 and K2 = 200 for comparison.

For brevity, since the results we obtained were quite similar for the three mechanisms,
we shall consider in this section a crank–rocker mechanism with clearance in one and
two revolute joints (see Figs. 1(a) and 3(a,b)). The desired trajectory of the input link is
given as θd

1 = 6.0 sin(0.75π t). The geometric and inertial properties and the parameters
used for simulation are given in Tables 1 and 2, and the initial conditions are as in Sect. 3:
θ1(0) = 1.571 rad, θ2(0) = 0.3533 rad, θ3(0) = 1.2649 rad, θ̇1(0) = θ̇2 = θ̇3(0) = 0.0 rad/s.
The numerical simulations are depicted in Figs. 15, 16, and 17 for the case with clearances
in one and two revolute joints. In Fig. 16, the trajectories of the input link θ1(t) for vari-
ous clearances and the Lyapunov function V (z) in (42) are shown. The results have been
obtained for different values of er ∈ [0.0,0.9] and for two different values of µ = 0.0 and
µ = 0.1. However, only one set of simulation is shown because changing er and µ did not
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Fig. 15 Crank–rocker with state linearization control: contour plot of e, µ ∈ {0.0,0.1}, τ = τ5

Fig. 16 Crank–rocker with state linearization control: θ1, θ̃1, and V (z) (er = 0.0, µ = 0.1, τ = τ5)

change the results significantly. Some comments arise: (i) Compared to the PD controller,
the error e is smaller by a factor 2 for large clearances and by a factor 5 for small clearances
(see Figs. 10 and 15). This tends to indicate that the feedback action and the compensa-
tion of nonlinearities both have a significant influence on the dynamics with play. (ii) The
Lyapunov function remains bounded, but it shows persistent variations after an initial ex-
ponential decrease; see Fig. 16: this is due both to the impacts that make the velocity jump
and thus induce state reinitializations all along the system motion and to the change of the
system dynamics compared to the no-clearance case. Impacts and increasing degrees-of-
freedom create a very hard disturbance in the no-clearance-system dynamics, whose effect
is not easy to analyze analytically; despite, it should logically decrease as the clearance
size c decreases and vanish as c → 0. A discussion about this is proposed in Appendix D.
(iii) The tracking error is reduced compared to the PD control since θ̃1 ∈ [−4,4] for τ4 and
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Fig. 17 Crank–rocker with state linearization control

θ̃1 ∈ [−1.3,1.3] for τ5 (see Figs. 16(b) and 11(b)). Also, θ̃1 with one clearance is smaller
than with two clearances; compare V (z) in Figs. 16(a,b). (iv) Increasing the gains K1 and
K2 allows us to consider larger pairs of clearances (c2, c3) for the same error e, as shown in
Fig. 17(a). (v) The controllers τ3, τ4, and τ5 possess quite similar shapes and magnitudes, as
depicted in Fig. 17(b). However, τ3 and τ4 take larger values during the transient period. The
absence of feedforward term in τ3 induces a delay in its reaction to impacts, but τ4 behaves
surprisingly close to the state feedback linearization scheme.

It is visible from Fig. 15 that the three mechanisms, when controlled with a state feedback
linearization algorithm, behave in the same way.

Conclusions The feedback linearization control schemes clearly supersede the PD con-
trollers both from the point of view of tracking error reduction (which is a well-known
result) and the point of view of the error e reduction. The second set of results (Figs. 10,
13, and 15) means that compensation of the smooth nonlinearities allows us to reduce the
closed-loop system sensitivity w.r.t. the presence of clearances.

4.3 Passivity-based control

Passivity-based controllers have become quite popular for the control of nonlinear mechan-
ical systems [10]. Let us investigate now the behavior of the so-called Slotine and Li con-
troller with fixed parameters, which is given in the no-clearance case (37) as

⎧
⎪⎨

⎪⎩

τ6(θ1, θ̇1, t) = M(θ1)(θ̈
d
1 (t) − Λ(θ̇1 − θ̇d

1 (t)))

+ C(θ1, θ̇1)(θ̇
d
1 − Λ(θ1 − θd

1 (t))) + g(θ1) − Kv,

v = (θ̇1 − θ̇d
1 (t)) + Λ(θ1 − θd

1 (t)),

(22)

where C(θ1, θ̇1)θ̇1 = N(θ1, θ̇1). The control gain K is similar to the derivative control
gain K2, and the control gain KΛ is similar to the proportional control gain K1. Thus,
the control gains are chosen as K = 200 and Λ = 10. The closed-loop dynamics (22), (37)
reads as M(θ1)v̇ + C(θ1, θ̇1)v + Kv = 0 and ˙̃θ1 = −Λθ̃1 + v.

