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a b s t r a c t

In this paper, we present an implementation of the sliding mode twisting controller on an electropneu-
matic plant for a tracking control problem. To this end, implicitly and explicitly discretized twisting con-
trollers are considered. We discuss their structure, properties and implementations, as well as the ex-
perimental results. The analysis of the performance sustains the theoretical superiority of the implicitly
discretized version, as shown in previous works. The main advantages of the implicit method are better
tracking performance and drastic reduction in the input and output chattering. This is achieved without
modifying the structure of the controller compared to its continuous-time version. The tracking error
cannot be used as the sliding variable: it has a relative degree 3 w.r.t. the control input. The tuning of the
sliding surface has well as some other parameters in the control loop was instrumental in achieving good
performance. We detail the selection procedure of those parameters and their influence on the closed-loop
behavior. Finally we also present some results with an implicitly discretized EBC-SMC controller.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Implementation of control laws is almost exclusively done using
microcontrollers. This implies that the controller is in discrete-time
rather than in continuous-time. In sliding mode control, this can
induce a degradation of the performance by contributing to the
chattering phenomenon. We call this the numerical chattering. An
intense activity over the last 30 years was devoted to the reduction
of this numerical chattering, mainly for equivalent control based
sliding mode control (ECB-SMC). In the early 90s, second order
sliding mode control concept was introduced in Levant (1993) and
sparked the development of a large wealth of literature. One of the
first controllers of this kind was the twisting controller which fea-
tures a discontinuous control action w.r.t. the sliding variables.
However, to the best of our knowledge, few discrete-time versions
of the twisting controller have been proposed. The substitution of
the signum function by a saturation, common trick to reduce the
chattering for first order SMC, has no straightforward extension to
the twisting algorithm. It is then fair to assume that the explicit
discretization was used to get a discrete-time twisting controller,
like in Taleb, Levant, and Plestan (2013).

The other discretization method we consider is the implicit
method. It has been used for a long time in the nonsmooth

mechanics community, but it was not applied in control theory
until very recently (Acary & Brogliato, 2010; Acary, Brogliato, &
Orlov, 2012; Huber, Acary, & Brogliato,... 2013a, 2013b). The implicit
discretization of the twisting controller was first studied in Acary
et al. (2012). Roughly speaking, the difference between the explicit
and implicit methods in our context is the following: given a par-
tition { }tk of a time interval, with the explicit discretization, at the
time instant tk, the argument of the signum function is the value of
the sliding variable at tk, whereas with the implicit discretization it
is the value at +tk 1. Despite its name and formulation, the implicitly
discretized twisting controller is non-anticipative and induces a
well-defined behavior, as we shall see in Section 2. Its main features
are the drastic reduction of the output chattering and the reduction
of the control input chattering, that is the control input is no more
of the high frequency “bang-bang” type. In the discrete-time sliding
regime, the control input is also insensitive to an increase of the
gain. To simplify the nomenclature, we refer to the discrete-time
twisting controller with an implicit (resp. explicit) discretization as
the implicit (resp. explicit) twisting controller.

In the following, we present results from an implementation of
both explicit and implicit twisting controllers on an electropneu-
matic plant. The control problem at hand is the tracking of a si-
nusoidal trajectory for the position of the end of the piston. The
analysis of the gathered data supports the theoretically predicted
reduction of the chattering claimed in Acary et al. (2012) and also
the claim that the numerical chattering can be the main source of
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chattering, see Huber et al. (2013a). This highlights the importance
of the discretization process which is unfortunately often over-
looked both in the analysis and in the implementation.

The second part of the paper is dedicated to the choice of three
parameters: the first one defines the sliding variable and the two
others are constants for two filtered differentiators.

The influence of those parameters is only visible with the im-
plicit controller. With an explicit one, the performance is not good
enough to always see a change when their values change. It ap-
pears that with an implicit controller the differentiators become
the weakest component in the control loop. Empirical data suggest
that the three parameters have to be tuned simultaneously. To
help with the tuning, we present the selection procedure that we
used. We also analyze how the experimental tracking performance
varies with the choice of the sliding surface. We hope that this
presentation raises awareness for the importance of tuning to get
the best possible performance for systems with similar setup.

In the remainder of this section, we introduce the notations. In
Section 2 we briefly recall the twisting controller in continuous-
time as well as in discrete-time. The experimental setup is pre-
sented in Section 3 as well as the control scheme. Then the ex-
perimental results are analyzed in Section 4. In Section 5, we deal
with the tuning of some control parameters and the impact it has
on the performance. In Section 6 an experimental comparison
between the twisting and a classical first order SMC is proposed.
Conclusions end the paper in Section 7.

Notations: The sliding variable is denoted by s, it is supposed to be
at least twice differentiable and Σ denotes σσ( ̇)T . The control value
changes at time instants tk, defined as ≔ +t t khk 0 for all ∈k 1 with

∈ +t h,0 5 . The scalar h is called the sampling period. Let σ σ≔ ( )tk k and
σ σ̇ ≔ ̇ ( )tk k for all ∈k 1. The tilded variants σ σ ̇∼ ∼, and Σ∼ denote variables
used in the controller. Let sgn be the classical single-valued signum
function: for all > ( ) = ( − ) = −x 0, sgn x 1, sgn x 1 and ( ) =sgn 0 0.

