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a b s t r a c t

This paper reviews the relationships between switching systems defined from a partition of the state
space into convex cells, and relay or complementarity dynamical systems, which are other classes
of discontinuous systems. Well-posedness results (i.e. results on the existence and the uniqueness of
solutions) for different classes of relay and complementarity systems which are also switching systems
are presented. The reverse issue (when can a switching system be rewritten equivalently as a relay or a
complementarity system) is also tackled. Many examples fromMechanics, Circuits, and Biology illustrate
the developments throughout the paper. The paper focuses on systems with continuous solutions (i.e.
with no state jumps). Convexity is the central property.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Discontinuous systems, i.e. dynamical systems whose right-
hand side is not a continuous vector field, have become very
popular and much studied in various scientific fields like Applied
Mathematics [1,2], Systems and Control [3,4], Mechanics [5,6],
Biology [7–9], Electricity and Electronics [10–13], etc. They
form such a huge class of systems (just like nonlinear systems
do) that it is mandatory to consider particular subclasses of
nonsmooth systems in order to analyze them. A survey of various
mathematical formalisms for nonsmooth systems may be found
in [14, Chapter 2] and [11, Chapter 2]. In this paper, we consider
systems which are defined from the subdivision of the ambient
state space Rn into cells, and each cell is associated with a smooth
vector field. The trajectories may travel from one cell to the
other, possibly implying jumps on the system’s right-hand side.
Such systems are usually called switching systems. Despite their
apparent simplicity, they are strongly nonlinear and nonsmooth
(i.e. most often their nonlinearity and nonsmoothness cannot be
removed by any suitable state vector change or by feedback). Our
objective is mainly to provide an overview of the results that allow
to state the existence and the uniqueness of solutions, and this can
be done only for specific cases of switching systems. This paper
also provides information on the relationships between various
mathematical formalisms (switching systems, relay systems,
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complementarity systems, Filippov differential inclusions), an
objective that may be useful for a better understanding of such
nonsmooth dynamical systems, as advocated in [15–18]. There are
two issues which are tackled in this survey paper. When do relay
and complementarity systems belong to the class of switching
systems? And when can switching systems be represented as
relay or complementarity systems? The objective in both studies
remains the same: find subclasses of switching systems that
lend themselves well to mathematical analysis (especially the
uniqueness of solutions), numerical analysis and simulation.

Paper organization. The remainder of the article is organized as
follows. In Section 2, we list some notations and basic definitions
which are used throughout the paper. In Section 3, we display
the switching systems framework. The method based on the
Filippov framework is described in Section 4. Different classes of
dynamical systems as well as interconnections with the general
class of switching systems are largely investigated in Sections 5–
9, and in Sections 11 and 12. Section 13 briefly reviews the time-
discretization of particular classes of switching systems. Finally,
Section 14 concludes the paperwith pointers to the sectionswhere
all these dynamical systems and the relationships between them
have been analyzed (see Fig. 1).

2. Basic notations and definitions

All the notions cited below can be found in [19–21]. For x 2 Rn,
we write x � 0 if

x1 > 0 or [xi = 0, i 2 1, i0 and xi0+1 > 0]
for some i0 2 1, n � 1. If x = 0 or x � 0 we denote it x ⌫ 0.
The script k.kwill stand for the Euclidean norm in Rn and (., .)will
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Fig. 1. Relationships between different classes of dynamical systems. SSs= switch-
ing systems; MMSs = multimodal systems; RSs = relay systems; AVSs = affine
variational systems; MLSs = multivalued Lur’e systems; CSs = complementarity
systems; FSs = Filippov systems.

denote the inner product. The extended Lp spaces are denoted as
Lploc.

We recall that given f : Rn ! Rn and h : Rn ! R two smooth
functions, the Lie derivative of order k 2 N of h along f is given by
Lkf h : Rn ! R,

Lkf h(x) =

8

<

:

h(x) if k = 0
✓

@

@x
Lk�1
f h(x)

◆

f (x) if k � 1.

A switching system is said to have an accumulation point ⌧ � 0
of switches at the right of ⌧ if for any switched point T > ⌧ , there
exists another one T 0 > ⌧ such that T 0 < T and the sequence of
these switches tends to ⌧ . An accumulation point of switches at the
left of ⌧ is defined similarly by taking opposite inequalities in the
above definition.

AmatrixM 2 Mm,m(R) is said to be a P-matrix if all its principal
minors are strictly positive. M is said to be a P0-matrix if all its
principal minors are nonnegative. M•j is its jth column, and Mi• is
its ith row. The closure of a set � is denoted �̄ . B(x, r) denotes the
closed ball of Rn centered at x 2 Rn of radius r .

For a convex set S, the normal cone to S at x 2 S is the set
NS(x) = {y : hv�x, yi  0, 8v 2 S}. For any K ⇢ Rn, the indicator
function  K of the set K is given by:  K (�) = 0 if � 2 K , and
 K (�) = +1 if � 62 K . The convex closure of a set A ⇢ Rn is
denoted by co(A).

A (possibly multivalued) operator F is said to be monotone if
for any x1 2 Dom(F), x2 2 Dom(F), y1 2 F(x1), y2 2 F(x2), one
has hx1 � x2, y1 � y2i � 0 where Dom(F) = {x : F(x) 6= ;}. It
is maximal if its graph cannot be enlarged without destroying the
monotonicity.

Let X and Y be two topological spaces. A multifunction G :
X ! P (Y ) is said to be upper semicontinuous (u.s.c.) at x 2 X
if whenever V is an open subset of Y that contains G(x), the set
{x : G(x) ⇢ V } contains a neighborhood of x. It is called u.s.c. on X,
if it is u.s.c. at each x 2 X .We say that F : Rn ! P (Rp) is one-sided
Lipschitz continuous if there exists � 2 R such that

hy0 � y00, x0 � x00i  �kx0 � x00k2,

for all y0 2 F(x0), y00 2 F(x00), with x0, x00 2 Dom(F).

A function f is said to be proper if dom(f ) = {x : f (x) < +1} is
non-empty and the restriction of f to dom(f ) is finite. If f is a proper
convex function, its conjugate is the proper convex function

f ⇤ : z 7! sup
x2dom(f )

(hx, zi � f (x)).

3. The class of switching systems

In this section we provide the description of a class of
discontinuous systems, usually known as switching systems [2,22].

3.1. Description of the cells

Let dj : Rn ! R, dj(x) = Hj•x + hj with j 2 1, p where
H 2 Mp,n(R), and hj 2 R. It is well known that the intersection of
half-spaces defined by hyperplanes is a closed convex polyhedron.
In what follows we consider that the state space Rn is split into
m (m  2p) open polyhedral cells (�i)i21,m, with pairwise disjoint
interiors, each of them having the following redundant description

x 2 �i if and only if
⇢

dj(x) > 0, 8j 2 J1i
�dj(x) > 0, 8j 2 J2i ,

where J1i [ J2i = 1, p and J1i \ J2i = ;. For j 2 1, p, let ⌃j =
{x 2 Rn : dj(x) = 0}; so the sets �i, i 2 1,m are separated by
codimension one surfaces (switching surfaces) and [i21,m �i = Rn.
The expression ‘‘redundant’’ description refers to the fact that even
if one inequalitymay imply another one, we agree to describe each
cell by the help of all p surfaces in order to have a systematic
description.

Example 3.1. Consider in the plane x1Ox2 a family of parallel lines
{dj : j 2 1, p} given by

dj : Hj,1x1 + Hj,2x2 + hj = 0

such that Hj,1 < 08j 2 1, p and h1
H1,1

> h2
H2,1

> · · · >
hp
Hp,1

. In
accordancewith the above description of the cells (herem = p+1),
we adopt the following

�1 : d1(x) > 0, d2(x) > 0, . . . , dp(x) > 0; J11 = 1, p,

J21 = ;
�2 : d1(x) < 0, d2(x) > 0, . . . , dp(x) > 0; J12 = 2, p,

J22 = {1}
...

�p+1 : d1(x) < 0, . . . , dp(x) < 0; J1p+1 = ;, J2p+1 = 1, p.

The preference for the above redundant description finds
explanation in Section 12 when trying to identify a class of
discontinuous systems that can be analyzed with the help of
piecewise-linear systems as well as using the theory of relay
inclusions. This may be viewed as an attempt to partially fill the
gap between these two formalisms widely employed in the theory
of switching systems.

3.2. General formulation of the dynamics

In this paper we focus on dynamical systems [23,22] modeled
by the following autonomous Initial Value Problem (IVP on short):
⇢

ẋ(t) = f (x(t)), f (x(t)) = fi(x(t)) if x(t) 2 �i, i 2 1,m
x(t0) = x0 2 Rn,

(1)

where fi : � i ! Rn, i 2 1,m is a smooth function in Int(�i), the
interior of the set �i. The system is completely described by (1)
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outside the discontinuity boundaries, where two or more different
vectors can be associated to a point x 2 ⌃j. Without loss of
generality, the initial time can be taken as t0 = 0.

This definition of switching dynamical systems is in fact only a
preliminary definition. The analysis and the numerical simulation
of such systems will most of the time require to add more
information in the model, and to drastically narrow, for instance,
the topology of the division of Rn into cells. It is noteworthy that
we focus only on the switching systems with time-continuous
trajectories. Systems with state jump are outside the scope of this
paper.

Example 3.2. Let us consider a mass m that collides an obstacle
modeled as a linear spring/dashpot system with stiffness k > 0
and damping c > 0. The coordinate of the mass is q, the state is
xT = (q, q̇). The dynamics is:

mq̈(t) =
⇢

�kq(t) � cq̇(t) if q > 0
0 if q < 0. (2)

An important assumption in (2) is that the switch between
contact/noncontact phases is done instantaneously when q passes
through 0. From the mechanical point of view this may not be
satisfying as it is known that such a model may create contact
forces with the wrong sign (as if the obstacle would attract the
mass instead of always pushing it [24]). A better way to model
the switch will be presented in Example 7.1. It is noteworthy that
since the right-hand side of (2) may be discontinuous, the classical
results for the existence and uniqueness of solutions do not hold.
Here we have: p = 1, d1(x) = q, J11 = {1}, J21 = ;. Other
mass/spring/dashpot systems are considered in [25].

Obviously, when the right-hand side in (1) is continuous, the
existence of classical solutions (continuously differentiable or, on
short, C1 functions) is ensured by the well-known Peano Theorem
for ordinary differential equations. If the system (1) is continuous,
then it can be simulated by using classical numerical methods,
while if it is discontinuous, only special numerical methods should
be used [14]. Moreover when fi(x) = Aix + ai the solutions can be
characterized more precisely as piecewise analytic functions [26,
27]. See [28,29] for criteria that guarantee the continuity of
the vector field on the switching surfaces. However, there exist
large classes of switching systems with discontinuities on the
boundaries of the sets �i. It is therefore important to propose
mathematical frameworks that encompass discontinuous vector
fields.

4. The general framework of Filippov

The conditions that guarantee that the vector field is continuous
at the boundaries are somewhat stringent, hence one infers that
the case of interest which occurs frequently in practice, is the
discontinuous case. A first approach is to embed the system (1) into
the class of so-called Filippov differential inclusions. This however
has some drawbacks:

• When the switching surface is attractive and has codimension
larger than 2, the uniqueness of solutions is in general not
provable, because the Filippov criterion for uniqueness is
limited to codimension 1 sliding surfaces. Multiple ‘‘sliding’’
solutions may exist [11, Example 2.30].

• The numerical computation of the solutions of Filippov
inclusions may not be easy.

• The mathematical formalism (1) does not lend itself very
well to the analysis with general properties of operators like
dissipativity,maximalmonotonicity.More compact formalisms
are oftenmuchmore suitable for themathematical analysis and
the numerical simulation.

This has motivated a number of mathematicians to work on
other, more specific classes of discontinuous systems. They usually
form only a narrow subclass of switching systems as in (1),
however they are tractable from the numerical point of view, and
uniqueness of the solutions can be stated. Before going on let us
recall some basic facts about Filippov inclusions.

4.1. Filippov differential inclusions

In this section we recall two basic concepts: Caratheodory and
Filippov solutions. Let us suppose that the discontinuous system
(1) is well-defined over the whole space, i.e. that f is defined on
Rn.

Definition 4.1 (Caratheodory Solution). Given an initial state
x(0) = x0, a function x : [0, 1) ! Rn is a solution of the
discontinuous system (1) in the sense of Caratheodory, if it is
absolutely continuous on each compact subinterval of [0, 1) and
satisfies (1) almost everywhere.