4.3.1 Collocated control of crank–rocker mechanism

Once again for brevity, we consider in this section a crank–rocker mechanism only. The
geometric and inertial properties, the parameters used for simulation, and initial conditions
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Fig. 18 Crank–rocker with passivity-based control: contour plot of e, µ ∈ {0.0,0.1}, τ = τ6

Fig. 19 Crank–rocker with passivity-based control: θ1, V (v), and θ̃1 (er = 0.0, µ = 0.1, τ = τ6)

are as before. The numerical simulations are depicted in Figs. 18, 19, 20, and 21 and in
Tables 4 and 5. The results have been obtained for different values of er ∈ [0.0,0.9] and
for two different values of µ = 0.0 and µ = 0.1. However, only one set of simulation is
shown because changing er and µ did not change the results significantly. Some comments
are as follows: (i) Figs. 15 and 18(a,b) show that the passivity-based control algorithm is
slightly less sensitive to the clearances than the state linearization one. However, the tracking
errors are similar for both controllers (see Figs. 16(b), 19(b) and Tables 4, 5, 7). (ii) For the
same precision, the control torque has smaller peaks magnitude when compared to feedback
linearization, as shown in Fig. 20 and in Table 4 for various gains. (iii) When the gains
are decreased, the maximum tracking error remains almost identical for both controllers,
but the passivity-based input maximum value decreases much more than that of the state
linearization input (see Table 4). This may be explained by the fact that passivity-based
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controllers do not totally compensate the Lagrange dynamics nonlinearities and thus induce
less solicitation of the input torque. (iv) The evolution of the Lyapunov-like function V (v)

defined in (44) is depicted in Fig. 19(a,b). It shows that the case with one clearance has less
impacts than two clearances (similarly to the state linearization in Fig. 16), and it seems
that some periodic nonsmooth motion exists in steady-state.6 The variations of V (v) in
Fig. 19 and of V (z) in Fig. 16 demonstrate that the passivity-based controller keeps its
Lyapunov function at zero on longer periods than the feedback linearization one. (v) Fig. 21
shows the typical behavior inside a clearance (Xj2 and Yj2 denote the relative position of
O2 inside the bearing): there are few impacts, and the system tends to evolve on the bearing
surface. This once again explains why for such desired trajectories, the restitution coefficient
does not play a significant role. Comparing Figs. 21 and 12, we infer that compensating for
smooth nonlinearities does not modify significantly the journal center motion inside the
bearing: most of the time, the system evolves with small values of the gap function (and
this, as explained in Appendix D, provides an explanation of the robustness of the closed-
loop system). (vi) The influence of the desired trajectory frequency is reported in Table 5.
The torques τ5 and τ6 show comparable behavior when the frequency is increased. The
maximum tracking errors increase in proportion as the frequency of θd

1 (t) increases.

Remark 3 (i) The contact/impact model has a great influence on the computed journal center
motion inside the bearing [29, Fig. 4.24]. As alluded to above, the model we chose together
with the NSCD method of [2] allows us to treat in a clean way the contact phases, avoiding

Fig. 20 Crank–rocker:
comparison of control torques τ5
and τ6

Table 4 Crank–rocker: influence of control gains on the maximum tracking error on [1,10] s and control
torque (c2 = c3 = 5.0 mm)

Sr. No. Type of controller Control gain Max. tracking
error (degree)

Max. control
torque (N m)

1 Feedback linearization τ5 K1 = 2000, K2 = 200 1.34 818.29

Passivity-based τ6 Λ = 10, K = 200 1.3 724.45

2 Feedback linearization τ5 K1 = 500, K2 = 100 2.94 782.59

Passivity-based τ6 Λ = 5, K = 100 2.87 604.47

3 Feedback linearization τ5 K1 = 100, K2 = 50 9.8 697.69

Passivity-based τ6 Λ = 2, K = 50 9.21 511.39

6In a similar way to the feedback linearization scheme, proving such assertions is far from trivial and is not
tackled here; see Appendix D for some discussion about this point.
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Fig. 21 Crank–rocker with passivity-based control: journal center locus for joint 2

Table 5 Crank–rocker: influence of frequency on the maximum tracking error on [1,10] s and control torque

Frequency (f ) Max. tracking error (degree) Max. control torque (N m)

Ideal joints Clearance in J2, J3
c2 = c3 = 5.0 mm

Ideal joints Clearance in J2, J3
c2 = c3 = 5.0 mm

τ5 τ6 τ5 τ6 τ5 τ6 τ5 τ6

1.5π 0.004 0.004 3.16 3.2 2.3 · 103 2.3 · 103 3.6 · 103 2.3 · 103

4.0π 0.005 0.005 5.86 6.0 1.6 · 104 1.5 · 104 1.7 · 104 1.5 · 104

10.0π 0.014 0.016 11.6 12.4 9.3 · 104 9.2 · 104 9.8 · 104 9.4 · 104

50.0π 0.176 0.221 126.7 135.9 1.1 · 106 8.4 · 105 1.32 · 106 9.1 · 105

nonphysical oscillations. Choosing compliant models would yield quite different journal
center trajectories.

(ii) A nonlinear feedback controller is considered in [71, Eq. (30)], and applied to a slider-
crank mechanism. Contact is modeled with a compliant model. Numerical simulations show
possible chaotic behavior. It would be interesting to redo the analysis in this paper on the
same slider-crank system to investigate in which way the contact model may change the
conclusions and whether or not the above feedback controllers suppress or not the chaos.