Definition 1 (Multivalued signum function). Let ∈x 5. The multi-
valued signum function ⇉[ − ]Sgn: 1, 15 is defined as:

⎧
⎨⎪
⎩⎪

( ) =
{ } >
{ − } <
[ − ] =

x
x
x

Sgn x
1 0

1 0
1, 1 0.

If ∈x n5 , then the vector-valued signum function
⇉[ − ]Sgn: 1, 1n n5 is defined as ( )≔( ( ) … ( ))Sgn x Sgn x , , Sgn xn

T
1 .

2. The twisting controller

2.1. Continuous-time twisting

The twisting algorithmwas one of the first second-order sliding
mode controllers presented in the literature Levant (1993). It re-
quires the control input u to be of relative degree 2 with respect to
the sliding variable s, that is

σ̈ ( ) = ( ) + ( ) ( )x t a x t b x t u, , , , 1

with the following bounds: for all ( ) ∈ × +x t, n5 5 ,

≤ ≤ | ( )| ≤ | ( )| ≤ ( )K b x t K0 , and a x, t K . 2m M a

The control law for the twisting controller is

σ σ∈ − ( ) − ( ̇) ( )u r rSgn Sgn , 31 2

and with the conditions

⎧⎨⎩
( + ) − > ( − ) +
( − ) > ( )
r r K K r r K K
r r K K , 4

m a M a

m a

1 2 1 2

1 2

the state of the closed-loop system (1) and (3) converges to the

origin in finite time. The solutions of the closed-loop system are
defined within Filippov's framework (Filippov, 1988). Lyapunov
functions for this controller have been recently investigated, see
Orlov (2005) and Polyakov and Poznyak (2009). In this paper, we
follow the convention of using ≔G r1 and β≔r r/2 1, instead of r1 and
r2. The conditions listed in (4) impose that β< <0 1.

It is worth noting that the controller (3) is by definition mul-
tivalued and that the control input u is a selection of the closed-
loop differential inclusion formed by (1) and (3).

2.2. The two discrete-time twisting controllers

The control input obtained from a microcontroller is usually a
step function, and its value is periodically updated. We model the
control input function as ( ) =u t uk for ∈ ( ]+t t t,k k 1 . When im-
plementing this controller, the task at hand at each time instant tk
is to select the control input value from all the possible values
defined by a discretization of (1) and (3). We want the discrete-
time version to keep the multivalued nature of the controller. This
is achieved by using the implicit discretization, which applied in
(3) gives

σ β σ∈ − ( ) − ( ̇ ) ( )+ +u G Sgn G Sgn , 5k k k1 1

whereas the explicit discretization yields

σ β σ= − ( ) − ( ̇ ) ( )u G sgn Gsgn . 6k k k

Note that the relation in (6) is not an inclusion since the right-
hand side is a given singleton at time tk. The case where either sk
or σk̇ is zero is clearly pathological. Hence the signum function in
(6) is single-valued, contrarily to the continuous-time case. The
computation of the control input value is in this case straightfor-
ward from (6).

With the implicit discretization, a discrete-time version of the
dynamics (1) is required to perform the computation. We recast
the closed-loop dynamics (1) and (5) as a first order system with
state Σ σσ≔( ̇)T . In the following, the discrete-time dynamics of Σ is
supposed to be affine and given by

Σ Σ λ= + + ( )∼
+ A F B , 7k k

d
k k

d
k
d

1

where λ λ λ≔( )T
1 2 , with λ σ∈ − ( )+Sgn k1 1 and λ σ∈ − ( ̇ )+Sgn k2 1 . At

each time instant tk, we have Σ Σ= ( )tk k but Σ∼ +k 1 is in general not
equal to Σ ( )+tk 1 . If the dynamics (1) is LTI and exact, the discrete-
time dynamics obtained using a ZOH discretization is exact and
therefore Σ Σ= ( )∼

+ +tk k1 1 . The control input value at time tk is
computed as

β λ= ( )u G 1 ,k

and therefore requires the value of λ, which is obtained as the
solution of the following generalized equation

⎪

⎪⎧⎨
⎩

Σ Σ λ
λ Σ

= + +
∈ − ( ) ( )

∼
∼

+

+

A F B

Sgn 8

k k
d

k k
d

k
d

k

1

1

with unknowns λ and Σ∼ +k 1.

2.3. The implicit twisting as a generalized equation

Let us analyze this system using tools from convex analysis and
variational inequalities theory. First we introduce the normal cone,
denoted by 5 ( )zK , to a non-empty, closed convex set K at a point

∈z K , and defined by 5 ( ) = { ∈ ∣〈 − 〉 ≤ ∀ ∈ }z x x y z y K, 0K
n5 . The

equivalence 5λ Σ Σ λ∈ − ( )⟺ ∈ − ( )∼ ∼
+ + [− ]Sgn k k1 1 1,1 2 with

[ − ] = [ − ] × [ − ]1, 1 1, 1 1, 12 , enables us to transform (8) into the
generalized equation
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5Σ λ λ∈ + + + ( ) ( )[− ]A F B0 , 9k
d

k k
d

k
d

1,1 2

which features only one unknown: λ. More precisely, this inclusion
is an equivalent form of an Affine Variational Inequality (AVI), see
Facchinei and Pang (2003). Solving this AVI consists in finding
λ ∈ [ − ]1, 1 2 such that

λ λ∈ [ − ] ( − ) ( ) ≥ ( )w w Lfor all 1, 1 0, 10T
k

2

with λ Σ λ↦ + +L A F B:k k
d

k k
d

k
d an affine map.