It happens that Caratheodory solutions are often not sufficient
to assure the global existence (i.e. for all t � t0) of the solutions. A
well-known example is given by the scalar system:

ẋ(t) =

8

>

<

>

:

1 if x  0
�1 if x � 0
1
2

if x = 0.
(3)

Let x(0) = 1 and let f be given by the right-hand side in
(3). Then x decreases until it attains (after a finite time) the value
x(1) = 0. One is tempted to state that x should then stay at the
fixed point x⇤ = 0 because the trajectory cannot leave the origin
(if it increases then it has to decrease immediately in view of the
vector field in the negative axis). The problem is that x(t) = 0 for
all t (and ẋ(t) = 0 as well) is not a solution of (3) since 0 62 f (0).
The Caratheodory solution exists only on the time interval [0, 1).
Let now f (0) = 0 in (3). A solution starting at x(0) = 1 decreases
until it attains x(t) = 0 at t = 1. The origin x⇤ = 0 is a solution
of the system since f (0) = 0. Thus the solution stays at x = 0
for all t � 1: the Caratheodory solution exists globally. This has
motivated Filippov (see his book [1]) to introduce the set-valued
map:

F(y) =
\

✏>0

\

µ(N)=0

cof ((y + ✏B) \ N) (4)

where the intersection is taken over all sets N ⇢ Rn of (Lebesgue)
measure zero and over all ✏ > 0. The Filippov inclusion is
usually called a convexification of the problem. With system (1),
we associate the differential inclusion (known as the Filippov
inclusion),

ẋ(t) 2 F(x(t)). (5)

For (3), the set is simply F(x) =
⇢

1 if x  0
�1 if x � 0
[�1, 1] if x = 0

. This

corresponds to filling-in the vertical segment in the graph of the
right-hand side, and 0 2 F(0). The obtained multifunction is
sometimes called the relay function.

Definition 4.2 (Filippov Solution). An absolutely continuous func-
tion x : R+ ! Rn is said to be a (generalized) Filippov solution
of the discontinuous system (1), if it is a solution of differential
inclusion (5) for almost all t � 0, satisfying the initial condition
x(0) = x0 2 Rn.

Since F in (4) is upper semicontinuous (see Proposition 2.2
in [1]), with closed convex values, for any initial condition x0,
the differential system (1) always has a solution in the sense
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of Filippov. See e.g. [30] for a clear exposition of the various
behaviors that may occur in a Filippov differential inclusion:
attractive, repulsive surfaces, and transversal intersections (called
hereafter crossing surfaces). Several criteria for the uniqueness of
solutions have been stated in [1, Section 10]. They rely on twomain
arguments: either some kind of monotonicity of the multifunction
F(x), known as the one-sided Lipschitz continuity [14]; or, in the
case of a codimension 1 switching surface ⌃ , the fact that ⌃ is
either an attractive surface, or a crossing surface.

Example 4.3. The scalar systemwith F(x) = �1 if x < 0, F(x) = 1
if x > 0, F(0) = [�1, 1] has three solutions at each time t � 0
such that x(0) = 0: x(t) = 0, or x(t) = t , or x(t) = �t . This shows
that Filippov differential inclusions may be far from enjoying the
uniqueness of solutions properties. This can be generalized to
so-called repulsive switching surfaces which yield spontaneous
jumps [30].

The concept of a Filippov solution is important in order to
analyze sliding phenomena. Nevertheless, we point out that the
solution in the sense of Filippov to differential systems with
discontinuous right-hand side is continuous in time. This implies
that if a solution attains an attractive surface in finite time,
it is forced to remain there and slide on it. Systems with a
discontinuous solution, i.e. jumps in the state at a certain time
instance, are not described by the theory of Filippov.

4.2. Calculation of a selection in the codimension � 2 case

As alluded to above, the drawback of the general Filippov
framework is that the differential inclusion may not enjoy
the uniqueness of solutions property on attractive surfaces
of codimension �2. This is due to an ambiguity in defining
the sliding vector field. As we shall see later with relay and
complementarity systems, there are classes of switching systems
for which the ambiguity does not exist, whatever the switching
surface codimension. Within the general switching systems class
(1) other solutions exist to suppress the ambiguity, see [30] for a
review and references.

4.3. Conditions that guarantee no sliding modes

Sliding trajectories play a quite important role in switching
systems, because they decrease the system’s dimension. Moreover
they destroy the time-reversibility of the system since several
different trajectories may attain in finite-time the same attractive
surface. They are created by attractive surfaces which are attained
in finite time, which is a peculiar feature of discontinuous
switching systems [31]. Besides the possible continuity at the
boundaries, one may study the conditions under which the
trajectories cross the boundaries, and do not stay on them. Roughly
speaking, a trajectory that attains a boundary surface may do it
with various degrees of tangency, and leave it similarly to enter
another cell. More details will be given in Section 12. Consider the
simplest case n = 2, f1(x) = A1x, f2(x) = A2x,�1 = {x 2 R2 :
Hx + h > 0},�2 = {x 2 R2 : Hx + h < 0},H 2 M1,2, h 2 R: the
plane is divided in two cells separated by a line. Then the conditions
for crossing at a point x(t) satisfying Hx(t) + h = 0 , x(t) =
�H+h + v(t) with v(t) 2 Ker(H) and H+ = HT (HHT )�1, are as
follows:
8

>

>

>

<

>

>

>

:

(HTA1x(t),HTA2
1x(t), . . . ,H

TAi
1x(t), . . . .) � 0 and

(HTA2x(t),HTA2
2x(t), . . . ,H

TAi
2x(t), . . . .) � 0

or
(HTA1x(t),HTA2

1x(t), . . . ,H
TAi

1x(t), . . . .) � 0 and
(HTA2x(t),HTA2

2x(t), . . . ,H
TAi

2x(t), . . . .) � 0 .

(6)

Remark 4.4. The idea of looking at higher order derivatives is
ubiquitous when dealing with systems that attain some boundary

surface: sliding mode systems [30], systems with unilateral
constraints [32], systems with Coulomb’s friction [6], various
classes of switching systems [26,33,25,27], distribution differential
inclusions [34]. This is important not only for the analysis but also
for the design of event-driven numerical methods [14, Chapter 8].

5. The class of affine variational systems

It is possible to start from other, quite different definitions of
nonsmooth dynamical systems than the one in (1). One of these
consists in coupling a smooth system to a variational inequality,
which we name affine variational systems (AVSs). It will be seen
that some of these AVSs can be recast into the general class of
discontinuous systems (1).

Let K be a nonempty subset of the Euclidean space Rl. An AVS
is described by a multi-input multi-output (MIMO) system of the
form
(ẋ(t) = g(x(t)) + B�(t)
y(t) = Cx(t) + c + D�(t)
x(0) = x0 2 Rn,

(7)

constrained by a variational inequality

(s � �(t))T y(t) � 0, 8s 2 K , (8)

where g(.) : Rn ! Rn, B 2 Mn,l(R), C 2 Ml,n(R),D 2 Ml,l(R)
and c 2 Rl is a constant. The class of AVSs in (7)–(8)
represents in fact a large class of nonsmooth dynamical systems,
that is impossible to analyze without being more specific on its
ingredients like D and the set K . They may in turn be seen as
a subclass of differential variational inequalities (DVI) [35]. The
two main well-posedness results for DVI in [35] are Theorem 6.1
(existence of weak Caratheodory solutions) and Proposition 5.1
(existence and uniqueness of C1 solutions). In the following we
present results that assure both existence and uniqueness, and we
focus on two particular classes of AVSs only. Let us notice that if K
is a convex closed set, the variational inequality (8) is equivalent to
the ‘‘normal cone’’ inclusion

� y(t) 2 NK (�(t)), (9)

that comes simply from the definition of the normal cone to a
convex set [14]. This inclusion is in turn equivalent to

�(t) 2 �NK⇤(y(t)), (10)

and to the cone complementarity relation

K ⇤ 3 y(t) ? �(t) 2 K , (11)

where the script ? means ‘‘perpendicular’’ and K ⇤ is the positive
dual cone of K , defined by

K ⇤ = {v 2 Rl : kTv � 08k 2 K}.
The AVS in (7)–(8)may belong to the class of switching systems (1)
as the following examples show.

Example 5.1. Let us consider K = R+, n = 1, d > 0; one has:
(ẋ(t) = ax(t) + b�(t)
y(t) = Cx(t) + c + d�(t)
0  �(t) ? y(t) � 0.

(12)

For such an AVS the second and third line define a Linear
Complementarity Problem with unknown �(t) : 0  �(t) ?
Cx(t) + c + d�(t) � 0. It is easy to find by inspection that the
following holds: if Cx(t) + c � 0 then �(t) = 0, if Cx(t) + c  0
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Fig. 2. (a) The general relay characteristics. (b) The general relay single-valued map.

then �(t) = 1
d (�Cx(t) � c). Therefore (12) is a switching system

of the form:

ẋ(t) =

8

<

:

ax(t) if Cx(t) + c � 0
✓

a � b
d
C
◆

x(t) � bc
d

if Cx(t) + c  0.
(13)

This vector field is continuous on the switching surface and it
can be checked that the conditions exposed in [28,29] hold. As
we shall see next, the continuity may be inferred from another
argument that involves either the properties of the solutions of
LCPs (complementarity theory), or projection onto a convex set
(convex analysis).

Example 5.2. Let us consider K = [↵,�],↵ < �, n = 1 and
(ẋ(t) = ax(t) + b�(t)
y(t) = Cx(t) + c
�y(t) 2 NK (�(t)).

(14)

In order to eliminate the unknown �(t) (that may be considered
as a Lagrange multiplier) one needs to invert the inclusion. This
may be done using convex analysis. The conjugate function of the
indicator function  K of the set K is the convex function  ⇤

K (z) =
supx2[↵,�] zx so that  ⇤

[↵,�](z) = �z if z � 0 and  ⇤
[↵,�](z) = ↵z if

z  0. The subdifferential of  ⇤
[↵,�] in the sense of convex analysis

is the multivalued function @ ⇤
[↵,�](z) = � if z > 0, @ ⇤

[↵,�](z) =
↵ if z < 0, and @ ⇤

[↵,�](0) = [↵,�]. The characteristic of
@ ⇤

[↵,�] is as in Fig. 2(a). From convex analysis it follows that the
inclusion in (14) is equivalent to �(t) 2 @ ⇤

[↵,�](�y(t)). One may
verify that this corresponds to an inversion of the normal cone
inclusion (see for instance Figure 1.9 in [14] or Figure 2.11 in [11]
for a graphical illustration of such a process). Therefore (14) is
equivalently rewritten as:

ẋ(t) 2 ax(t) + b@ ⇤
[↵,�](�Cx(t) � c), (15)

whose vector field is discontinuous at Cx+ c = 0. Indeed we have:

ẋ(t) 2
({ax(t) + �b} if Cx(t) + c < 0

{ax(t) + ↵b} if Cx(t) + c > 0
ax(t) + b[↵,�] if Cx(t) + c = 0.

(16)

The formulation of the AVS provides automatically a way to define
what happens on the switching surface: the right-hand side of (16)
is multivalued at Cx+ c = 0 where the graph of the discontinuous
vector field has been ‘‘filled-in’’. One could have started with the
definition of the discontinuous system in (16), and then compute
its associated Filippov set to obtain the same result at Cx + c = 0.
Notice that the multifunction @ ⇤

[↵,�] is maximal monotone. One
sees that the system in (13) belongs to the class of systems in (1),
where the dynamics on the switching surface boundary has been
accurately defined.

Example 5.3. Let us now consider the same system as in (14), with
D = d > 0:
(ẋ(t) = ax(t) + b�(t)
y(t) = Cx(t) + c + d�(t)
�y(t) 2 NK (�(t)).

(17)

The inclusion is now Cx(t) + c + d�(t) 2 �N[↵,�](�(t)). In order
to solve it (this is a generalized equation with unknown �(t)),
we may rely on a basic relation of convex analysis as follows. Let
x 2 Rn, y 2 Rn,D = DT > 0, K ✓ Rn nonempty, closed and
convex. Then:

�x + y 2 D�1NK (x) , x = projD(K ; y)

, x = arg min
z2K

1
2
(z � y)TD(z � y) (18)

where projD(K ; y) means the projection of y on K in the metric
defined by D. Using (18) one sees that it is possible to rewrite (17)
as:

ẋ(t) = ax(t) + bproj
✓

[↵,�]; �Cx(t) + c
d

◆

. (19)

The projection operator being a Lipschitz continuous function, it
is obvious that the right-hand side of (19) is continuous. So once
again the system (17) belongs to the class of switching systems (1)
but with a continuous vector field.