4.3.2 Collocated control with clearance in three revolute joints J2, J3, and J4

In this section, a crank–rocker mechanism with clearance in three revolute joints is consid-
ered (see Fig. 22). The geometric and inertial properties, the parameters used for simulation,
and the initial conditions are as before. The numerical simulations are depicted in Figs. 23,
24, and 25, and in Table 6. The results have been obtained for two different values of the
coefficient of restitution, er = 0.0 and er = 1.0, and for µ = 0.1. The desired trajectory of
the input link is given as θd

1 (t) = 6.0 sin(0.75π t).7 Some comments are as follows: (i) The
control torque has larger peak magnitudes when compared to the case with clearance in
two revolute joints (compare Figs. 23(a) and 20). (ii) The tracking error does not change
significantly due to the additional clearance in the revolute joint J4 when compared to the

7The simulation files may be found on the SICONOS platform website at https://github.com/siconos/siconos/
tree/master/examples/Mechanics/FourBarLinkageWith3clearance.

https://github.com/siconos/siconos/tree/master/examples/Mechanics/FourBarLinkageWith3clearance
https://github.com/siconos/siconos/tree/master/examples/Mechanics/FourBarLinkageWith3clearance
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case with clearance in two revolute joints (see Figs. 23(b) and 19(b)). (iii) The evolution
of the Lyapunov-like function V (v) for the different values of er = 0.0 and er = 1.0 is de-
picted in Figs. 24(a,b) for θd

1 = 6.0 sin(0.75π t) and in Fig. 25 for θd
1 = 6.0 sin(50π t). This

shows that at low desired velocities, changing the restitution coefficient from er = 0.0 to
er = 1.0 does not significantly change the Lyapunov function except at the time instance
when the system passes through the angular position of θ1 = 0.0◦ during the clockwise mo-
tion (see Fig. 24(a,b)). At higher desired velocities, increasing er deteriorates more the per-
formance in terms of position and velocity tracking errors, and in addition tracking errors are
much greater (compare Figs. 23, 24, and 25). Similarly, the case with three clearances has
larger peaks during impacts when compared to the case with two clearances (see Figs. 24(a)

Fig. 22 Four-bar mechanism
with clearance in revolute
joints J2, J3 and J4

Fig. 23 Crank–rocker mechanism with clearance in joints J2, J3, and J4, er = 0.0, µ = 0.1, τ = τ6

Fig. 24 Crank–rocker mechanism with clearance in J2, J3, and J4, µ = 0.1, τ = τ6, T ∈ [1,10] s
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Fig. 25 V (v), er = 0.0, and
er = 1.0, µ = 0.1, τ = τ6,
T ∈ [1,2] s

Table 6 Crank–rocker:
influence of frequency on the
maximum tracking error on
[1,10] s and control torque

Frequency (f ) Max. tracking
error (degree)

Max. control
torque (N m)

Clearance in joints J2, J3, and J4
c2 = c3 = c4 = 5.0 mm

1.5π 3.50 3.6 · 103

4.0π 6.49 1.6 · 104

10.0π 13.10 9.7 · 104

50.0π 138.49 1.1 · 106

and 19(b)). (iv) The influence of the desired trajectory frequency is reported in Table 6. The
maximum tracking error and the control torque increase in proportion as the frequency of
θd

1 (t) increases. However, comparing with values in Table 5, we see that adding one more
clearance at J4 does not significantly increase the maximum tracking error nor the maximum
control torque.

4.3.3 Noncollocated control of crank–rocker mechanism

All the above results are for the collocated case, that is, we apply the control torque at joint
J1 and measure θ1 and θ̇1. It is however possible to use the expressions in (27) in order
to obtain the functions θ1(θ3) and θ̇1(θ3, θ̇3). In the ideal case, using the direct measure
of θ1 and θ̇1 to compute τ6, or measuring θ3 and θ̇3, then calculating θ1(θ3) and θ̇1(θ3, θ̇3)

and using these expressions to compute a noncollocated input τ7, we get exactly the same
results because τ7(θ1(θ3), θ̇1(θ3, θ̇3)) = τ6(θ1, θ̇1). When clearances are present in joints J2

and/or J3, then τ7 and τ6 differ since the expressions θ1(θ3) and θ̇1(θ3, θ̇3) are no longer
valid. It is well known that noncollocation deteriorates the control performance8 and may
even destabilize the closed-loop system. Results for the noncollocated input are depicted in
Figs. 26 and 27 for θd

1 (t) = 6.0 sin(0.75π t). They show a great increase in both e and the
tracking error, compared with the collocated control: in Fig. 19, we see that θ̃1(t) ∈ [−1,1]
degrees, whereas in Fig. 26, θ̃1(t) ∈ [−12,6] degrees. In-between the peaks, the tracking
errors for τ7 are also larger than with τ6.

8In [40] the regulation problem is studied –constant desired trajectory– and it is shown that a non-collocated
PD controller applied on the simple system of Appendix D, creates stable limit cycles in the closed-loop
system.
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4.4 Conclusions on Sections 3, 4.1, 4.2, and 4.3

Table 7 summarizes the tracking errors obtained with the above desired trajectories for the
torques τ3, τ4, τ5, and τ6, the three mechanisms, and three cases (no play, one clearance, and
two clearances). In view of these data and the above results, the passivity-based controller
τ6 is slightly better than the state linearization τ5. The two PD controllers, though they allow
us to avoid the high sensitivity issues of the open-loop input τ2, yield too large tracking
errors to possess practical interest in case precision is required (though the tracking error is
drastically decreased using the velocity feedforward in τ4). Table 7 summarizes the results
obtained for the maximum tracking errors with the four feedback controllers applied to the
three mechanisms. Several comments arise, some of which just confirm previous ones: the
compensation of smooth nonlinearities drastically improves the accuracy in all cases, and
for fixed control gains, the accuracy of PD controllers varies significantly depending on the
system, whereas it does not for τ5 and τ6; for τ5 and τ6, the maximum tracking error doubles
when a clearance at J3 is added. We also see from Figs. 10(b), 13(b), 15(b), and 18(b) that the
performance decreases between the no play/play cases and is qualitatively the same for all
collocated controllers in the presence of two clearances, whereas a small distortion occurs
for the noncollocated input Fig. 27(b). This shows that, at least for the chosen sinusoidal
desired trajectories, a good predictability exists in such nonsmooth systems.