2.4. Existence and uniqueness of the control input

We study the solutions of AVI (9), denoted by ( )LSOL k .

Lemma 1. The AVI (10) has always a solution.

Proof. Since the mapping Lk is continuous and [ − ]1, 1 2 is a
bounded convex set, we can apply Corollary 2.2.5 in Facchinei and
Pang (2003).□

Definition 2. A matrix ∈ ×M n n5 is said to be positive semi-definite
plus if it is positive semi-definite and

= ⟹ = ∈z Mz Mz z0 0 for allT n5 .

Let us now tackle the uniqueness of Σ∼ +k 1 in (8).

Lemma 2. If Bdk is positive semi-definite plus, then the variable
Σ λ= ( )∼

+ Lk k1 is unique for all λ ∈ ( )LSOL k .

Proof. Let λ λ′ ∈ ( )L, SOL k . The inclusion (9) holds if and only if Λ is
a solution to the AVI (10). In particular, we have λ λ λ( ′ − ) ( ) ≥L 0T

k

and λ λ λ( − ′) ( ′) ≥L 0T
k . Summing the two inequalities, we get

λ λ Σ λ λ λ Σ λ( ′ − ) ( + + ) + ( − ′) ( + + ′) ≥A F B A F B 0.T
k
d

k k
d

k
d T

k
d

k k
d

k
d

Rearranging terms gives

λ λ λ λ( ′ − ) ( − ′) ≥ ( )B 0. 11T
k
d

Since Bdk is positive semi-definite, we also have

λ λ λ λ( ′ − ) ( ′ − ) ≥ ( )B 0. 12T
k
d

Then combining (11) and (12) yields λ λ λ λ( ′ − ) ( ′ − ) =B 0T
k
d , which

means that λ λ′ − ∈ Bker k
d by the assumption on Bdk. Therefore

λ λ( ) = ( ′)L Lk k .□

Remark 1. This property is close to the F-uniqueness property for
variational inequalities, exposed in Facchinei and Pang (2003,
Section 2.3.1, p. 162). Since we deal with AVI, it is simpler to derive
directly the result rather than checking the conditions in the
aforementioned book.

Note that the properties remain valid for systems with more
than two sliding variables.

2.5. Computation of the control input

Moving on to the actual computations, since λ takes values in a
compact convex set, a solution to the AVI (10) with any matrix Bkd

can be computed using the algorithm proposed in Cao and Ferris
(1996), implemented in the SICONOS software package (Acary, Bré-
mond, Huber, & Pérignon, 2014). Since the AVI (10) has dimension
2, it is also possible to find the solution by enumeration, that is
since λ1 and λ2 take value in { }1 or { − }1 or [ − ]1, 1 we can test
the 9 possible cases and pick one that is satisfactory. This approach
can also be heuristically refined, as we shall see later. To sum up,
the proposed controller is non-anticipative and the sliding variables
Σ σ σ= ( ̇ )∼ ∼∼

+ + +,k k k
T

1 1 1 are always uniquely defined. A Matlab im-
plementation of the solver by enumeration can found in Appendix
C in Huber (2015).

3. Experimental setup and control strategy

3.1. System dynamics, actuators and sensors

We start with a description of the physical system, actuators
and sensors as shown in Fig. 1. The electropneumatic system of the
IRCCyN lab (Ecole Centrale de Nantes, France), depicted in Fig. 2,
has two actuators. On the left-hand side, there is a double acting
electropneumatic actuator (the “main” one) controlled by two
servodistributors and composed of two chambers denoted P and
N. The piston diameter is 80 mm and the rod diameter is 25 mm.
With a source pressure equal to 7 bars, the maximum force de-
veloped by the actuator is 2720 N. The air mass flow rates entering
the chambers are modulated by two three-way servodistributors.
The pneumatic jack horizontally moves a load carriage of mass M.
This carriage is coupled with the second electropneumatic ac-
tuator, the “perturbation” one, on the right-hand side. The goal of
the latter is to impress a dynamic load force on the main actuator.
This actuator has the same mechanical characteristics as the main
one, but the air mass flow rate is modulated by a single five-way
servodistributor. The control variable u is constrained to take va-
lues between "10 and 10 V.