Example 5.4. Let us reconsider Example 5.1 with d = 0:
(ẋ(t) = ax(t) + b�(t)
y(t) = Cx(t) + c
0  �(t) ? y(t) � 0.

(20)

The inclusion now reads as Cx(t) + c 2 �NK (�(t)) that is
equivalent (since K = R+) to �(t) 2 �NK (Cx(t) + c). The AVS
in (20) is therefore the differential inclusion:

� ẋ(t) + ax(t) 2 NK (Cx(t) + c). (21)
There is a strong discrepancy between the case d > 0 and the

case d = 0. Consider that Cx(t) + c 2 K . Then at time t one
gets �ẋ(t) + ax(t) = 0, because NK (Cx(t) + c) = {0}, the null
vector of Rn. Suppose now that Cx(t) + c 2 @K = {0}, i.e. the
system evolves on the boundary of K . This is possible if for instance
a < 0 and C = 1, c = 0 (we may also add a time-varying term (a
sort of control action) to complicate a little the dynamics). Then
NK (Cx(t) + c) is the set {z 2 R : z  0}, since NK (0) = R�. The
case Cx(t) + c 62 K is excluded, as one may just define that the
normal cone is the empty set. The complementarity system (20) is
thus equivalent to:

� ẋ(t) + ax(t) 2
⇢{0} if Cx(t) + c > 0

R� if Cx(t) + c = 0. (22)

The system switches between an ordinary differential equation
(here linear invariant), and a differential inclusion into a normal
cone.
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What is to be learned from these four simple examples?
Essentially that AVS as in (7)–(8) contains an important subclass
that belongs to switching systems as in (1). And that this depends
heavily on D and K . Let us come back to (7) coupled to (9), that
involves the generalized equation �Cx � c � D� 2 NK (�).
Following [36] we may rewrite equivalently this inclusion as:

� 2 (D · +NK )�1(�Cx � c) (23)

and the AVS as the differential inclusion:

ẋ(t) 2 g(x(t)) + B(D · +NK )�1(�Cx(t) � c). (24)

The above examples show that depending on D and K ,
the operator in (23) may be single valued and continuous, or
multivalued. Its domain may not be the whole of Rn. In the above
examples we have not specified the initial condition x(0) = x0.
Actually x0 2 Dom('),' : x 7! (D · +NK )�1(�Cx � c). In
Examples 5.1–5.3, the domain is R. In Example 5.4 the domain is
restricted to those x0 such that Cx0 + c 2 R+.

There is another thing to be learned from these four examples:
some AVSs keep their dimension (Examples 5.1 and 5.3) while
others may live on low-dimensional subspaces (Examples 5.2 and
5.4). The case of Example 5.2 with a = 0,↵ < 0,� < 0, b >
0, is common in switching systems (1) where attractive sliding
surfaces which are attained in finite time exist. We say that a
system lives on a low-dimensional subspace if there exists a time
interval [t0, t1], t1 > t0, such that h(x(t)) = 0 for all t 2 [t0, t1],
where h : Rn ! R is a C1 function. In other words, the system
is subject to state equality constraints on positive time intervals.
In the case of Example 5.4, the state is subject to an inequality
Cx + c � 0 defining an admissible domain for x, and may evolve
on the boundary of this domain depending on a, C and c. We shall
come back later on the differential inclusions as in (21), that do not
fit with (1).

We have not yet presented any well-posedness results. In
the next two sections we focus on two specific classes of AVSs,
that correspond to K a closed rectangle (relay systems) and K
a polyhedral cone (complementarity systems), and provide some
existence and uniqueness of solutions results that have been
proposed in the literature.

6. Relay systems

Relay systems are widely used in Systems and Control,
because they allow one to design robust discontinuous feedback
controllers [3]. They may also model some mechanical systems
with one-dimensional Coulomb friction [14], or electrical circuits
with ideal Zener diodes [11]. Let K be a closed rectangle, given by
K = {� 2 Rl;↵i  �i  �i, i 2 1, l}, with ↵i < �i,↵i,�i 2 R. Let
us first use some convex analysis to rewrite the AVS under a relay
system form. Similar calculations have been made in Example 5.2
to invert themultivalued part of the system. Let fi be proper convex
such that fi(zi) = ↵izi if zi  0, and fi(zi) = �izi if zi � 0.
Let f (z) = f1(z1) + · · · + fl(zl). Then the subdifferential of f is
@ f (z) = @ f1(z1) + · · · + @ fl(zl). With some abuse of notation we
shall denote the ith entry of @ fi(zi) as Sgn(zi) for any ↵i and �i,
where Sgn(·) is depicted in Fig. 2(a). Then we may denote @ f (z) =
Sgn(z) with Sgn(z) = (Sgn(z1), . . . , Sgn(zl))T . Now we have from
convex analysis that ⇠ 2 @ f (z) , z 2 @ f ⇤(⇠), where f ⇤ is the
conjugate of f . Here f ⇤(⇠) =  [↵1,�1](⇠1)+· · ·+ [↵1,�1](⇠l), so that
@ f ⇤(⇠) = (N[↵1,�1](⇠1), . . . ,N[↵l,�l](⇠l))

T = NK (⇠). From (9) we
deduce that �y(t) 2 NK (�(t)) is equivalent to �y(t) 2 @ f ⇤(�(t))
so�(t) 2 @ f (�y(t)) and�i(t) 2 Sgn(�yi(t)), where�i(t) and yi(t)
stand for the i-th component of �(t) and of y(t), respectively. The
AVS in (7)–(8) is therefore equivalent to the so-called relay system:

8

>

<

>

:

ẋ(t) = g(x(t)) + B�(t)
y(t) = Cx(t) + c + D�(t)
�i(t) 2 Sgn(�yi(t)), i 2 1, l
x(0) = x0 2 Rn.

(25)

For i 2 1, l, each pair (�i, yi) satisfies a general relay characteris-
tic, as depicted in Fig. 2(a). Notice that if ↵i = ��i,�i > 0, then
Sgn(�yi(t)) = �Sgn(yi(t)). Moreover, the graph of the sign mul-
tifunction in Fig. 2(a) is maximal, while the one in Fig. 2(b) is not
maximal, but both are monotone.

From the above four examples, a question emerges naturally:
when is the system (25) a switching system of the form (1) and
howcanwedescribe the cells in this case? To address this question,
we reconsider the relay system (25) as a special class of AVSs and
use the constructive theory of Affine Variational Problems. First we
rewrite inequality (8) as

(s � �(t))T (Cx(t) + c + D�(t)) � 0, 8s 2 K . (26)

Let us introduce some notions we use hereafter.

Definition 6.1 ([20]). Let f : Rl ! Rl be a continuous function
such that there exists a finite family of affine functions {f 1, . . . , f k}
that maps Rm into itself and for every x 2 Rl there is an i 2 1, k
such that f (x) = f i(x). Then, f is said to be piecewise affine (PWA).
If, in addition, det(Jf i) has the same nonzero sign for all i 2 1, k,
then the PWA function f is said to be coherently oriented.

The next theorem is a particular case of the results in [35] and
is recalled in detail here, because it contains the conditions under
which the generalized equation in (26), written as a variational
inequation, possesses a unique solution whatever the data
Cx(t) + c .

Theorem 6.2. If g : Rn ! Rn is Lipschitz continuous and D 2
Ml,l(R) is a P-matrix, then the relay system (25) has a unique C1

solution.

Proof. Since D is a P-matrix, according to Example 4.2.9 in [20],
the normal map associated to the pair (K ,D), given by

Mnor
K : Rl ! Rl, Mnor

K (�) = D ·⇧K (�) + ��⇧K (�),

where⇧K (�) = proj(K ; �) (the projection of � on K with respect
to the Euclidean metric) is coherently oriented. Then, by Theorem
4.3.2 in [20], the affine variational inequality (26) has a unique PWA
solution:

�(Cx(t) + c) = ⇧K
�

(Mnor
K )�1(�Cx(t) � c)

�

and thus, Lipschitz continuous, as a function of Cx(t) + c . Putting
v(x) = �(Cx+c)we get that also x 7! v(x) is Lipschitz continuous.
The relay system (25) becomes
8

<

:

ẋ(t) = g(x(t)) + B⇧K
�

(Mnor
K )�1(�Cx(t) � c)

�

y(t) = Cx(t) + c + D⇧K
�

(Mnor
K )�1(�Cx(t) � c)

�

x(0) = x0 2 Rn.

(27)

The right-hand side in the first equation of (27) is a Lipschitz
continuous function, hence we obtain that the solution of (27) is
of class C1 in time. Moreover, since the solution of (26) is PWA,
from Proposition 4.2.1 in [20] we get that there exists a polyhedral
subdivision {�i}i21,m of Rn and a finite family of affine functions
{fi}i21,m such that the right-hand side in the state equation in
(25) coincides with fi on each cell �i. Finally, we recall that each
polyhedron �i could be described by a finite number of affine
inequalities in Rn like in Section 3.1. ⇤
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Fig. 3. Uniqueness and nonuniqueness of solutions for (28).

Remark 6.3. The above theorem says that the Lipschitz continuity
of g togetherwith the P-matrix property ofD are sufficiently strong
to guarantee the existence and even the uniqueness of classical
solutions. The above result can be extended for system (25) with
a strictly copositive matrix D.

Let us come back on the generalized Eq. (26) that we rewrite
equivalently as the inclusion:

Cx + c + D� 2 �NK (�). (28)

In the scalar case one has K = [↵,�], and let us denote D as
d. The uniqueness of solutions depends greatly on the sign of d as
depicted in Fig. 3. The solution � corresponds to the intersections
between the graph of themaximalmonotone operator � 7! NK (�)
and the affine maps � 7! �Cx � c � d�. If d > 0 there is
always a unique solution; if d < 0 theremay bemultiple solutions.
This is a particular case of a more general result on existence and
uniqueness of solutions of 0 2 F(�), that is guaranteed if F is a
strongly monotone operator [20]. When D = DT > 0 the solution
is calculated as in (18).

6.1. Linear relay systems

In the particular casewhen g is a linear function given by g(x) =
Ax with A 2 Mn,n(R) and c = 0, the well-posedness of the above
system was studied in [37–39].

Definition 6.4. A triple (�, y, x) : [0, 1) ! Rl⇥Rl⇥Rn is called a
forward solution to the relay system (25), if t 7! x(t) is continuous
on [0, 1) and there exists a countable number of switching times
0 = t0 < t1 < · · · < tj < · · · such that for every interval [tj, tj+1)
the triple (�, y, x) verifies the following conditions:

(i) For any i 2 1, l and t 2 [tj, tj+1), �i(t) and yi(t) corre-
spond to one and only one of the following three branches:
[yi(t) > 0 and �i(t) = ↵i] or
[yi(t) < 0 and �i(t) = �i] or [yi(t) = 0 and �i(t) 2 [↵i,�i]].

(ii) (�, y, x) is analytic (on [tj, tj+1)).
(iii) (�, y, x) verifies (25)with initial condition x(tj) = limt%tj x(t).

For j = 0 the initial condition is given in (25) i.e., x(t0) = x0.

We notice that the above definition excludes the existence
of right-accumulations of switches (a kind of Zeno behavior)
but allows for left-accumulations. In short, a forward solution is
continuous and analytic between the switching instants, that may
accumulate on the left. The conditions underwhich the system (25)
admits a unique forward solution are contained in the following
theorem.

Theorem 6.5 ([38]). Let g(x) = Ax, A 2 Mn,n(R) and c = 0.
Suppose that there exists s0 � 0 such that G(s) = C (sIn � A)�1 B+D
is an invertible P0-matrix for s � s0. Then, for any initial condition
x0 = x(0), the relay system (25) admits a unique forward solution
(�, y, x), t � 0 in the sense of Definition 6.4.

Since theworks in [38,37,39] use the notion of a transfer matrix
and the linear complementarity theory as basic analysis tools,
they are restricted to the ‘‘all linear invariant’’ case, i.e. the vector
fields fi have to be linear invariant and the cells �i have to be
constant polyhedra. The strength of the results lies in the fact that
they allow for P0 transfer matrices and nonzero D matrices. Linear
relay systems satisfying the conditions of Theorem 6.5may exhibit
sliding modes or accumulations of switches as the following
examples show. However repulsive surfaces as in Example 4.3 are
not admitted, since they yield nonunique analytic solutions.