Fig. 26 Crank–rocker with
noncollocated passivity-based
control τ7: tracking error

Fig. 27 Crank–rocker with noncollocated passivity-based control τ7: contour plot of e, µ ∈ {0.0,0.1}, τ = τ7



126 N. Akhadkar et al.

Table 7 Maximum tracking error on [1,10] s with feedback control, K1 = 2000, K2 = 200, K = 200, and
Λ = 10

Four-bar mechanism Control torque Maximum tracking error (degrees)

Ideal joints Clearance in joints

c2 = 3.0 mm c2 = c3 = 3.0 mm

Crank–rocker τ3 82.5 84.2 85.2

τ4 2.98 5.68 6.68

τ5 0.003 0.7 1.2

τ6 0.003 0.66 1.12

Crank–crank τ3 103.3 105.22 106.92

τ4 25.4 27.32 29.02

τ5 0.004 0.73 1.31

τ6 0.004 0.68 1.22

Rocker–rocker τ3 34.57 36.07 37.07

τ4 1.79 3.29 4.29

τ5 0.003 0.67 1.26

τ6 0.003 0.61 1.19

5 Conclusions

A general methodology for modeling and simulation of multiple revolute joints with clear-
ance in planar four-bar mechanisms is presented and discussed in this work and used to
compare the robustness properties of several classical trajectory tracking feedback con-
trollers (proportional-derivative, state linearization, and passivity-based control algorithms)
with respect to such hard disturbances. The methodology is based on the nonsmooth dy-
namical approach, in which the interactions of the colliding bodies (journal and bearing)
are modeled with unilateral constraints, restitution coefficients, and Coulomb’s friction. The
combined projected Moreau–Jean event–capturing (time-stepping) scheme derived in [2] is
used to solve numerically the contact-impact problem. It improves significantly the drift is-
sue at the position level and allows us to simulate persistent contact phases without spurious
contact force and acceleration oscillations. It is worth noting that the contact/impact models
may be easily enhanced (taking into account static and dynamic friction, Stribeck effects,
micro-displacements during sticking modes, velocity-dependent coefficients of restitution,
etc.) while using the same dynamical and numerical framework. The major conclusions
of this work are that collocated state feedback control improves drastically the system dy-
namics (in the sense that trajectories of the clearance-free system and trajectories of the
system with clearances are close one to each other) and that the nonlinear controllers sig-
nificantly improve the precision. Also, the influence of the restitution (loss of kinetic energy
at collisions) is negligible in our tested examples, whereas the clearances induce a symmet-
ric behavior. The three-dimensional case should deserve attention since it has considerable
practical significance. In this setting, cylindrical contact/impact models could be incorpo-
rated. The studied nonlinear feedback controllers could be enhanced using ideas from [40]
to augment the precision of the closed-loop system. Finally, structural optimization may also
be used to improve the closed-loop system overall performance and decrease the control in-
put magnitude and the effects of collisions.
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Appendix A: Lagrangian formulation of four-bar mechanisms with
reduced coordinates

A four-bar mechanism is the simplest form of closed-chain linkage and possesses one
degree-of-freedom. The loop-closure constraints in the x and y coordinates are given as

l4 + l3 cos θ3 − l2 cos θ2 − l1 cos θ1 = 0, (23)

l3 sin θ3 − l2 sin θ2 − l1 sin θ1 = 0. (24)

From (23) and (24) we can express θ2 and θ3 in terms of θ1. After some mathematical
manipulations, we get

c1(θ1) sin(θ3) + c2(θ1) cos(θ3) + c3(θ1) = 0, (25)

where c1(θ1) = −2l1l3 sin θ1, c2(θ1) = −2l3(l4 − l1 sin θ1), c3(θ1) = l2
4 + l2

1 − l2
2 + l2

3 −
2l1l4 cos θ1. Equation (25) can be solved in closed form as

p = tan
θ3

2
, sin θ3 = 2p

1 + p2
, cos θ3 = 1 − p2

1 + p2
. (26)

From (25) and (26) we have (c3 − c2)p
2 + (2c1)p + (c2 + c3) = 0, whose solution is p =

−c1±
√

c2
1+c2

2−c2
3

c3−c2
. Then we obtain:

θ3(θ1) = 2 arctan 2
(
−c1 ±

√
c2

1 + c2
2 − c2

3, c3 − c2

)
, (27)

θ2(θ1, θ3) = arctan 2(−l1 sin θ1 + l3 sin θ3, l3 cos θ3 − l1 cos θ1), (28)

where the mapping arctan 2(·, ·) is defined by

arctan 2(y, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan y
x
, x > 0,

arctan y
x

+ π, y ≥ 0, x < 0,

arctan y
x

− π, y < 0, x < 0,

+ π
2 , y > 0, x = 0,

− π
2 , y < 0, x = 0,

undefined, y = x = 0.