Under some assumptions detailed in Shtessel, Taleb, and Ple-
stan (2012), the plant dynamics can be written as a nonlinear
system affine in the control input ( )u uP N

T , with uP (resp. uN) the
control input of the servo distributor connected to the P (resp. N)
chamber. The model is divided into two parts: the first two
equations describe the pressure dynamics in each chamber, and
the motion of the piston is given by the last two equations. There
is a single control objective: to force the load position to track a
reference trajectory. Therefore, we set ≔ = −u u uP N . Finally the
dynamics of the electropneumatic experimental setup is

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

κ φ ψ

κ φ ψ

̇ = ( ) + −

̇ = ( ) − +

̇ = [ ( − ) − − ]
̇ = ( )

p rT
V y

u S
rT

p v

p rT
V y

u S
rT

p v

v
M

S p p b v F

y v

1

, 13

P
P

P P P

N
N

N N N

P N v

with pP (resp. pN) the pressure in the P (resp. N) chamber, y and v
being the position and velocity of the load. The constant κ is the
polytropic index, r the ideal gas constant, T the temperature
(supposed the same inside and outside the chambers) and bv the
viscous friction coefficient. The volumes in each chamber are VP

and VN, both depending on the actuator position y. The constant

Fig. 1. Picture of the electropneumatic system.
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piston section is S. The external force applied by the perturbation
actuator is denoted by F. Finally, φX and ψX (X being P or N) are
both 5th order polynomial functions versus pX as given in Sesmat
and Scarvarda (1996), that characterize the mass flow rate qX in
the chamber X in the following way:

φ ψ= ( ) + ( ( ))q p p , sgn u u .X X X X X X X

The sources of uncertainty can be the polytropic index κ, the
mass flow, the temperature T, the mass M, the viscous friction
coefficient bv and the disturbance force F. They can be modeled by
additive bounded functions added to the nominal part of each
parameter. As an example, the massM can be viewed as the sum of
a nominal part and an uncertain one: ≕ + ΔM M Mn , where ΔM is a
bounded uncertainty and Mn the nominal value. Also the position
y, the pressures pP , pN are available but both the speed v and
acceleration are computed using a filtered differentiator given in
frequency domain by

τ( ) = + ( )D s s
s1

. 14

3.2. Control strategy

The presence of uncertainties motivates the use of a sliding
mode control scheme, well-known for its robustness. A first study
(Wang, Brogliato, Acary, Boubakir, & Plestan, 2015) was already
conducted for equivalent-based sliding mode controller, with a
comparison between explicit, implicit and saturation methods.
The experiments we present here were carried on with the dis-
crete-time twisting controller presented in Section 2. Since we are
interested in a trajectory tracking problem for the position of the
load, y is the variable to be controlled. The desired position of the
piston is yd and the position error in the tracking problem is
≔ −e y yd. The choice of this output leads to a relative degree
3 system. Hence, to bring the relative degree between the sliding
variable and the control input to 2, so as to apply the twisting
algorithm, the sliding variable is defined as

σ α≔ + ̇ ( )e e, 15

with α > 0, a parameter which selection is one of the topic of
Section 5. Its first and second derivatives are

σ α σ α̇ = ̇ + ¨ ¨ = ¨ + −
… …

e e e y yand ,
d

where

⎡
⎣⎢

⎤
⎦⎥)= ¨ = ( ̇ − ̇ − ̇ − ̇…

y v
M

S p p b v F1 .P N v

Using the relation in (13), we get

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

κ φ φ κ

κ ψ ψ

= − − +

− ( − ) − − −
̇

+ +
( )

…
y S rT

M V V
S
M

p
V

p
V

v

b
M

S p p b v F F
M

S rT
M V V

u.
16

P

P

N

N

P

P

N

N

v
P N v

P

P

N

N

2

2

Let us define the following functions:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )Φ κ φ φ κ α≔ − − + − ( − ) − + ¨ − …S rT

M V V
S
M

p
V

p
V

v b
M

S p p b v e y ,P

P

N

N

P

P

N

N

v
P N v d

2

2

and

⎛
⎝⎜

⎞
⎠⎟Ψ κ ψ ψ≔ +

( )
S rT
M V V

.
17

P

P

N

N

Finally, the sliding variable dynamics is

σ Φ Φ Ψ Ψ¨ = + Δ + ( + Δ ) ( )u, 18

given that we consider that all the uncertainties are “additive”,
that is the vector fields can be written as the sum of a nominal part
Φ and Ψ and uncertain terms ΦΔ and ΨΔ . The latter include for
instance the modeling errors and the action of the perturbation
actuator like F and ̇F in (16).

From Section 2.2, the control law of implicit controller is given
by:

β λ λ Σ= ( ) ∈ − ( ) ( )∼
+u G 1 and Sgn , 19k k 1

now with β = 2/3 and Σ σ σ= ( ̇ )∼ ∼∼
+ + +,k k k1 1 1 the value of the sliding

variables given by discrete-time dynamics that we now derive. We
need a relation akin to (7) for the computation of the control input
value. Writing the sliding variable dynamics as a first-order ODE,
we get

Σ Σ λ̇ = + + ( )A F B 20

with Σ = ( )σ
σ ̇ , = ( )A 0

0
1
0
, = ( )Ψ β ΨB

G G
0 0 and = ( )ΦF 0 . We discretize the

nonlinear terms Φ and Ψ using the explicit Euler scheme: we
consider that Φ Φ Φ( ) = ≔ ( )t tk k and Ψ Ψ Ψ( ) = ≔ ( )t tk k for ∈ [ )+t t t,k k 1 .
For the last step in the discretization of (20), we use the ZOH
method, which yields