Example 6.6. Let n = 2, A = 0, C = I2, B =
⇣

1 0
6 1

⌘

.

The transfer matrix is 1
s B and B is a P-matrix. Then ẋ(t) =

B�(t), �1(t) 2 �Sgn(x1(t)), �2(t) 2 �Sgn(x2(t)) and [�(t)]T =
(�1(t), �2(t)). The four vector fields are easily computable as
(�1 � 7)T , (1 5)T , (1 7)T , (� 1 � 5)T in the first, second, third
and fourth quadrants respectively (hence the systembelongs to the
class in (1)). All trajectories starting outside the axis x1 = 0 attain
this line in a finite time and slide on it towards the origin x = 0.
The line x2 = 0 is a crossing surface. See Fig. 4(a). One sees that in
the case of an attractive surface the forward solutionmatches with
the Filippov solution, because this is the unique possible solution.
When attaining the line x1 = 0, the trajectory cannot go back in
x1 < 0, it cannot cross to x1 > 0, so it can only slide on x1 = 0.

Example 6.7. Let n = 2, A = 0, C = I2, B =
⇣

1 �2
2 1

⌘

. The

transfer matrix is 1
s B and B is a (nonsymmetric) positive definite

matrix, hence a P-matrix. The trajectories initialized outside the
origin reach it in finite time after an infinity of switches, when the
solution crosses the two switching surfaces x1 = 0 and x2 = 0 (see
for instance [14]). See Fig. 4(b).

Example 6.6 indicates that the general existence result of
Filippov (that states the existence of absolutely continuous
solutions) can be refined to the existence of continuous piecewise
analytic solutions in some cases. The simplest case that indicates
this point is the differential inclusion ẋ(t) 2 �Sgn(x(t))
that indeed possesses a unique forward solution whatever x(0).
This example can also be analyzed with Theorem 6.11. Another
interesting result is stated in [39] for the single relay case.

Theorem 6.8 ([39]). Let y(t) and �(t) be scalars, and D = 0. Then
for any initial condition x(0) there exists a unique forward solution if
and only if the leading Markov parameter Mr = CAr�1B is positive,
where r = min{i = 1, 2, . . . , such that CAi�1B 6= 0}.

The uniqueness of Filippov (hence absolutely continuous)
solutions is a different matter, see Section 6.3.

6.2. Nonlinear relay systems

In what follows we will study two classes of relay systems for
the particular case when D = 0, so Theorem 6.2 fails to apply.
Contrary to the above linear relay systems, they allow for some
nonlinearity in their ingredients. When D = 0, the relay system
(25) becomes the differential inclusion
(ẋ(t) 2 g(x(t)) � BSgn(Cx(t) + c)
y(t) = Cx(t) + c
x(0) = x0 2 Rn,

(29)
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a b

Fig. 4. Linear relay systems with (a) sliding motion, and (b) accumulation of
switches.

where
Sgn(Cx(t) + c) = (Sgn(C1•x(t) + c1), . . . , Sgn(Cl•x(t) + cl))T

and the graph of Sgn(yi), yi = Ci•x + ci is depicted in Fig. 2(a). Set
dj(x) = Cj•x + cj, j 2 1, l and the relay inclusion is of the form (1).

Remark 6.9. It should be pointed out that the multiplication
between the matrix B and the set-valued signum map Sgn is
understood in the sense of multiplication of the sets by scalars.
More precisely, for B and Sgn(Cx + c) as above, the product
BSgn(Cx + c) is allowed in the following sense:

B

0

B

@

Sgn(C1•x + c1)
...

Sgn(Cn•x + cn)

1

C

A

=
X

j21,n

B•jSgn(Cj•x + cj) (30)

which is different from
0

B

@

B1•Sgn(Cx + c)
...

Bn•Sgn(Cx + c)

1

C

A

=
X

i21,n

Bi•Sgn(Cx + c)ei, (31)

where ei stands for the i-th canonical unit vector in Rn. An
illustration of this fact is given in [28, Section 7.4].

Definition 6.10. A solution to the differential relay inclusion (29)
is a pair (x, y) of absolutely continuous functions, x : R ! Rn and
y : R ! Rl, such that x satisfies the first equation in (29) a.e. on
[0, 1) with initial condition x(0) = x0 and the output y satisfies
y(t) = Cx(t) + c for each t � 0.

The well-posedness of this class of relay systems was stated
in [40], using the maximal monotonicity property of the subdiffer-
ential of a certain convex function. The result we give below could
be useful when characterizing Filippov solutions of certain relay
systems (see [28, Section 7.4]).

Theorem 6.11 ([40]). Suppose that g is Lipschitz continuous and
there exists a positive definitematrix P = PT such that PB = CT . Then,
for an initial condition x0 2 Rn, the differential inclusion (29) admits
a unique Lipschitz solution with an essentially bounded derivative.

Proof (Sketch of the Proof). Themain theoretical tool that is used in
the proof is the maximal monotonicity of a multivalued operator.
The first step consists in performing a suitable state vector change
z = Rx, withR the symmetric positive definite square root of P . This
has been introduced in [16]. Once this is done, the relay system is
put under the following canonical form:

ż(t) 2 g(z(t), t) � FTSgn(Fz(t) + c) (32)

with F = CR�1. The basic convex analysis tool that is used
is the chain rule [14, proposition A.3] and then a general result
about the existence and uniqueness of solutions for differential
inclusions with a maximal monotone multivalued function [41].
We notice from (32) that the vector fields fi take a special
form. Indeed suppose that g(z, t) = 0. We obtain that ż(t) 2
�Pm

i=1 F
T
i•Sgn(Fi•z(t) + ci). The vector fields fi are obtained from

the sum of vector fields orthogonal to the switching surfaces⌃i =
Fi•z+ci = 0. Suppose further that F 2 Rm⇥n has full rankm, so that
FFT is symmetric positive definite. Then the codimensionm surface
\1im⌃i is attractive and attained in finite time. The proofmay be
led with the function V (z) = 1

2 (Fz + c)(FFT )�1(Fz + c). Along the
trajectories of (32) with g(z, t) = 0 and as long as z 62 ⌃i for all
1  i  m, one has V̇ (t) = �Pm

i=1 |Fi•z(t) + ci|. Therefore V ,
which is a positive definite function of the variables �i = Fi•z + ci,
decreases to zero in finite time. ⇤

Suppose that g(z, t) = Az in (32). Then the transfer matrix of
Theorem 6.5 is G(s) = F(sIn � A)�1FT . In Theorem 6.11 one does
not impose that G(s) should be P0, however D = 0 and B = FT .
Let us come back to Theorem 6.5. Notice that we may rewrite
G(s) = 1

s C(In � A
s )

�1B + D so that for large s one has G(s) ⇡
1
s CB + D. This seems to indicate that when g(x) = Ax Theorem 6.5
is more general than Theorem 6.11. However it is noteworthy
that Theorems 6.5 and 6.11 do not deal with the same functional
spaces of solutions and can therefore hardly be compared from
this point of view. Indeed it is known that a relay system can
admit unique forward solutions, while it admits several absolutely
continuous Filippov solutions, for instance (see Section 6.3). Notice
that the system of Example 6.7 does not satisfy the conditions of
Theorem 6.11.

Example 6.12. Consider that B = (bji) is a diagonal matrix with
bii > 0, 8i 2 1, n, C = In and c = 0. Assume also that g is
Lipschitz continuous. Then there exists a positive definite matrix
P = B�1 such that PB = CT , and according to Theorem 6.11, the
relay inclusion
8

<

:

ẋ(t) = g(x(t)) �
X

i21,n

biiSgn(xi(t))ei

x(0) = x0 2 Rn,
(33)

has a unique Lipschitz solution with an essentially bounded
derivative.

6.3. The influence of the relative degree

The relative degree of a system ẋ(t) = Ax(t) + B�(t), y(t) =
Cx(t) + D�(t), y(t) and �(t) scalars, is zero if D 6= 0, one if
D = 0 and CB 6= 0, and is the smallest integer r such that
CAi�1B = 0 for all 1  i < r and CAr�1B 6= 0. In the
multivariable case one may define a uniform relative degree r in
the same way. It is apparent that the results of Theorems 6.5, 6.8
and 6.11 imply some relative degree condition. Indeed as alluded
to above the conditions of Theorem 6.5 are satisfied if either D
or CB are P-matrices, hence full-rank. The condition PB = CT of
Theorem 6.11 implies that CB = BT PB that is symmetric positive
definite if B has full rank. Thus one may roughly say that the well-
posedness results hold with relative degrees 0 or 1. For the case of
scalar y(t) and �(t) (a unique feedback relay), the results may be
refined. Theorem 6.8 states the uniqueness of forward solutions.
However Filippov solutions may not be unique. Roughly speaking,
Filippov solutions are unique when CB > 0 or CB = 0 and
CAB > 0 (Theorems 2 and 3 in [39]). The relay system x(3)(t) 2
�Sgn(x(t)) has been studied in depth in [39], where the relative
degree influence is considered on relay system’s well-posedness.
Obviously r = 3. It is shown in [39] that despite CA2B > 0 there
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exists an infinity of Filippov solutions starting at x(0) = ẋ(0) =
ẍ(0) = 0. These solutions start with a right-accumulation of
switches, something that is not permitted if analyticity is imposed
as in forward solutions. It follows from this and Theorem 6.8 that
forward and Filippov, absolutely continuous solutions, are quite
different one from each other.

6.4. Another class of nonlinear relay systems

In Section 6.2 we have presented the most common class of
nonlinear relay systems, i.e. relay systems which are nonlinear
in the single-valued part of the vector field, but which are linear
with respect to the multivalued signum function. In contrast to
this class, we introduce here another class of relay systems arising
in biological models, that describes genetic regulatory networks.
The nonlinearity of such systems refers to complex combinations
of signum functions that model switch-like interactions between
different components of the regulatory network: DNA, RNA,
proteins and small molecules. Their general form can be described
as follows:

ẋi(t) = ��ixi(t) +
X

l2Li

kilbil(x(t)), i = 1, . . . , n, (34)

where xi denotes the cellular concentration of the product gene
i, �i > 0 is the degradation rate of xi, kil > 0 is a rate parameter
and Li a possibly empty set of indices. The nonlinearity of the above
system is expressed by the Boolean functions bil : Rn

+ ! {0, 1}
defined in terms of sums and multiplications of step functions, s+
and s� given by

s+(xj, ✓j) = 1 + sgn(xj � ✓j)

2
; s�(xj, ✓j) = 1 � s+(xj, ✓j),

for some threshold ✓j > 0. They specify the conditions under
which the gene i is expressed at a rate kil. System (34) has been
widely studied in the literature,mainly in the framework of genetic
networks (see [42] and references therein). In vector notations,
(34) rewrites as

ẋ = �� x +
X

l2L

kl
Y

j=1,n

�

1 + cljsgn(xj � ✓ lj )
�

, (35)

where � = diag(�1, . . . , �n), clj 2 {�1, 0, 1}, L counts all products
of step functions in the definition of kil, l 2 Li, i = 1, . . . , n and
for each l 2 L, kl 2 Rn. The use of step functions allows one
for a compact description of the dynamics of genetic regulatory
networks, based on differential inclusions. In this case the Filippov
framework is employed [8,9].

An alternative method in the study of (34) is based on
replacing step functions by special smooth functions, namely
sigmoids (also called ‘‘logoids’’) and investigating the system thus
obtained. The main technical tool consists in analyzing the limit
when all sigmoids approach step functions. In [43], it is shown
that in this case the solutions for sigmoids approach the limit
solution uniformly in a finite time. This is quite interesting if one
wants to suppress stiffness in the ODE to perform the numerical
simulation. A complete mathematical comparison between these
two approaches has been featured recently [44].

7. Complementarity systems

In this section we treat the case when K ✓ Rl in (8)
is a nonempty closed convex cone. Proposition 1.1.3 in [20]
establishes an equivalence between the variational problem given
by the inequality (8) and the conewise complementarity problem,
denoted CCP(K), to follow: for each t � 0, find �(t) 2 Rl such that

K 3 �(t) ? y(t) 2 K ⇤. (36)
Hereafter we will consider linear (or affine) conewise comple-

mentarity systems (CCS) of the form:

(ẋ(t) = Ax(t) + B�(t) + a
K 3 �(t) ? y(t) = Cx(t) + c + D�(t) 2 K ⇤

x(0) = x0 2 Rn.
(37)

Let us present some examples which illustrate the relevance of
the study of CCS.