(29)

Differentiating (23) and (24) with respect to time yields:

l1 sin θ1θ̇1 + l2 sin θ2θ̇2 − l3 sin θ3θ̇3 = 0, (30)

−l1 cos θ1θ̇1 − l2 cos θ2θ̇2 + l3 cos θ3θ̇3 = 0. (31)

We can determine the velocities θ̇2 and θ̇3 in terms of θ̇1 as

θ̇2 = ∂θ2

∂θ1
θ̇1 = l1 sin(θ3 − θ1)

l2 sin(θ2 − θ3)
θ̇1, (32)

θ̇3 = ∂θ3

∂θ1
θ̇1 = l1 sin(θ2 − θ1)

l2 sin(θ2 − θ3)
θ̇1. (33)
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The dynamical system is formulated from the Euler–Lagrange equations:

d

dt

(
∂L(θ1, θ̇1)

∂θ̇1

)
−

(
∂L(θ1, θ̇1)

∂θ1

)
= τ, (34)

L(θ1, θ̇1) = T (θ1, θ̇1) − V (θ1), (35)

where L(θ1, θ̇1) ∈ R is the Lagrangian function, T (θ1, θ̇1) = 1
2 θ̇T

1 M(θ1)θ̇1 is the total kinetic
energy, V (θ1) is the total potential energy of the system, and τ is the external torque. The
Lagrangian function is given as

L(θ1, θ2, θ3, θ̇1, θ̇2, θ̇3) =
(
T1(θ1, θ̇1) + T2(θ1, θ2, θ̇2, θ̇2) + T3(θ3, θ̇3)

)

−
(
V1(θ1) + V2(θ1, θ2) + V3(θ3)

)
, (36)

where T1 = 0.25m1l
2
1 θ̇

2
1 + 0.5I1θ̇

2
1 , V1 = 0.5m1l1g sin θ1, V2 = m2g(l1 sin θ1 + 0.5l2 sin θ2),

V3 = 0.5m3l3g sin θ3, T2 = 0.5m2(l
2
1 θ̇

2
1 + 0.5l2

2 θ̇
2
2 + l1l2 cos(θ1 − θ2)θ̇1θ̇2) + 0.5I2θ̇

2
2 , T3 =

0.25m3l
2
3 θ̇

2
3 + 0.5I3θ̇

2
3 , and g is the gravitational acceleration. From (34) we infer the dy-

namics

M(θ1)
d θ̇1

dt
+ N(θ1, θ̇1)+g(θ1) = τ, (37)

where:

M(θ1) = 2
(
J1 + J2A

2
1 + J3A

2
2 + 0.5m2l1l2 cos(θ1 − θ2)

)
,

g(θ1) = −(C1 + A1C2 + A2C3),

N(θ1, θ̇1) =
(
2J2A1A19 + 2J3A2A20 + A4

(
A3A19 + A1(A11 + A1A12)

))
θ̇2

1 ,

A1 = l1 sin(θ3 − θ1)

l2 sin(θ2 − θ3)
, A2 = l1 sin(θ2 − θ1)

l2 sin(θ2 − θ3)
, A3 = cos(θ1 − θ2),

A4 = 0.5m2l1l2, A5 = ∂A1

∂θ1
= −l1 cos(θ3 − θ1)

l2 sin(θ2 − θ3)
,

A6 = ∂A1

∂θ2
= −l1 sin(θ3 − θ1) cos(θ2 − θ3)

l2 sin2(θ2 − θ3)
, A7 = ∂A1

∂θ3
= −2l1 sin(θ2 − θ1)

−l2 + l2 cos(2θ2 − 2θ3)
,

A8 = ∂A2

∂θ1
= −l1 cos(θ2 − θ1)

l3 sin(θ2 − θ3)
, A9 = ∂A2

∂θ2
= 2l1 sin(θ3 − θ1)

−l3 + l3 cos(2θ2 − 2θ3)
,

A10 = ∂A2

∂θ3
= l1 sin(θ2 − θ1) cos(θ2 − θ3)

l3 sin2(θ2 − θ3)
, A11 = ∂A3

∂θ1
= sin(θ2 − θ1),

A12 = ∂A3

∂θ1
= − sin(θ2 − θ1), A19 = A5 + A1A6 + A2A7,

A20 = A8 + A1A9 + A2A10, J1 = 0.5
(
0.33m1l

2
1 + m2l

2
1

)
, J2 = 0.17m2l

2
2 ,

J3 = 0.17m3l
2
3 , C1 = −(0.5m1l1 + m2l1)g cos θ1, C2 = −0.5m2l2g cos θ2,

C3 = −0.5m3l3g cos θ3.
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A.1 Four-bar mechanism with clearance at joint J2

A four-bar mechanism with clearance in one revolute joint (see Fig. 3(a)) possesses three
degrees of freedom. The Lagrange dynamics in (12) is given as follows:

M(q) =

⎡

⎢⎣
J1 0 0
0 J2 0.5N2

0 0.5N2 J3

⎤

⎥⎦ , G(q) =
[

G11 G12 G13

G21 G22 G23

]
, (38)

C(q, q̇) =

⎡

⎢⎣
0

0.5N1θ̇
2
3

0.5N1θ̇
2
2

⎤

⎥⎦ , g(q) =

⎡

⎢⎣
0.5m1F1

0.5m2F2

(m2 + 0.5m3)F3

⎤

⎥⎦ , (39)

where: J1 = I1 + 0.25m1l
2
1 , J2 = I2 + 0.25m2l

2
2 , J3 = I3 + m2l

2
3 + 0.25m3l

2
3 , N1 =

−m2l2l3 sin(θ2 − θ3), N2 = −m2l2l3 cos(θ2 − θ3), F1 = gl1 cos θ1, F2 = −gl2 cos θ2, F3 =
gl3 cos θ3, E =