Σ Σ λ= + + ( )∼
+ ⁎ ⁎ ⁎A F B , 21k k k k1

with ≔ = ( )⁎A eAh h1
0 1

, Ψ≔ ( )βB Gk k
0
1

0 and ∫ τ≔ =τ⁎ +B e B dk t

t A
k

k

k 1

Ψ ( )β
βhG k

h h/ 2
1

/ 2 , ≔( )ΦFk
0

k
and ∫ τ≔ = ( )τ Φ

Φ
⁎ +F e F dk t

t A
k

h
h

/ 2

k

k k

k

1 2
. Now we

find our instance of (9) by using the relation 5Σ λ∈ − ( )∼
+ [− ]k 1 1,1 2 to

get the generalized equation

5σ σ Φ Ψ λ βλ λ∈ + ̇ + ( + [ + ]) + ( ) ( )[− ]h G0 22k k
h

k k2 1 2 1,1 1
2

5σ Φ Ψ λ βλ λ∈ ̇ + + [ + ] + ( ) ( )[− ]h hG0 , 23k k k 1 2 1,1 2

with unknowns λ1 and λ2. This is the problem solved to compute
the control input value at each time instant tk.

3.3. Properties of the closed-loop system

Let us check whether the results from Section 2.4 can be ap-
plied on this closed-loop system. It follows from Lemma 1 that this
system always has a solution. For Lemma 2 to apply, we need the
positive-definiteness of ⁎Bk . However this matrix does not enjoy
this property: its symmetric part is

⎛
⎝
⎜⎜

⎞
⎠⎟Ψ β

β β
( + ) = +

+
⁎ ⁎B B hG

h h
h

1/2 /2
1 /2

1 /2 2
.k k

T
k

Fig. 2. Schematic of the electropneumatic system.
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Its determinant is Ψ β β Ψ β( − ( + ) ) = − ( − )hG h h hG h2 1 /2 /2 1 /2 /2k k
2 2 .

Since Ψk is positive for all k (Girin, 2007, p. 48), the determinant is
always negative and the matrix ⁎Bk is indefinite. We could try to re-
formulate the AVI (10) into an Linear Complementarity Problem (LCP)
and see if the w-uniqueness (see Cottle, Pang, & Stone, 2009, Section
3.4) property holds, but this does not work either. Nonetheless, the
uniqueness of Σ∼ +k 1 holds for the twisting controller as we shall see
with the following proposition.

Proposition 1. The implicit twisting controller, defined by general-
ized equations (22) and (23), has a unique solution Σ∼ +k 1 and control
input value uk. Moreover if Σ ≠∼

+ 0k 1 , then the pair λ λ( ),1 2 is also
unique.

Proof. Despite not enjoying the positive semidefiniteness prop-
erty, the matrix ⁎Bk has the following one: for any vector ∈x 25 , we
have Ψ β= ( )( )⁎B x hG x1k k

h / 2
1

.Therefore any vector in the range of Bk
has both components of the same sign. Suppose that there exists
multiple solutions to the problem AVI (10). Take two distinct so-
lutions λ and λ′ and define Σ λ= ( )Lk , Σ λ′ = ( ′)Lk . Suppose that for
all ∈ { }i 1, 2 , both Σi and Σ ′i are not zero at the same time. Let us
denote by ΣΔ , λΔ the difference between any two distinct solu-
tions and their image through Lk. From (21), we get

⎛
⎝⎜

⎞
⎠⎟Σ λ Ψ β λΔ = Δ = ( )Δ

( )
⁎B hG h/2

1
1 .

24k k

The difference ΣΔ is in the range of ⁎Bk and we know that it implies
that both its components have the same sign. Suppose that ΣΔ ≥ 0,
to be understood component-wise and let ∈ { }i 1, 2 . The mono-
tonicity of the Sgn multifunction gives us that for all Σ∈s Sgni i

and Σ′ ∈ ′s Sgni i , Σ〈Δ − ′〉 ≥s s, 0i i i . If ΣΔ > 0i , we infer that
− ′ ≥s s 0i i . If ΣΔ = 0i , the fact that Σi and Σ ′i are not 0 at the same

time prevent si and ′si to both take values in ( − )1, 1 . Hence
Σ Σ( ) = ( ′)Sgn Sgni i and is a singleton, implying that − ′ =s s 0i i .

Therefore we have − ′ ≥s s 0i i for all i. This implies that λΔ ≤ 0 and
β λ( )Δ ≤1 0, which by (24) gives us ΣΔ ≤ 0. Along the same lines,

starting with ΣΔ ≤ 0 gives that ΣΔ ≥ 0. Hence we infer that
ΣΔ = 0. Now suppose that for one ∈ { }i 1, 2 , both Σi and Σ ′i are

zero. This implies ΣΔ = 0i and by (24) that ΣΔ = 0. Thus the un-
iqueness of Σ is established.