Example 7.1 (Mass and Spring/Dashpot, Relative Degree 1). Let us
come back to Example 3.2. Let us introduce ⇠ as the spring/dashpot
coordinate (its deformation), and define xT = (q, q̇, ⇠). We write
the dynamics as [15, Example 3]:
⇢

ẋ(t) = Ax(t) + B�(t)
0  y(t) = Cx(t) ? �(t) � 0 (38)

with A =
 0 1 0

0 0 0

0 0 � k
c

!

, BT = (0 1
m � 1

c ), C = (1 0 � 1); �(t)

has the physical interpretation of a contact force. There are two
modes: if y(t) > 0 then �(t) = 0 and q̈(t) = 0. If y(t) = 0
on some time interval [t0, t1], t0 < t1, then the complementarity
conditions are rewritten in ‘‘velocity’’ [6], [14, Propositions C.8,
C.9]: 0  ẏ(t) = CAx(t) + CB�(t) ? �(t) � 0, and since
CB = 1

c > 0 this LCP always has a unique solution. This is
found by inspection to be �(t) = 0 if q̇(t) + k

c q(t) > 0, and
�(t) = �cq̇(t)�kq(t) if q̇(t)+ k

c q(t)  0. The switching conditions
are rather different from those in Example 3.2. Such a system has a
relative degree one between � (the ‘‘input’’) and y (the ‘‘output’’).
This model guarantees that the contact force keeps the right sign
for all times. The kinematic restitution coefficients that result from
(2) and from (38) are quite different one from each other [24].
Obviously we can rewrite (38) as the differential inclusion

� ẋ(t) + Ax(t) 2 BNK (Cx(t)) (39)

with K = R+. The same comments as for Example 5.4 apply: this
is not a switching system as in (1). When c = 0 however both
systems are the same because the contact force is equal to �kq
whose sign is the same as the signed distance between the obstacle
and the mass.

Example 7.2 (RLC Circuit with Ideal Diode, Relative Degree 0). Let
us consider the circuit in Fig. 5(a), where the diode is an ideal
diode [11,12]. Its dynamics is given by:
8

>

>

>

>

<

>

>

>

>

:

ẋ1(t) = x2(t) � 1
RC

x1(t) � �(t)
R

ẋ2(t) = � 1
LC

x1(t) � �(t)
L

0  �(t) ? y(t) = �(t)
R

+ 1
RC

x1(t) � x2(t) � 0

(40)

where x1 is the charge of the capacitor and x2 is the current through
the inductor. The signal y depends directly on �, so the relative
degree between them two is 0. This systems belongs to the class
(1) and the switching surface is easily identified as 1

RC x1 � x2 = 0.
The vector field is continuous, whichmeans that the criteria in [29,
28] are satisfied.

Example 7.3 (RLC Circuit with Ideal Diode, Relative Degree 1). Let us
consider the circuit in Fig. 5(b), where the diode is an ideal diode.
Its dynamics is given by:
8

>

<

>

:

ẋ1(t) = x2(t)

ẋ2(t) = �R
L
x2(t) � 1

LC
x1(t) � �(t)

L
0  �(t) ? y(t) = �x2(t) � 0.

(41)

The signal y does not depend directly on �, however its time
derivative along the system’s trajectories does. The relative degree
is equal to 1.
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When K = Rl
+, the linear CCS (37) results in what is simply

called a Linear Complementarity System (LCS):
(ẋ(t) = Ax(t) + B�(t)
0  �(t) ? y(t) = Cx(t) + c + D�(t) � 0
x(0) = x0 2 Rn.

(42)

If D is a P-matrix, a well-known result from complementarity
theory states that �(t) is a piecewise-linear function of Cx(t) +
c [19]. Thus, (42) is an ordinary differential equationwith Lipschitz
continuous right-hand side and C1 solutions. A general rewriting
of the LCS in (42) with c = 0 and D a P-matrix, as a switching
system (1) is given in [26, Equation (2.17)]. The switching surfaces
however appear only in an implicit way, because for a generic P-
matrix it becomes rapidly impossible to get an explicit description
of the different modes of the LCP. In the next example the cells of
a planar complementarity systems are explicitly described, for a
nontrivial D matrix.

Example 7.4. Consider (in the plane) the complementarity condi-
tion in (42)with C = I2, c = 0 andD =

⇣

2 1
1 1

⌘

(soD is a P-matrix).
The following cases are in range.

(i) �1, �2 > 0 and x1 + 2�1 + �2 = 0, x2 + �1 + �2 = 0.
Then, the complementarity problem has the unique solution
� = (x2 � x1, x1 � 2x2)T if x 2 R1 where R1 = {x 2 R2 : x1 <
0, x2 2

�

x1, x1
2

�

}.
(ii) �1 > 0, �2 = 0 and x1 + 2�1 + �2 = 0, x2 + �1 + �2 � 0.

The complementarity problem has the unique solution � =
�

� x1
2 , 0

�T if x 2 R2 where R2 = {x 2 R2 : x1 < 0, x2 � x1
2 }.

(iii) �1 = 0, �2 > 0 and x1 + 2�1 + �2 � 0, x2 + �1 + �2 = 0.
The complementarity problem has the unique solution � =
(0, �x2)T if x 2 R3 where R3 = {x 2 R2 : x2 < 0, x1 � x2}.

(iv) �1 = �2 = 0 and x1 + 2�1 + �2 � 0, x2 + �1 + �2 � 0.
The complementarity problem has the unique solution � =
(0, 0)T if x 2 R4 where R4 = {x 2 R2 : x1, x2 � 0}.

It is easy to see that x 7! �(x) is piecewise linear (thus,
continuous) and there are four regions that can be described like
in Section 3.1, where the system is completely defined (see Fig. 6).
So, for any A, B 2 M2,2(R), system (42) admits a unique classical
solution and thus, the continuity obtained in the right-hand side
of system (42) allows for weak instead of strict inequalities in the
final description of the regions.

Let us denote by Sol(Cx, c,D) the solution set of the comple-
mentarity problem given by the complementarity condition in
(42). It follows from [45, Proposition 2.1] that the LCS has a unique
C1 solution if and only if Sol(Cx, c,D) is a singleton for all x 2 Rn.
More generally, in [20] it is shown that in the casewhen K is a poly-
hedral cone, the set of all solutions of the complementarity prob-
lem:

K 3 �(t) ? y(t) = Cx(t) + c + D�(t) 2 K ⇤ (43)

is a singleton if the following conditions are satisfied:

(i) D is positive semidefinite (possibly nonsymmetric),
(ii) CRn ✓ �DK + K ⇤,
(iii) (K � K) \ Ker(D + DT ) ⇢ Ker(B).

From (i) it follows that the LCS (42) has a piecewise linear right-
hand side, and this corresponds to a uniform relative degree 0
between � and y (if in addition D = DT then one may apply
(18) with K = Rl

+). From (43) one has that �(t) 2 (D ·
+NK )�1(�Cx(t) � c) so that (i)–(iii) guarantee that this operator
is single-valued. In a more general setting, Proposition 5.1 and
Theorem 5.1 in [35] provide quite general conditions such that
the variational inequality possesses a unique solution (Lipschitz
continuous) so that the dynamical system (a differential variational

a b

Fig. 5. Electrical circuits with capacitors, resistors and ideal diodes.

Fig. 6. The four regions in Example 7.4.

inequality in [35], an AVS in this paper) has a unique C1 solution.
These results in fact provide conditions under which the operator
B(D ·+NK )�1(�Cx� c) is single-valued, so that (24) is an ordinary
differential equation.

In the case that D = 0 but CB has full-rank, the relative degree
is equal to 1. The complementarity systems in Examples 7.1 and
7.3 have a relative degree 1. As we have seen in Example 5.4 such
an LCS cannot be recast into (1). We therefore do not insist on
this case, but it is worth noting that the relative degree one is a
common case for physical systems like mechanical or electrical
systems, showing the limitations of the models as discontinuous
systems as in (1). Let us mention anyway that using the results
in [36] or [18] one may prove the existence and uniqueness of
absolutely continuous, or Lipschitz continuous, solutions in the
relative degree one case. This suggests that the regularity (or the
smoothness) of the solutions is intimately linked to the relative
degree between the multiplier � (playing the role of an input
signal) and the complementarity variable y (playing the role of an
output signal). This is indeed the case, see [34] for more details.

Finally, we notice that relay systems may also be recast
into complementarity systems, since the sign multifunction in
Fig. 2(a) lends itself to a description via complementarity, see e.g.
[14, Chapter 1]. This is in fact a particular case of representing a
piecewise linear multifunction (vertical segments are admitted)
into a complementarity framework [10]. See Section 11.

8. Time-varying switching systems

The frameworks of relay and of complementarity systems allow
one to consider in a rather natural way the case of nonlinear and/or
time-varying vector fields fi in (1) and of time-varying cells �i(t).
For instance [46] considers linear complementarity systems of the
form:
⇢

ẋ(t) = Ax(t) + B�(t) + g(t)
0  y(t) = Cx(t) + D�(t) + h(t) ? �(t) � 0 (44)

where (A, B, C,D) is supposed to be a dissipative (or positive real)
quadruplet [47]. When D = 0 this implies in particular that an
input/output constraint PB = CT as in Theorem 6.11 is satisfied.
Otherwise the dissipative linearmatrix inequality impliesD+DT �
0. Notice that both the smooth dynamics in Examples 7.2 and
7.3 are dissipative. Theorem 7.5 in [46] states conditions under
which (44) has a unique global solution (x, �, y) where g and h
are so-called piecewise Bohl functions. The solutions are the sum
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of functions (regular terms) in the extended L2loc space, and Dirac
measures (impulsive terms). It is noted in [46] that the jumps in the
state x show up only at the times where h is discontinuous (such a
fact is explained also in [18] in the context of measure differential
inclusions, where a rigorous meaning of the complementarity
conditions at the times of state jumps is provided).

Let D be a P-matrix, it is clear that (44) can be interpreted as a
switching system (1) with time-varying vector fields and cells.

Example 8.1. Let us consider the scalar system with d > 0:
(ẋ(t) = ax(t) + b�(t) + g(t)
y(t) = Cx(t) + c + d�(t) + h(t)
0  �(t) ? y(t) � 0.

(45)

The multiplier �(t) is the solution of the LCP: 0  Cx(t) + c +
d�(t) + h(t) ? �(t) � 0, that is given by: �(t) = 0 if Cx(t) + c +
h(t) > 0 and �(t) = �Cx(t)� c �h(t) if Cx(t)+ c +h(t)  0. The
system in (45) is therefore equivalent to the switching system:

ẋ(t) =
⇢

ax(t) + g(t) if Cx(t) + c + h(t) > 0
(a � bC)x(t) + f (t) if Cx(t) + c + h(t) < 0 (46)

where f (t) = �bc � bh(t) + g(t), that is a switching system with
time-varying switching surface⌃t = {z 2 R : Cz + c + h(t) = 0}.

It is easy to add some current or voltage sources in the circuits
in Fig. 5 so that (40) and (41) become time-varying. The relay
systems as in (29) also form a class of non-autonomous switching
systems, whose cells do not vary but whose vector fields fi do.
The time-varying linear complementarity systems (44) have also
been studied in [18]. The overall framework in [18] is that of the
perturbedMoreau’s sweeping process, that is a specific differential
inclusion into normal cones to time-varying convex sets K(t),
roughly: �ẋ(t) + g(x(t), t) 2 NK(t)(x(t)). The main assumption
is that there exists P = PT > 0 such that PB = CT . Then a state
space transformation as in Theorem 6.11 is done to recast (44) into
a differential inclusion of the form (when D = 0):

� ż(t) + RAR�1z(t) + Rg(t) 2 NS(t)(z(t)). (47)

The time-variation of the convex polyhedral set S(t) is due
solely to the term h(t) in (45). The solutions are absolutely
continuous when S(t) is (as a set), and of local bounded variation
when S(t) is (as a set). In the latter case solutions may jump and
the differential inclusion (47) has to be rewritten as a measure
differential inclusion. The caseD � 0 is alluded to in [18]. This case
is however more deeply treated in [36], but with h(t) = 0 (hence
one is no longer in the framework of Moreau’s sweeping process
because the underlying convex set within which the system’s state
evolves, becomes constant). The solutions are then continuous (see
Section 9).