√
E2

x + E2
y , Ex = −l4 − l3 cos θ3 + l2 cos θ1 + l1 cos θ1, Ey = −l3 sin θ3 +

l2 sin θ2 + l1 sin θ1, G11 = (l1 sin θ1Ex − l1 cos θ1Ey)/E, G21 = ((−l1 sin θ1Ey − l1 cos θ1Ex)/

E) + r1, G12 = (l2 sin θ2Ex − l2 cos θ2Ey)/E, G13 = (−l3 sin θ3Ex + l3 cos θ3Ey)/E, G22 =
((−l2 sin θ2Ey − l2 cos θ2Ex)/E) − r2, G23 = (l3 sin θ3Ey + l3 cos θ3Ex)/E.

Appendix B: Four-bar mechanism with clearances at joints J2 and J3

A four-bar mechanism with clearance in two revolute joints (see Fig. 3(b)) possesses 5
degrees of freedom. The unconstrained dynamics is that of three independent bodies and is
given by

M(q) =

⎡

⎢⎢⎢⎢⎣

I1 + (0.25m1)l
2
1 0 0 0 0

0 I2 0 0 0
0 0 I3 + (0.25m3)l

2
3 0 0

0 0 0 m2 0
0 0 0 0 m2

⎤

⎥⎥⎥⎥⎦
,

g(q) =

⎡

⎢⎢⎢⎢⎣

0.5m1gl1 cos θ1

0
0.5m3gl3 cos θ3

0
m2g

⎤

⎥⎥⎥⎥⎦
, B =

⎡

⎢⎢⎢⎢⎣

1
0
0
0
0

⎤

⎥⎥⎥⎥⎦
,

(40)

N(q, q̇) =

⎡

⎢⎢⎢⎢⎣

0
0
0
0
0

⎤

⎥⎥⎥⎥⎦
, G1(q) =

[
G11 G12 0 G14 G15

G21 G22 0 G24 G25

]
,

G2(q) =
[

0 G12 G13 G14 G15

0 G22 G23 G24 G25

]
,

(41)
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where:

G11 = (−X2l1 sin θ1 + 0.5l1l2 sin(θ1 − θ2) + Y3l1 cos θ1)Cl1,

G21 = ((X2l1 cos θ1 − 0.5l1l2 cos(θ1 − θ2) + Y3l1 sin θ1 − l2
1)/Cl1) + r1,

G12 = (−0.5X2l2 sin θ2 − 0.5l1l2 sin(θ1 − θ2) + 0.5Y2l2 cos θ2)/V1,

G22 = ((0.5X2l2 cos θ2 − 0.5l1l2 cos(θ1 − θ2) + 0.5Y2l2 sin θ2 − 0.25l2
2)/Cl1) − r2,

G14 = (−X2 + l1 cos θ1 + 0.5l2 cos θ2)/Cl1,

G15 = (−Y2 + l1 sin θ1 + 0.5l2 sin θ2)/Cl1,

G24 = (X2 − l1 sin θ1 − 0.5l2 sin θ2)/Cl1,

G25 = −(Y2 − l1 cos θ1 − 0.5l2 cos θ2)/Cl1,

G12 = (−0.5l4l2 sin θ2 − 0.5l2l3 sin(θ2 − θ3) + 0.5X2l2 sin θ1 − 0.5Y2l2 cos θ2)/Cl2,

G13 = (l4l3 sin θ3 + 0.5l2l3 sin(θ2 − θ3) − X2l3 sin θ3 + Y2l3 cos θ3)/Cl2,

G22 = ((0.5l4l2 cos θ2 − 0.5l2l3 sin(θ2 − θ3) − 0.5X2l2 cos θ1

+ 0.5Y2l2 cos θ2 − 0.2.5l2
2)/Cl2) + r3,

G23 = ((−l4l3 cos θ3 + 0.5l2l3 cos(θ2 − θ3) + X2l3 cos θ3 + Y2l3 sin θ3 − l2
3)/Cl2) − r4,

G14 = (−X2 + l4 + l3 cos θ3 − 0.5l2 cos θ2)/Cl2,

G24 = (Y2 − l3 sin θ3 + 0.5l2 sin θ2)/Cl2,

G15 = (−Y2 + l3 sin θ3 − 0.5l2 sin θ2)/Cl2,

G25 = (−X2 + l4 + l3 cos θ3 − 0.5l2 cos θ2)/Cl2,

Cl1 =
√

(X2 − 0.5l2 cos θ2 − l1 cos θ1)2 + (Y2 − 0.5l2 sin θ2 − l1 sin θ1)2,

Cl2 =
√

(−l4 − l3 cos θ3 + 0.5l2 cos θ2 + X2)2 + (−l3 sin θ3 + 0.5l2 sin θ2 + Y2)2.