Now from (24), we deduce that the difference λΔ between two
solutions has to lie in ⁎Bker k . At the same time, the uniqueness of Σ
means that both λ and λ′ are in Σ−Sgn . The latter is not a singleton
only when either Σ1 or Σ2 is 0. In this case, and when Σ ≠ 0, we have
λ λ− ′ ∈ {( ) ∪ ( ) ∣( ) ∈ [ − ] }≕x y x y S, 0 0, , 2, 2 b

2 . From the expression
of ⁎Bk , we know that β= ( − ) ⊂ {( ) ∈ ∣ <⁎Bker span , 1 x , x 0k

T
1 2

25

< − > > − }≕x x or 0 x x K1 2 1 2 , given that β< <0 1 due to the con-
ditions in (2). But ∩ =K S 0b and thus ∩ =⁎B Sker 0k b , which gives the
uniqueness of λ λ λ= ( ),1 2 . The uniqueness of uk comes from the ex-
pression β λ= ( )u G 1k . Since any element of ⁎Bker k is orthogonal to

β( )1 T , uniqueness of the control input value follows and the proof is
now complete.□

Remark 2. The same result holds in the continuous-time twisting
algorithm (3), where the selections λ σ∈ − ( )Sgn1 and
λ σ∈ − ( ̇)Sgn2 are uniquely defined, except when u¼0. In this case
the values lie on the segment defined by λ βλ+ = 01 2 and
λ ∈ [ − ]1, 11 . It is also noteworthy that this segment is also given
by β( − ) ∩ [ − ] = ∩ [ − ]⁎span 1 1, 1 ker B 1, 1T

k
2 2. This is related to

the fact that B and ⁎Bk have the same nullspace.

Remark 3 (Closed-loop Lyapunov stability). First remember that
this paper focuses on the different behaviors observed with either
the explicit or the implicit discretization. Some preliminary results
for the stability analysis of the implicitly discretized twisting

controller can be found in Acary et al. (2012) and in Huber (2015,
Section 2.3). Part of the difficulty for analyzing this system is the
lack of result on AVI with a matrix which does not enjoy the po-
sitive-semidefiniteness property. However, the ongoing research
effort shows promising results, as the ones in the aforementioned
references. For instance it is proved in Huber (2015) that a slight
modification of the way the control signals λ1 and λ2 are com-
puted, allows to guarantee the global asymptotic stability in a fi-
nite number of steps, of the discrete-time closed loop system.
Moreover the discrete Lyapunov function is quite similar to the
continuous-time Lyapunov function used in Orlov (2005), which
confirms that the implicit discretization allows to remain as close
as possible to the continuous-time system. However, the devel-
opments are too long to be included in this paper, which rather
focuses on one two issues: the existence and uniqueness of a
control signal at each sampling time, and the comparison between
the explicit and the implicit methods. It is clear from the experi-
mental results in Section 4 that the implicit twisting algorithm
that we implemented, supersedes the explicit one.

4. Experimental results

This section is devoted to the analysis of the experimental re-
sults obtained on the electropneumatic setup. Recall that the
control objective is to make the position of the piston track a si-
nusoidal trajectory. In the following, the desired trajectory is

π≔ ( ) ( ∈ )y t40 sin 0.2 cm .d

The controller was implemented as a Simulink model and then
transferred onto a DS1005 dSpace board. We were able to get re-
sults with the sampling period h in the range [3, 100] ms and with
the gain G in the range [ ]−10 , 102 7 . The sliding surface parameter α
and the two filtered differentiator time constants (in (14)) require
proper tuning for each sampling period. They can drastically alter
the performance of the controller. Since it appears that both have
to be tuned together, preliminary values were obtained using si-
mulations, with a selection based on the average tracking error,
and were later refined on the plant. Section 5 is dedicated to the
tuning of those parameters and to the analysis of their influence.

We now present results for two criteria: the tracking accuracy
and the chattering magnitude on both the input and the output. In
each case, we first compare the explicit and implicit controllers,
before analyzing in more depth the performance of the implicit
one.

4.1. Tracking accuracy

The tracking error = −e y yd is the quantity we aim to minimize
through the twisting controller. Recall that due to the high relative
degree of the system, the controller does not bring e to 0 in finite
time, but rather σ α= + ̇e e. Once the sliding phase σ = 0 occurs,
the convergence of e to 0 is then exponentially fast if α > 0. This
parameter controls the speed of convergence: the bigger α is, the
faster the error decreases, in continuous time.

To measure the accuracy of the tracking, we compute the
average of the absolute value of the error over an interval of 60 s.
We call this quantity the average tracking error and we denote it
by ē. Its analytical formula is

∑¯≔ | ( )| − =
( )=

e e t
N

t twith 60 s.
25k

N
k

N
1

1

In Fig. 3, the average tracking error with both the implicit and
explicit controllers is displayed for different sampling periods. The
implicitly discretized controller clearly yields better perform-
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ance than the explicit one, for each sampling period where the
comparison is possible. Indeed it was not possible to get reliable
data for large sampling periods with the explicit controller, since
the plant was becoming unstable with sampling period larger than
20 ms. The average tracking error appears to increase linearly with
h, or in other word it is in 6( )h . This is underscored by the linear
regression plotted in Fig. 3. This may be surprising since we use a
second-order sliding mode controller and the order should be
6( )h2 . However, recall that σ α= + ̇e e, with the derivative being
computed by a simple filtered differentiator, remember (14).
Looking at the C code generated using the Real-Time Workshop
Toolbox, we can see that the approximated derivative ṽ of y is
computed as the output of the following LTI system:

⎪

⎪⎧⎨⎩
= +

˜ = +
−a Aa y

v Ca Dy
,

k k k

k k k

1

with τ τ= − =− −A D,1 1 and τ= − −C 2, τ being the time constant
in (14). This one-step approximation is of order h. Hence in (22),
the term sk is known with a precision only in 6( )h , which can be
seen as a non-matching perturbation. Most of the time, in this
tracking problem, the control action tries to bring σ∼ +k 1 to 0, see
Fig. 13 at the end of this section. Eq. (22) is then the one used for
the computation of the control input, propagating the error. This
problem might be alleviated by the use of another differentiator,
like the one proposed in Levant (1998).

Let us continue with more detailed results for a specific sam-
pling period: h¼10 ms. In Fig. 4a and b, the real and desired tra-
jectories are depicted with, respectively, an implicit and an explicit
controller. In Fig. 4a, the tracking is very accurate: at the given scale,
the real position and the desired one are very close to each other.
On the other hand, in Fig. 4b, the chattering of the real trajectory is
visible in the form of a boundary layer around the reference tra-
jectory. Therefore the output chattering has been drastically re-
duced with the use of an implicit controller. Turning our attention
to the control input, Fig. 5a and b illustrate the evolution of this
quantity in the implicit and explicit cases. In the first case, the
control values are in the range ["3, 3.3] V, which is well inside the
constraints ∈ [ − ]u 10, 10 V. Although the control is affected by the
noise from the measurements, there is an underlining periodical
signal, which is also seen on simulation results. The root cause of
the oscillations is likely to be the approximations done to get the
linearized discrete-time model in (21). It is difficult to analyze the
data in Fig. 5b since the control input is switching at a very high
frequency between the 2 extremal values "10 and 10 V, sign of a
chattering input. It is pretty clear that the main source of chattering
is the explicit discretization of the controller.

Let us finish with the tracking error measured with the same
two twisting controllers, as shown in Fig. 6. Comparing the ranges,
we can see that in the implicit case (Fig. 6a), the tracking error is

one order of magnitude smaller than in the explicit case (Fig. 6b).
The spike in Fig. 6a around t¼12 s is due to the action of the
second actuator, which periodically switched its force acting on
the moving mass from 1000 N to "1000 N and vice-versa. We
further analyze the chattering in the second part of this section.

Having exposed the superiority of the implicit discretization
with respect to the explicit one, let us further present the good
performance that it yields. Firstly it is possible to increase the
sampling period while keeping a good tracking and a system stable

Fig. 3. Evolution of the average tracking error ē with respect to the sampling time
for both implicit and explicit discretizations. The gain used in every capture was

=G 105.

Fig. 4. Real and desired position trajectories with h¼10 ms and =G 105. (a) With
an implicit discretization. (b) With an explicit discretization.

Fig. 5. Evolution of the control input u for both implicit and explicit discretization
with h¼10 ms and =G 105. (a) With an implicit discretization. (b) With an explicit
discretization.
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in practice. Fig. 7 illustrates this fact: evenwith a sampling period of
100 ms, the tracking takes place, although with degraded perfor-
mance compared to the one in Fig. 4a. However the average
tracking error is still better than with an explicit controller with a
sampling period one order of magnitude smaller as shown in Figs. 3

and 4b. Another very nice feature of the implicit discretization is the
fact that the control input value is computed as a selection of a set-
valued term, being the solution of a generalized equation as in (9).
One implication is that the gain just needs to be large enough with
respect to the perturbation to ensure the robustness (remember
(4)) but a further increase in the gain does not harm the perfor-
mance. This is illustrated in Fig. 8, where we display data obtained
in the following way: the experiment is run with the same con-
troller 10 times, increasing the gain 10 fold each time, from 10"2 to
107. This was repeated for 3 different sampling periods. In Fig. 8,
both the average tracking error ē and the amplitude of the control
input are plotted versus the gain G. For each sampling period, the
average tracking error varies only by less than 5%, which is solely
due to the noise in the plant. The random evolution with respect to
the gain further supports this claim. Regarding the amplitude of the
control input, we compute it as the mean of the top 5% values of | |uk ,
to which the 10 top values are discarded, as to remove any outlier.
Again, we see only random variation when the gain is increased. To
get a closer look, we have in Fig. 9 the implicit signum selections
and in Fig. 10 the control inputs for the two extremal values of gain:
10"2 and 107. We call implicit signum selection the quantity

λ βλ+ ( ), 261 2

where λ1 and λ2 are solution to (22) and (23). Multiplied by the gain
G, it is equal to the control input value, see (19). The shape of the
implicit signum selection is similar with both gains, however the
range of the values is ["0.08, 0.1] with = −G 10a

2 whereas it is
[ − ]− −0. 610 , 1010 10 with =G 10b

7. The ratio between the extremal
values is close to G G/a b. Now moving on to the control input in
Fig. 10, it does not change much: with both gains, the control input
u is in the range ["3, 4.5]. As long as the gain G is large enough, the
control input does not change much. The loose coupling between
the control input and the gain is only possible with an implicit
discretization, which enables us to compute the control input value
as a selection. With an explicit discretization, it is well-known that
the increase of the gain eventually leads to an increase in the
control input and therefore an increase for both input and output
chattering. The insensitivity of the discontinuous controller with
respect to the increase in the gain has also been verified for the
ECB-SMC controller in Wang et al. (2015). This is an expected
property given the use of Filippov's framework. Let us switch focus
on the chattering for the rest of this section.