9. Multivalued Lur’e dynamical systems

It happens that all the foregoing systems (relay, complemen-
tarity) possess a very strong underlying structure of a continuous,
single-valued system with a feedback interconnection that con-
sists of a multivalued, static (i.e. independent of the state), possi-
bly time-varying, nonlinearity. Such a point of view is obvious from
(7)–(8). This makes such systems much more structured than the
general switching systems (1). The point of view of Lur’e dynam-
ical nonsmooth, multivalued systems is taken in [16,36]. Therein
one starts from a formalism that is close to the one in (7)–(8) and
reads as follows. Let A : Rn ! Rn be a (possibly) nonlinear op-
erator, B 2 Mn,p(R), C 2 Mp,n(R) and D 2 Mp,p(R) given ma-
trices, f : R+ ! R continuous such that ḟ 2 L1loc(R+; Rn) and

Fig. 7. A four-diode bridge wave rectifier.

� : Rp ! R [ {+1} a given proper convex and lower semicon-
tinuous function (see [21]). Let x0 2 Rn be some initial condition,
we consider the problem: Find x : R+ ! Rn continuous such that
ẋ 2 L1loc(R+; Rn) and x right-differentiable on R+, � : R+ ! Rp

continuous and y : R+ ! Rp continuous satisfying the nonsmooth
Lur’e system NSLS(A, B, C,D, f ,�, x0):
8

>

<

>

:

ẋ(t) = A(x(t)) + B�(t) + f (t), a.e. t � 0
y(t) = Cx(t) + D�(t), t � 0
�(t) 2 �@�(y(t)), t � 0
x(0) = x0.

(48)

Two paths are followed in [36]. The first one consists of
considering that D � 0 has the structure diag(DI , 0) with DI �
0, and to transform the system (48) into a suitable variational
inequality so that Kato’s theorem (or one of its variant, see [48])
applies directly. Roughly, this uses the fact that the part of y that
does not depend on � corresponds to a multivalued nonlinearity,
whereas the part that depends on � via DI defines a single valued
operator (in a way quite similar to what happens in Example 5.3).
The single-valued part of the feedback interconnection is therefore
incorporated into the single-valued part of the system, i.e. it is
added to A(x)), while the feedback interconnection is left with only
the multivalued part.

The second path uses in fact the rewriting of the system using
an operator as the one in (23). Using convex analysis tools onemay
invert the inclusion in (48) so that it rewrites:
8

>

<

>

:

ẋ(t) = A(x(t)) + B�(t) + f (t), a.e. t � 0
y(t) = Cx(t) + D�(t), t � 0
y(t) 2 �@⌅(�(t)), t � 0
x(0) = x0

(49)

for some convex, proper, lower semicontinuous function⌅ that is
obtained from � by an inversion process similar to the one used
in Example 5.2, i.e. ⌅(z) = �⇤(�z) (the minus sign is here to
preserve the minus sign in the feedback interconnection in (49)).
The Lur’e system structure clearly appears in (49). By properly
choosing � (hence ⌅ ) one may recover some classes of nonlinear
conewise complementarity system (� =  K for some closed,
nonempty convex cone K ) and of nonlinear relay systems (�(y) =
|y1|+· · ·+|yl|). It is clear from (49) that the crucial operator for this
differential inclusion is x 7! B(D · +@⌅)�1(�Cx) 3 �. The works
in [36] aim at characterizing it accurately depending on D and ⌅ .
For instance, it follows from Corollary 1 in [36] that this operator
is single-valued and Lipschitz continuous when � =  K with K a
closed convex cone if (compare with the conditions below (43)):

(i) D is positive semidefinite (possibly nonsymmetric),
(ii) Ko \ Ker(D + DT ) = {0},
(iii) Im(C) ⇢ Im(D + DT ) ⇢ Ker(B),

where Ko is the polar cone of K . Other criteria that guarantee
that the fundamental operator is single-valued are given in
Section 3 of [36].

Example 9.1. Let us consider the four-diode bridge wave rectifier
in Fig. 7, with a capacitor C > 0, an inductance L > 0, a resistor
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R > 0. Its dynamics is given by:



ẋ1(t)
ẋ2(t)

�

=

2

6

4

0 �1
C

1
L

0

3

7

5



x1(t)
x2(t)

�

+

2

4

0 0 �1
C

1
C

0 0 0 0

3

5 �(t)

0  y(t) ? �(t) � 0 (50)

where x1 = vL, x2 = iL, � = (�vDR1 � vDF2 iDF1 iDR2)T , y =
(iDR1 iDF2 � vDF1 � vDR2)

T and

y =

2

6

4

0 0
0 0

�1 0
1 0

3

7

5



x1
x2

�

+

2

6

6

6

6

4

1
R

1
R

�1 0

1
R

1
R

0 �1
1 0 0 0
0 1 0 0

3

7

7

7

7

5

�. (51)

Notice that in this example one has n = 2 and l = 4. The matrix D
is full rank, semi-definite positive. The relation PB = CT holds with
P =

⇣

C 0
0 p22

⌘

, p22 > 0, where C > 0 is the capacitor parameter.
This example shows that considering D � 0 (and not D > 0 nor
D = 0) is important for applications. Theorem 2 in [36] applies to
this nonsmooth circuit.

The relative degree one systems in Examples 7.1 and 7.3 can
also be analyzed with the tools developed in [36]. The approach
in [36] strongly relies on a ‘‘dissipative input/output’’ constraint
similar to the one of Theorem 6.11, i.e. there exists P = PT > 0
such that PB = CT . The matrix D is supposed to be positive semi-
definite. The underlying property is the maximal monotonicity of
the multivalued part of the system.

Remark 9.2. Electrical circuits as in Example 9.1 show that
nonsymmetric matrices are common in complementarity systems.
It is noteworthy that the system in (50) has a full rankD that is only
semipositive definite, because of its nonzero skew-symmetric part.
This shows that the relative degree r = 0 is not sufficient by itself
to guarantee that the LCP is well-posed. In the multivariable case
we have that D > 0 ) r = 0, but r = 0 does not imply D > 0.

Example 9.3. Let us consider two masses moving on a line, linked
by a constant spring with stiffness k (possibly nonlinear), subject
to Coulomb friction with friction coefficients µ1 > and µ2 > 0,
and acted upon by two external forces F1 and F2. The dynamics is
given by:
⇢

m1q̈1(t) 2 �m1µ1gSgn(q̇1(t)) + k(q2(t) � q1(t)) + F1(t)
m2q̈2(t) 2 �m2µ2gSgn(q̇2(t)) + k(q1(t) � q2(t)) + F2(t).

(52)

The subspace {x 2 R4 : q̇1 = q̇2 = 0} where x = (q1 q̇1 q2 q̇2)T
represents a codimension 2 attractive surface. The well-posedness
of this relay system may be stated using Theorem 6.11 or the
results in [36]. There exists P = PT > 0 such that PB = CT ,
where B and C are easily identified from (52): P = diag(pii) with
p11 > 0, p33 >, p22 = 1

gµ1
, p44 = 1

gµ2
. More examples of such

mechanical systems with one-dimensional Coulomb friction may
be found in [49], where they are analyzed via maximal monotone
differential inclusions.

Example 9.4. Consider now the system made of two masses m1
andm2, withm1 sliding on the top ofm2 whilem2 is in contactwith
the ground. The coefficients of friction areµ1 > 0 between the two

masses, and µ2 > 0 between m2 and the ground. The dynamics is
given by:
(m1q̈1(t) 2 �m1µ1gSgn(q̇1(t) � q̇2(t))
m2q̈2(t) 2 m1µ1gSgn(q̇1(t)

� q̇2(t)) � (m1 + m2)gµ2Sgn(q̇2(t)).
(53)

This system is compactly rewritten as ẋ(t) 2 �BSgn(Cx(t)),

with C =
⇣

1 �1
0 1

⌘

, B =
✓

µ1g 0

�m1
m2

µ1g
m1 + m2

m2
µ2g

◆

. There does not

exist P = PT > 0 such that PB = CT , except if m1+m2
m1

= µ1
µ2

.
However the transfer matrix

G(s) = 1
s

0

B

B

@

µ1g
✓

1 + m1

m2

◆

�m1 + m2

m2
µ2g

�m1

m2
µ1g

m1 + m2

m2
µ2g

1

C

C

A

is a P-matrix since all its principal minors (there are three) are
positive. Therefore Theorem 6.11 does not apply, neither the
results in [36], but Theorem 6.5 applies.

10. Summary and comments

From the above results summarized in Sections 6–9, it follows
that the main tools and assumptions that have been employed to
study the AVS (7)–(8) are:

• Complementarity theory and the P property of matrices or
functions.

• Maximal monotonicity of multivalued operators.
• Dissipativity of dynamical systems.

The fundamental operator for the analysis of the AVS in (7)–(8)
is

� : x 7! B(D · +NK )�1(�Cx � c) (54)

whose properties depend mainly on D and K . It may be single-
valued (e.g. D = DT > 0 and K a convex set) or multivalued
(e.g. D a P0-matrix and K a closed rectangle). The functional spaces
for the solutions vary from one result to the other: C1, absolutely
continuous, Lipschitz continuous, L2, of local bounded variations,
locally or piecewise analytic. The advantage of the AVS (7)–(8)
over (1) is that it provides compact formalisms with a strong
structure that are very suitable for mathematical analysis, time-
discretization, and stability analysis. For instance, they allow the
introduction of time-varying cells, of nonlinearities, and they are
more tractable for proving uniqueness using powerful tools of
convex, complementarity, or nonsmooth analysis. Determining the
continuity of the underlying vector field f may be done via high-
level tools like (18) that dispenses one with examining each vector
field fi at each cell boundary as required by the criteria in [29,28].
On the contrary, the structure of a general switching system as (1)
is quite loose. It is worth noticing that the monotonicity (and its
extensions like one-sided Lipschitz continuity) is a very important
property for proving the uniqueness of solutions, though it is
sufficient only. However, in [4], there are identified other sufficient
conditions specifically tailored for piecewise continuous systems.
The great advantage of all the techniques based on maximal
monotonicity is that they allow one to consider non-linearities.
Another fundamental parameter in AVS is the relative degree
between � and y.

• The various sets which play a role in the above developments
(the cells �i, the sets K for the AVS) are all convex. Convexity
therefore appears to be a central property (the positive
definiteness of the matrix D may also be interpreted as a
convexity property). Convexity is in fact closely related to the
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maximal monotonicity and to the dissipativity. Indeed when K
is a closed convex nonempty set, then the mapping � 7! NK (�)
is maximal monotone. The generalized equation in (28) has a
unique solution when D is positive definite and K is closed
convex nonempty. More generally the well-posedness of the
differential inclusion ẋ(t) 2 g(x(t)) + �(x(t)) relies heavily
on convexity properties. The role of dissipativity-like properties
and their link to convexity is highlighted in Theorem 6.11,
where the chain rule for convex functions plays a central role.
Whether or not all the material that is presented in this paper
extends to nonconvex sets, is an interesting question. Starting
from the point of view of inclusions into normal cones as in (24)
(or of AVS in (7) and (8)), a natural extension is that of prox-
regular sets [18,50]. Another closely related important point is
that the argument of the sign multifunction for relay systems,
and the variable y(t) for complementarity systems, have been
considered as linear (or affine) functions of x and �. This means
that the associated sets �i in the switching system formalism,
are convex. Thus starting from prox-regular AVS might help in
definingwell-posed switching systemswith nonconvex cells�i.

• Another interesting point is to investigate how the dissipativity
and monotonicity properties used in the framework of AVS
(relay, complementarity systems) relate to dissipativity of
switching systems as in [51]. The AVS framework allows one
to state the dissipativity with a unique supply rate and a
unique storage function (more precisely, a unique passivity
linear matrix inequality [47, Chapter 3]), whereas the criterion
in [51] uses several supply rates and storage functions. This
may constitute a strong advantage of working within the AVS
framework, when this is possible, and paves the way towards
extensions of feedback controllers synthesis as in [52]. Observer
design for classes of set-valued systems using dissipativity has
been proposed in [53,54]. The applications in the stability and
the feedback control of nonsmooth electro-mechanical systems
and circuits seems to be a promising field of research.

• Switching feedback controllers formulated through comple-
mentarity conditions have not yet received much attention,
except in [55]. The parameter identification of nonsmooth sys-
tems using multiple relay functions is also a topic that deserves
attention [56]. The results on relay and complementarity sys-
tems may be used as a theoretical foundation for the design
of such inputs and identification techniques. The relay system
used in [56, Eq. (7)–(10)] fits with (25), however Theorems 6.5
and 6.11 do not apply. This system is similar to the so-called
twisted controller of sliding-mode control, for which specific
stability results have been developed that relax the uniqueness
of solutions [3, Chapter 3].