Appendix C: Lyapunov functions

The candidate Lyapunov function for the closed-loop system in (21) is given as

V(z) = 1
2

( ˙̃θ2
1 + K1θ̃

2
1 + Cθ̃1

˙̃θ1
)
= 1

2
zT P z, (42)

where P =
[

K1 0.5C

0.5C 1

]
, the position and velocity tracking errors are θ̃1

'= (θ1 − θd
1 ) and

˙̃θ1
'= (θ̇1 − θ̇d

1 ), z = (θ̃1,
˙̃θ1)

T . Differentiating the Lyapunov function along the closed-loop
system trajectories gives

V̇(z) = ˙̃θ1(K2
˙̃θ1 − K1θ̃1) + K1θ̃1

˙̃θ1 + C ˙̃θ2
1 + Cθ̃1(−K2

˙̃θ1 − K1θ̃1)

= k2
˙̃θ2
1 + C ˙̃θ2

1 − CK2θ̃1
˙̃θ1 − CK1θ̃

2
1 = −zT Qz, (43)
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where Q =
[
K2 − C 0.5CK2

0.5CK2 CK1

]
. The matrices Q and P are positive definite if and only if

the gains satisfy 0 < C < K1K2
K1+0.25K2

, K2 > C, K1 > C2

4 . The closed-loop dynamics with the
passivity-based controller in (22) admits the following Lyapunov-like function [10, p. 404]

V (v) = 1
2
vT M(θ1)v with V̇ (v) = −vT Kv (44)

It allows us to prove that in the ideal no-clearance case, all trajectories of (22), (37) are
bounded and the tracking errors globally asymptotically converge to zero.

Appendix D: Trajectory tracking: stability analysis with a clearance

Let us provide a short analysis that demonstrates why clearances induce serious additional
difficulty in the closed-loop stability analysis, but which also provides a possible explanation
of the robustness of the state feedback controllers studied in this article. In order to simplify
the presentation, let us consider a one-degree-of-freedom system with mass m > 0 and co-
ordinate q1, acted upon by a control force τ : mq̈1(t) = τ (t). The passivity-based controller
is τ = τ6 = m(q̈d(t) − Λ ˙̃q1(t)) − Kv with v = ˙̃q1 + Λq̃1, and the closed-loop system is
mv̇(t)+Kv(t) = 0 with V (v) = 1

2mv2. Let us assume now that there is a clearance between
the actuated mass m1 with coordinate q1, and the remaining part m2 with coordinate q2, with
m = m1 + m2 (a one-degree-of-freedom prismatic joint with clearance). The two unilateral
constraints are g1

N(q1, q2) = q1 −q2 +ϵ+ l ≥ 0 and g2
N(q1, q2) = q2 −q1 − l ≥ 0 for some l >

0 and the clearance size ϵ ≥ 0 . The complementarity conditions are 0 ≤ λ1 ⊥ g1
N(q1, q2) ≥ 0

and 0 ≤ λ2 ⊥ g2
N(q1, q2) ≥ 0, where λ1 and λ2 are the contact forces. The dynamics be-

comes m1q̈1(t) = τ (t) + λ1 − λ2, m2q̈2(t) = λ2 − λ1. Newton’s impact law applied at both
constraints (which cannot be active at the same time since g1

N(q1, q2) = 0 ⇒ g2
N(q1, q2) =

ϵ and g2
N(q1, q2) = 0 ⇒ g1

N(q1, q2) = ϵ) is q̇1(t
+) − q̇2(t

+) = −e1(q̇1(t
−) − q̇2(t

−)) if
g1

N(q1(t), q2(t)) = 0 and q̇2(t
+) − q̇1(t

+) = −e2(q̇2(t
−) − q̇1(t

−)) if g2
N(q1(t), q2(t)) = 0.

When ϵ = 0, (g1
N(q1, q2) ≥ 0 and g2

N(q1, q2) ≥ 0) implies that q1 = q2 − l. These three
ingredients (Lagrange dynamics, complementarity conditions, and Newton’s impact law)
allow us to recast our system into (12), where Ui

N = ġi
N = ∇gi

N(q)T q̇ , i = 1,2.
The clearance introduces a disturbance in the dynamics of the controlled mass through

the contact forces λ1 and λ2, as well as a parameter change since m1 ≠ m.9 Let us now look
at the term λ1 − λ2. During noncontact phases of motion, λ1 = λ2 = 0. During persistent
contact with one of the constraints boundary, the multipliers are solutions of the so-called
contact linear complementarity problem (CLCP) [9]: 0 ≤ λ1(t) ⊥ g̈1

N(t) = q̈1(t) − q̈2(t) =
1

m1
(τ (t) + λ1(t) − λ2(t)) − 1

m2
(λ2(t) − λ1(t)) ≥ 0 and 0 ≤ λ2(t) ⊥ g̈2

N(t) = q̈2(t) − q̈1(t) =
1

m2
(λ2(t)−λ1(t))− 1

m1
(τ (t)+λ1(t)−λ2(t)) ≥ 0. As we noticed before, the two constraints

cannot be active at the same time, and thus the CLCP reduces to two independent LCPs
0 ≤ λ1(t) ⊥ 1

m1
τ (t) + ( 1

m1
+ 1

m2
)λ1(t) ≥ 0 and 0 ≤ λ2(t) ⊥ ( 1

m1
+ 1

m2
)λ2(t) − 1

m1
τ (t) ≥ 0,

which are easily solvable by inspection as

λ1(t) =
{

0 if τ (t) ≥ 0,
−m2τ (t)
m1+m2

if τ (t) < 0,
and λ2(t) =

{
0 if τ (t) < 0,
m2τ (t)
m1+m2

if τ (t) ≥ 0.