• It is known in circuit theory that feedback controllers imple-
mented through current or voltage sources may increase the
relative degree (the index when one remains within the DAE
framework). The relative degree influences the uniqueness of
solutions in relay systems (see Section 6.3) and the smoothness
of the solutions in linear complementarity systems (see [34]).
Stability, control and simulation of nonsmooth circuits with
higher relative degree is still a largely open field.

• The properties of finite-time convergence, which are a particu-
lar feature of nonsmooth systems [31,3], can certainly be used
in a more systematic way to refine the well-posedness results.
Indeed in many instances the solutions are ‘‘more than abso-
lutely continuous’’, as stated by general results on differential
inclusions. This is especially true for set-valued Lur’e dynami-
cal systems as in Section 9.

• The control of relay systems in biology and gene regulatory net-
works (see Section 6.4) is a topic with promising applications,
see [57].

As announced above in this survey only systems with continu-
ous solutions are dealt with. State jumps may occur in AVS when
some unilateral effects are present (state inequality constraints),
like in complementarity systems with D = 0. Roughly speaking
state jumpsmay occur each time the domain of the operator in (54)
is not the whole of Rn, and x(t�) does not belong to this domain
at some t . Then the state has to jump to some admissible value
x(t+). There are two issues with state jumps: (i) formulate a co-
herent state jump law (in Contact Mechanics this belongs to the
realm of impact modeling, for electrical circuits see [13]), (ii) cor-
rectly rewrite the dynamics, since the solutions usually no longer
are functions but distributions (see [34] for a complete study of
a class of distribution differential inclusions that extend Moreau’s
measure differential inclusions [58,59]). Notice that the fundamen-
tal operator may be multivalued but with no unilateral effects, as
in relay systems. On the contrary unilaterality implies some kind
of multivaluedness.

Finally let us point out that nonsmooth systems like AVS may
be recast in the class of so-called ‘‘hybrid dynamical systems’’, see
e.g. [15,26]. This approach is used in [26] to determine when a
conewise switching system (the cells �i are cones, i.e. hj = 0 in
the definition of dj) undergoes at most a finite number of switches
in finite time (non Zeno behavior).

11. From switching systems to AVSs

In the previous sections we have analyzed several classes of
nonsmooth systems (relay and complementarity systems) which
are, under certain conditions, switching systems as in (1). Let us
now make the inverse process: is it possible to construct an AVS
from (1)? The answer is yes in some particular cases, as strongly
suggested by Example 7.4. Such an issue is closely related to finding
the representation as a complementarity problem, of a piecewise-
linear function. Let us study the simplest case of a switching system
with switching surface⌃ = {x 2 Rn : Hx + h = 0} that separates
the state space in two cells �1 = {x 2 Rn : Hx + h > 0} and
�2 = {x 2 Rn : Hx+h < 0}. The two vector fields are A1x+ a1 and
A2x+ a2, and we suppose that the continuity holds on⌃ . It is then
not difficult to see that for B and D such that v1,2 = B

D with D > 0
(for instance, D = |h| or even more D = 1 and B = v1,2), the LCS:
⇢

ẋ(t) = A1x(t) + a1 + B�(t)
0  �(t) ? Hx + h + D�(t) � 0 (55)

is the complementarity representation of the switching system.
Indeed when Hx + h > 0 then � = 0, when Hx + h < 0
then � = � 1

D (Hx + h) and the vector field is (A1 � 1
DBH)x +

a1 � 1
DBh that is equal to A2x + a2. The systems considered in [52]

belong to this class. It is possible to extend this to more complex
switching systems. This has been tackled in [10,60]. For instance,
all continuous piecewise-linear functions of x in the plane, can be
equivalently represented via complementarity conditions between
multipliers and variables x. The case of ‘‘star-shaped’’ cells is
detailed in [10].

In the case the vector field f is discontinuous on ⌃ , a relay
representation is possible as follows:

ẋ(t) 2 1
2
(A1 + A2)x(t)

� 1
2
[(A2 � A1)x(t) + a2 � a1] Sgn(Hx(t) + h) + 1

2
(a1 + a2). (56)

This relay system does not belong to the class of relay systems
studied in Section 6, however its well-posedness is guaranteed if
the switching surface ⌃ is attractive or crossing, using a criterion
by Filippov for codimension one switching surfaces (see [1, Section
10]). Notice that if the continuity holds then the right-hand side of
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(56) is 1
2 (A1 + A2)x+ v1,2|Hx+ h| + 1

2 (a1 + a2) for some v1,2 from
the results in [29,28]. The same process can be done for multiple
switching surfaces, but then the uniqueness of solutions may not
be assured on codimension � 2 sliding surfaces (which is the case
for the classes of relay systems studied in Section 6). The results
in [10,60] also apply in the case where the graphs possess vertical
branches, that correspond to a multivalued right-hand side of the
evolution problem.

For n = 2, consider the system (1) with {dj : j 2 1, p} as
in Example 3.1. Under the continuity conditions imposed on the
vector field f (x) = Aix + ai if x 2 �i, i 2 1, p + 1, the LCS
representation reads as follows:
8

>

>

<

>

>

:

ẋ(t) = A1x(t) + a1 + B1�1 + · · · + Bp�p
0  �1 ? H1x + h1 + D1�1 � 0
...
0  �p ? Hpx + hp + Dp�p � 0

where Dj > 0 and Bj 2 M2,1(R) satisfy Bj
Dj
Hj = Aj � Aj+1 and

Bj
Dj
hj = aj � aj+1 for all j 2 1, p.
Further, dropping the continuity conditions, wemay embed the

system

ẋ(t) = Aix + ai if x 2 �i, i 2 1, p + 1

into the following relay system:

ẋ(t) 2 Ax(t) + a � [B1x(t) + C1]Sgn(H1x(t) + h1)

� · · · � [Bpx(t) + Cp]Sgn(Hpx(t) + hp),

where A, Bj 2 M2,2(R), Cj 2 M2,1(R) for all j 2 1, p are uniquely
determined from the algebraic systems
⇢

A1 = A � B1 � B2 � · · · � Bp
a1 = a � C1 � C2 � · · · � Cp;
⇢

A2 = A + B1 � B2 � · · · � Bp
a2 = a + C1 � C2 � · · · � Cp;

. . . . . .
⇢

Ap+1 = A + B1 + B2 + · · · + Bp
ap+1 = a + C1 + C2 + · · · + Cp.

As mentioned in [14] it is possible to construct in a systematic
way a relay system from any switching system as in (1), using the
functions 1�sgn(dj(x))

2 and 1+sgn(dj(x))
2 . However, the analysis of the

relay systems that arise here (involving products of sign functions)
is subtle and deserve more particular attention, despite their very
clear definition in the interior of the cells �i. Finding the class of
switching systems such that this ‘‘sign formula’’ provides a well-
posed relay system is still largely open.

Under the assumption that for (1) there are p attractive surfaces
that generates exactly m = 2p different regions and therefore
2p vector fields fi’s, the authors of [61] justify a definition of the
system on the discontinuity boundaries, starting from a more
general nonlinear relay system close to (35) with �i = 0, i =
1, . . . , n, the constants kl replaced by the functions fl(x) for each
l 2 L = {1, . . . ,m} and sgn(xj � ✓ lj ) replaced by sgn(dj(x)), j =
1, . . . , p. The main tool in order to identify a selection consistent
with the Filippov convexification approach, is to reformulate
the multivalued sign function and then to impose the condition
that this selection lie in the tangent plane at the discontinuity
boundary; this condition is necessary for the sliding motion to
occur.

12. Multimodal systems with multiple criteria

Let us now turn our attention to a class of switching systems
known as piecewise-linear (PWL) systems [25,33]. PWL systems

have been studied in several papers: see [25] for bimodal systems
with single criterion and [25,33,62] for multimodal systems
with multiple criteria. Recently, the study of the well-posedness
developed in the above mentioned works was successfully
extended by [63] to the more general class of nonlinear systems
with multiple modes and multiple criteria. In this section we
turn back to the general form of discontinuous system (1). As
stressed out from the beginning, the system (1) is not defined
on the intersection boundaries @�i. In contrast with the theory
of Filippov, in the theory of multimodal systems, to each point
on a common boundary of some cells, one associates exactly one
of the corresponding vector fields that define the system on a
neighborhood of that point. This means that for bimodal systems
defined outside the boundary by f1 and f2, at a point on the
discontinuity surface the multivalued part is given by the set of
the two vectors, while in the Filippov regularization case, the
multivalued part is given by the line segment of ends f1 and f2.

12.1. The general framework for PWL systems

In order to give a complete definition of the discontinuous
system (1), let us introduce the multifunction F : Rn ! Rn,

F(x) =
({fi(x)} if x 2 �i
[

i2I

{fi(x)} if x 2
\

i2I

� i for some I ✓ 1,m.

The discontinuous system (1) will be restated by the differential
inclusion:
ẋ(t) 2 F(x(t)). (57)

Definition 12.1. Suppose that there are no left-accumulations of
switches. For a given initial state x(0) = x0, a function x :
[0, 1) ! Rn is a solution of the discontinuous system (1) in
the sense of Caratheodory, if it is absolutely continuous on each
compact subinterval of [0, 1) and there exists a (measurable)
selection f̃ of F such that x and f̃ satisfy the integral equation

x(t) = x0 +
Z t

0
f̃ (x(⌧ ))d⌧ , 8t � 0.

We note that the above definition extends naturally to the
frame of differential inclusions, the concept of a Caratheodory
solution for a discontinuous systemcontained inDefinition 4.1. The
fact that there are no switch accumulations, may be checked with
the criteria proposed in [26,27].

For k � 1, i 2 1,m, j 2 1, p, we introduce the following
notations and definitions:

Si,j,k =
h

dj, Lfidj, . . . , L
k�1
fi dj

iT
,

Ti,j,k =
⇢

{x 2 Rn : Si,j,k(x) ⌫ 0}, j 2 J1i
{x 2 Rn : Si,j,k(x) � 0}, j 2 J2i ,

Ti =
\

j21,p

\

k�1

Ti,j,k,

Ki,j = {x 2 � i \ � j : fi(x) = fj(x)}, i 6= j.
Necessary and sufficient conditions for the well-posedness of
system (1) in the sense of Definition 12.1 have been studied in [63]
(see [28] for a revised form of Theorem 3.1 in [63]).

Hypothesis 12.2. (i) For any M > 0 and each i 2 1,m, there
exists ki,M > 0 such that f verifies the following growth
condition:
kfi(x)k  ki,M(1 + kxk), 8x 2 Rn, kxk  M.

(ii) f is piecewise analytic in the sense that, for any i 2 1,m, fi is
analytic.
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Theorem 12.3 ([28]). Suppose that Hypothesis 12.2 are satisfied.
Then, for any initial condition x0 = x(0), the differential
inclusion (57) admits a unique solution (in the sense of Caratheodory)
if
[

i21,m

Ti = Rn and Ti \ Tj ⇢ Ki,j for all i 6= j.

Remark 12.4. As alluded to in Section 4.3, the conditions of
Theorem 12.3 guarantee that the switching surfaces are of the
crossing type: there are no sliding motions, nor repulsive surfaces.
The intuition behind the construction of the sets Ti and of Si,j,k
is that one observes the way the solutions reach the boundaries,
and how they leave them. The solutions may reach and leave the
boundaries with various degrees of tangency, as reflected by the
calculations of the Lie derivatives that form Si,j,k. Theorem 12.3 is
proven in [28] and is the correct version of Theorem 3.1 in [63],
that wrongly states necessary conditions.

For piecewise linear systemswithmultiple modes andmultiple
criteria, described by lexicographic inequalities, it has been proven
in [62] that the sufficient condition established in Theorem 12.3
is also necessary for the uniqueness of solutions. This paper
represents an extension of [25,33], where equivalent conditions
for the well-posedness of bimodal linear systems with multiple
criteria are investigated.

Example 12.5. Let us look at the following system:

ẋ(t) =
⇢

1 if x(t) � 0
�1 if x(t)  0 (58)

x(0) = x0. (59)

The discontinuity surface is given by x = 0 and the multivalued
part is F(x) = {�1, 1}. For �1 = R⇤

+ and �2 = R⇤
�, we have

T1 = {x 2 R : [x, 1, 0, . . . , 0] ⌫ 0} = R+
T2 = {x 2 R : [x, 1, 0, . . . , 0] � 0} = R�.

We have T1 \ T2 = {0} 6✓ K1,2 = ;, so the above bimodal system
does not have a unique Caratheodory solution for any initial point
x0. In fact, if x0 = 0 the system tends to jump to one of the two
possible modes, i.e. there are two solutions: x(t) ⌘ ±t . Reversing
the sign in the above system (see also Example 3.1), we remark that
T1 = R⇤

+, T2 = R⇤
� and T1 [ T2 6= R2, even if T1 \ T2 = ; ⇢ K1,2. In

fact we notice that there is no solution starting from 0, while in the
context of Filippov regularization the system has a unique solution
for any x0 2 R and the surface x = 0 is attractive.

Example 12.6. Let us return to Example 3.2 and let us associate the
following bimodal system:

ẋ(t) =

8

>

>

>

>

<

>

>

>

>

:

0

@

0 1

�k0
m

� c
m

1

A x(t) if x1(t) � 0

✓

0 1
0 0

◆

x(t) if x1(t)  0

(k0 stands for the stiffness). Since p = 1,m = 2, for all k � 3 we
obtain:

S1,k(x) =


x1, x2, �
ko
m

x1 � c
m

x2, . . . , c1k�3x1 + c2k�3x2
�

,

S2,k(x) = [x1, x2, 0, . . . , 0],
T1,k = {(x1, x2) : x1 > 0 _ x1 = 0, x2 � 0},
T2,k = {(x1, x2) : x1 < 0 _ x1 = 0, x2  0},

where c1k�3, c
2
k�3 2 R are some constants. Then T1\T2 = {(0, 0)} ⇢

K1,2 = {x 2 R2 : k0x1 + cx2 = 0} and from Theorem 12.3 it
follows that for any initial condition x0 2 R2, the system has a
unique solution.

The well-posedness of the mass spring/dashpot system as in
Example 3.2 is also provided in [64] where it is shown that q is
C1, q̇ is absolutely continuous and q̈ exists almost everywhere. The
model used in [64] assumes that the damping term takes the value
0 at q = 0.

12.2. A particular case of PWL system

Let us now study a subclass of the above PWL systems, which
allows us to make a link with relay systems. Let f0 : Rn ! Rn be a
given function and B 2 Mn,p(R). In the cells (�i)i21,m, we consider
the following discontinuous system:

ẋ(t) = f0(x(t)) + �i if x(t) 2 �i, (60)

where �i = �Pj2J1i
B•j + P

j2J2i
B•j, �Ti 2 Rn. Since on the

intersection boundaries between � i, i 2 1,m the system is not
yet defined, we shall consider two different definitions of the
discontinuous system ẋ(t) = f (x(t)) on these boundaries, in order
to have a good definition of the system on the whole space Rn.
Different definitions may be considered on the boundaries.

I. The first approach deals with the possibility for the
discontinuous vector field f to take, at every point on the
intersection boundaries, any value from the set of all values of
the vector fields that define the system on a neighborhood of this
point; this definition allows one to settle a necessary and sufficient
condition in order to have a unique smooth continuation from any
initial state and so, thewell-posedness of the discontinuous system
(60).

Let fi : � i ! Rn, fi(x) = f0(x) + �i, ; i 2 1,m and suppose that
f0 is an analytic function that satisfies Hypothesis 12.2, (i) with fi
replaced by f0. Then, Theorem 12.3 can be applied to the problem
(60) and the well-posedness is straightforward.

In what follows we present a corollary of Theorem 12.3 which
may also be regarded as an extension to affine systems of the
results in [62]. Let A 2 Mn,n(R) be a given matrix and let us
consider in the cells (�i)i21,m a discontinuous affine systemdefined
as follows:

ẋ(t) = Ax(t) + �i if x(t) 2 �i. (61)

Due to the particular form of dj and fi we have

Lkfi dj(x) = Hj•Ak�1fi(x) for all k � 1.

For i 2 1,m, j 2 1, p, let us adopt the following notations:

Si,j =
h

dj, Lfidj, . . . , L
kj�1
fi dj

iT
,

Ti,j =
⇢

{x 2 Rn : Si,j(x) ⌫ 0}, j 2 J1i
{x 2 Rn : Si,j(x) � 0}, j 2 J2i ,

Ti =
\

j21,p

Ti,j,

where kj is the maximal integer value (kj  n + 1) such that

the matrix
h

HT
j•, (Hj•A)T , . . . ,

�

Hj•Akj�2
�T
iT

has a row-full rank (in
particular, this holds if (Hj•A) is observable).

We remark here that fi and dj are analytic,8i 2 1,m and j 2 1, p.
Moreover, by taking

M = max

8

<

:

kAk1,
X

j21,p

kB•jk1

9

=

;

,
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we find that for any i 2 1,m, fi satisfies the linear growth
condition:

kfi(x)k1  kAk1kxk1 +
X

j21,p

kB•jk  M(1 + kxk1),

where kAk1 stands for the matrix norm (the maximum absolute
column sum).

The particular description of the cells (see Section 3.1) together
with the above definition of the discontinuous vector field f along
� i allows one to derive an equivalent condition for the well-
posedness of the discontinuous system which is easier to verify
(because the definition of Ti is given in terms of finite intersections).
This is done in the next proposition.

Proposition 12.7. For any initial condition x0 = x(0), the
discontinuous system (61) admits a unique solution (in the sense of
Caratheodory) if and only if
[

i21,m

Ti = Rn and Ti \ Tj ⇢ Ki,j for all i 6= j.

Proof. It is easy to see that for any i 2 1,m and j 2 J1i , the set Ti,j
may be written as an infinite intersection as follows:

Ti,j
= {x 2 Rn; Si,j(x) ⌫ 0}

=
\

k�2

n

x 2 Rn :
�

dj(x),Hj•fi(x), . . . ,Hj•Ak�2fi(x)
�T ⌫ 0

o

, (62)

that is Ti,j is the limit of a decreasing sequence of sets. Indeed, the
inclusion ‘‘◆’’ is obvious, while for the other one, it is sufficient to
observe that Si,j(x) = 0 (componentwise) implies, by the choice of
kj, that Hj•Akfi(x) = 0 for any k � kj + 2. Similar arguments work
for Ti,j with j 2 J2i . ⇤

II. The second approach yields a sufficient condition for
the well-posedness of the system (1). Employing the standard
multivalued Sign function (|↵i| = |�i| = 1 in Fig. 2(a)), we embed
(60) into the following differential inclusion:

ẋ(t) 2 f0(x(t)) � BSgn(d(x(t))) (63)

where Sgn(d(x)) = (Sgn(d1(x)), . . . , Sgn(dp(x)))T . Clearly, for x 2
�i, the right-hand side in (63) is exactly fi(x). If x 2 Ti2I � i for some
I ✓ 1,m and

J(x) = {j 2 1, p : dj(x) = 0},
the right-hand side in (63) becomes

f0(x) �
X

j62J(x)

B•jSgn(dj(x)) +
X

j2J(x)

B•j[�1, 1].

Now, by (63), the system (1) is well-defined on the whole state
space.

Hypothesis 12.8. (a) The function f0 is Lipschitz continuous, that
is there exists L > 0 such that

kf0(x) � f0(y)k  Lkx � yk, 8x, y 2 Rn.

(b) There exists a symmetric positive definite matrix P 2 Mn,n(R)

such that PB = CT for all i 2 1, n.

The next result is an application of Theorem 6.11 to the particular
case of differential inclusions considered in (60).

Proposition 12.9. Consider inclusion (63) and assume that Hypoth-
esis 12.8 are satisfied. Then, for any initial condition x0 2 Rn, the dif-
ferential inclusion (63) has a unique Lipschitz solution with essential
bounded derivative.

Remark 12.10. We emphasize here that in both of the two ap-
proaches, the employed solution concept is that of a Caratheodory
solution for a differential inclusion (see Definition 6.10). However,
in the first approach, taking into account the conditions to be ver-
ified for the existence and uniqueness of a Caratheodory solution,
supplementary assumption should be required namely, the nonex-
istence of right-accumulation of the switches.

13. Numerical computation of the solutions

The numerical simulation of nonsmooth dynamical systems
(mechanical systems with impact and friction, electrical circuits
with ideal components) is a vast field of investigation [14,11,12].
Two major methods exist for the simulation of dynamical systems
with nonsmooth events: time-stepping (or event-capturing)
schemes, and event-driven schemes (see e.g. [14, pp. 199–201] for
a definition). Let us focus on time-stepping schemes. The AVS in
(7)–(8) is discretized as:
8

<

:

xk+1 = xk + hg(xk+1) + hB�k+1
yk+1 = Cxk+1 + c + D�k+1
(s � �k+1)

T yk+1 � 0, 8s 2 K
(64)

where h > 0 is the time step. The last line is equivalent to�yk+1 2
NK (�k+1) , �k+1 2 @ ⇤

K (�yk+1). Therefore the discrete-
time system (64) can be rewritten equivalently in different ways
depending on the data (mainly D and K ), still using the convex
analysis tools as in the above examples. We retrieve here that the
operator xk+1 7! (D · +NK )�1(�Cxk+1 � c) plays a central role in
(64), which can be rewritten compactly as:

xk+1 = xk + hg(xk+1) + hB(D · +NK )�1(�Cxk+1 � c) (65)

that is a generalized equation with unknown xk+1 to be solved to
advance the scheme from step k to step k + 1.

It is noteworthy that in practice one often chooses a more
general discretization such as ✓-methods [14,65,35]. The con-
vergence of Euler-like implicit time-stepping methods has been
shown in [66] for LCS and for linear relay systems in [67], see
also [35, Sections 7 and 8] in the more general setting of differ-
ential variational inequalities, and [68] for generalizations of [66].
The main assumptions in [66,67] are made on D and on the ex-
istence of solutions to (65), which is an LCP for discretized LCS.
The discretized differential inclusion (29) satisfying the conditions
of Theorem 6.11 is studied in [40]. The results of [41] can then
straightforwardly be used to prove the convergence of the implicit
Euler method, with order 1

2 . Most interestingly it is shown in [40]
that the implicit method, contrarily to the explicit one [69], can
numerically stabilize the discrete solution on the sliding surfaces
in a smooth way, without spurious numerical oscillations (despite
both the implicit and the explicit method converge, their qualita-
tive behavior on sliding surfaces is quite different, see the simula-
tion results in [40,69]). Finally let us mention the works [70,71] in
which a specific description of the cells �i is made, that allows one
to derive accurate event-driven schemes. The advantage of event-
driven schemes over time-stepping ones, is that theymay allow for
higher accuracy. However they are also prone to ‘‘epsilon-tuning’’
process due to the necessity to incorporate higher-order deriva-
tives estimations when the trajectories attain, or lie on boundary
surfaces. This is often quite a burden in the numerical implementa-
tion. Moreover they cannot be implemented (except if the solution
is known in advance!) when accumulations of events exist.

Remark 13.1. Dedicated software for the class of set-valued,
nonsmooth dynamical systems studied in this paper, and based on
the above time-stepping schemes, are notwidely developed. Let us
mention the siconos platform, an open-source software developed
at INRIA [14,11,72].



C. Georgescu et al. / Physica D 241 (2012) 1985–2002 2001

14. Conclusions

This paper presents a brief introduction to switching systems,
their well-posedness and their relationships with relay and
complementarity dynamical systems, as summarized in Fig. 1.
The Filippov regularization allows one to embed switching
systems into a general framework of differential inclusions
with absolutely continuous solutions. This however is often not
sufficient to prove the uniqueness of the solutions, to derive
good numerical algorithms, and more compact formalisms lend
themselves much better to deep mathematical and numerical
analysis. This is why relay and complementarity systems offer
a very attractive point of view, despite they represent only
narrow classes of switching systems from the point of view of
the cells topology. Dissipativity, the P property of matrices and
maximal monotonicity of operators appear to be essential tools.
From the point of view of applications, they however represent
large and important classes of systems: mechanical systems
with piecewise linear interface laws (impacts, friction), electrical
circuitswith piecewise linear components (ideal diodes, switches),
feedback systemswith relay and discontinuous controllers, genetic
regulatory networks etc. It may even be said that from the
applications point of view, switching systems as in (1) model only
a narrow class of mechanical and electrical systems, which often
possess a positive relative degree and solutions that have to be
sought in distribution spaces. Convexity appears to be a central
feature for all mathematical formalisms considered (convexity
of the cells of the switching systems, convexity of the sets that
define the underlying variational inequality constraint for relay
and complementarity systems). Finally we focus on discontinuous
systems with continuous solutions. Indeed including state jumps
requires to reconsider all the mathematical formalisms (one then
has to work with measure or distribution differential inclusions),
and this is beyond the scope of this paper.
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