9If we make the analogy with the four-bar mechanism, this may be the difference between M(θ1) in (37) and
the first diagonal entry of M(q) in (40).
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The transitions from contact to noncontact phase of motion are ruled by the two CLCPs:
when a multiplier vanishes, we have to compute the sign of d2

dt2 gi
N (q1(t), q2(t)) to infer

detachment or persisting contact. We therefore obtain the following closed-loop dynamics
outside impact times:

m1q̈1(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{
(a) m1

m
τ (t) if τ (t) < 0,

(b) 0 if τ (t) ≥ 0,
if g1

N(q1, q2) = 0
(
⇒ g2

N(q1, q2) = ϵ
)
,

{
(c) m1

m
τ (t) if τ (t) > 0,

(d) 0 if τ (t) ≤ 0,
if g2

N(q1, q2) = 0
(
⇒ g1

N(q1, q2) = ϵ
)
,

(e) τ (t) if g1
N(q1, q2) > 0 and g2

N(q1, q2) > 0.

(45)

We see from (45) that contrary to the no-clearance case, the sign of the controller plays a sig-
nificant role in the switching dynamics. Going a step further, we may rewrite the controlled
modes (a), (c), and (e) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) mv̇(t) + Kv(t) = 0 if m(q̈d(t) − Λ ˙̃q1(t)) − Kv(t) < 0
and g1

N(q1(t), q2(t)) = 0,

(c) mv̇(t) + Kv(t) = 0 if m(q̈d(t) − Λ ˙̃q1(t)) − Kv(t) > 0
and g2

N(q1(t), q2(t)) = 0,

(e) mv̇(t) + m
m1

Kv(t) = m
m1

(m − m1)(q̈d(t) − Λ ˙̃q1(t))

if g1
N(q1(t), q2(t)) > 0

and g2
N(q1(t), q2(t)) > 0.

(46)

It is worth noting that the Lyapunov-like function V (v) exponentially decreases during the
contact modes (a) and (c); however, its variation during mode (e) is not clear. Moreover,
the transition from mode (e) to either mode (a) or mode (c) usually involves impacts. Let
us compute the variation of V (v) at an impact time t , taking into account that positions are
continuous (as well as qd(·), q̇d (·), and q̈d (·) in our control framework):

V
(
t+

)
− V

(
t−

)
= 1

2
mv

(
t+

)2 − 1
2
mv

(
t−

)2

= 1
2
m

{(
q̇1

(
t+

)
+ q̇1

(
t−

)
− 2q̇d (t)

)(
q̇1

(
t+

)
− q̇1

(
t−

))

+ Λq̃1
(
q̇1

(
t+

)
− q̇1

(
t−

))}
. (47)

Using the impact dynamics and the restitution law, we further obtain q̇1(t
+) = m2

m1
((1 +

e1)q̇2(t
−) + (m1

m2
− e1)q̇1(t

−)). It seems hopeless to take advantage of the kinetic energy
loss at impacts to infer the sign of V (t+) − V (t−) in (47). This is because V (v) is close to
the kinetic energy of the no-play system but is quite different from the total kinetic energy
of the system with play. We can nevertheless state that if the system spends enough time in
modes (a) and (c), then the possible increase of V (v) during mode (e) and at impacts may be
compensated so that globally V (v) remains bounded. In control theory, one speaks of suit-
able dwell times, which are in our case both state-triggered and time-dependent (through the
presence of the desired trajectory in the switching conditions) as shown in (46). Intuitively,
it follows from the switching conditions that if the tracking errors are small compared to
the desired acceleration q̈d (t), then the switching function m(q̈d(t) − Λ ˙̃q1(t)) − Kv(t) may
keep its sign and prevent detachment. The numerical simulations presented in this paper
seem to confirm that, at least for a certain range of desired trajectories and clearances, this
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does happen in the four-bar mechanism; see Figs. 12 and 21 and Table 5, which shows that
indeed the performance degrades as the system speed increases. We see also from Figs. 19
and 16 that the Lyapunov functions vary much less in case of one clearance, as expected.

Starting from (45), it is easy to redo the same analysis for the feedback linearization
controller in (20). The switching function in (46) becomes −K1q̃1(t) − K2

˙̃q1(t) + q̈d (t);
thus, similar conclusions may be drawn.

This brief analysis suggests that properties like asymptotic stability will have to be re-
laxed to boundedness or practical stability of the error system when classical trajectory
tracking controllers are applied without taking clearances into account in their design. The
stability frameworks proposed in [8, 11, 12, 33, 51, 54, 55] apply mainly to fully actuated
systems, starting the design and analysis from a tracking controller that guarantees the sta-
bility of the unconstrained system (all unilateral constraints satisfy gi

N(q) > 0): the control
philosophy for systems with clearances adopted in this paper is quite different since we start
with a controller for the reduced-order system when gi

N(q) = 0 for all i. The control of un-
deractuated mechanical systems with impacts and unilateral constraints has been tackled in
[13, 40, 53] using very specific dead-beat feedback controllers. In particular, the PD control
of the above simple system is thoroughly studied in [40], where improvements that allow
one to track triangular desired trajectories are proposed. Another path may reside in using an
output (position) feedback controller as in [50] designed for the unconstrained system (all
gi

N (q) > 0) whose Lyapunov function is close to the system kinetic energy and is therefore
more amenable for its analysis at impact times. This however requires the measure of the
whole vector q (which in many cases seems to be a reasonable option) and also the actuation
of more than one joint to assure that the system is fully actuated.
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