4.2. Input and output chattering

We propose to characterize the chattering of a variable with the
variation of the associated signal. Given a real-valued step function

(·)f , an interval [ ]t T, of the real line and a sequence { } ∈ ⁎tk k 1 consisting

Fig. 6. Evolution of the tracking error for both implicit and explicit discretization
with h¼10 ms and =G 105. (a) With an implicit discretization. (b) With an explicit
discretization.

Fig. 7. Real and desired positions with an implicit discretization, h¼100 ms and
=G 105.

Fig. 8. Evolution of the average tracking error and the control input amplitude when the gain G in (19) varies for 3 different sampling periods.
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of the time instants where the value of the function changes, its var-
iation on [ ]t T, is defined as

∑( )≔ | ( ) − ( )|−f f t f tVar ,t
T

k
k k 1

with ∈ ⁎k 1 such that ∈ ( ]t t T,k and tk are the time instants where the
control input value changes. Though this quantity is not commonly
used in Control Engineering, it provides a nice characterization of the
chattering on either the control input or the sliding variables. We pay
attention to both input and output chattering, since the first one
contributes to the second and it can also induce rapid wear of ac-
tuators, especially if they are mechanical ones. Furthermore, it may
also be linked to the energy consumption of the actuator. As before,
we present the evolution of the control input chattering with respect
to the sampling period for both implicit and explicit controllers. From
Fig. 11, we can infer that the trend in both cases is a decrease of the
variation with an increase in the sampling period. Again the implicit
controller performs much better, having a control input variation two
orders of magnitude smaller than the explicit one. This reduced
chattering can also be assessed on site with a huge reduction of the
noise made by the actuators.1

Moving on to the output chattering, the same conclusion fol-
lows: the implicit method performs better than the explicit one,
this time by an order of magnitude (see Fig. 12). This means that

the output chattering is notably reduced. Indeed a bang-bang type
control input, like the one the explicit discretization yields, tends
to change the sign of the sliding variable very frequently. This
leads to a large variation of the error, with respect to the variation
with an implicit controller. At the same time, this behavior does
not yield a better tracking, as illustrated in Fig. 3.

Let us finish with an analysis of the values taken by λ1 and λ2,
solutions of the generalized equations (22) and (23). They are the
selections of the set-valued inputs, that is the real values taken by
the controller. In Fig. 13, we can see that λ2 is equal to either 1 or
−1 whereas λ1 takes value in ( − − ) ∪ ( ).745, .656 0.660, 0.776 .
Then from Eqs. (22) and (23) we deduce that σ =∼ + 0k 1 and σ ̇ ≠∼

+ 0k 1 .
Therefore the control action tries to bring σ ( )+tk 1 to 0 at each time
instant tk, in which case 5 λ( ) = { }[− ] 01,1 1 . Based on this observation,
one sees that (22) is in fact the equation giving its value to the
implicit selection λ βλ+1 2. This explains the propagation of the
error in the computation of ̇e from sk to the control input men-
tioned in Section 4.1. It also provides an heuristic for the compu-
tation of the control: after a short period of time the tracking takes
place and then the controller always brings σ∼ +k 1 to 0. Hence if we
solve the AVI problem from Section 2.2 by enumeration, we can
firstly try the two cases where σ =∼ + 0k 1 .

5. Parameters selection

We mentioned at the beginning of Section 4 that the tuning

Fig. 9. Implicit signum selections (26) for 2 values of the gain: 10"2 and 107 and with a sampling period of 10 ms.

Fig. 10. Control inputs for two values of the gain: 10"2 and 107 and with a sampling period of 10 ms.

1 The reader is invited to watch the videos at http://nullptr.fr/pages/videos.
html.
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of the sliding surface parameter α and of the two filtered differ-
entiator constants (τv and τa) is important and may drastically
affects the closed-loop behavior. Let us motivate the necessity of
tuning α by looking at Fig. 14 to see how the value of α yielding the
smallest average tracking error varies with the sampling period.
With our experimental data, the selected values of α span from 25
for h¼3 ms to 6500 for h¼100 ms. With an explicitly discretized

controller, it is much harder to see how a change in the value of
the triplet α τ τ( ), ,v a influences the closed-loop behavior. Those
parameters also impact the performance, but the bad discretiza-
tion is affecting it too much. This does not mean that those
parameters should not be tuned with an explicit discretization,
just that such tuning does not bring any notable improvement due
the way the control input is computed. With an implicit dis-
cretization, the control input value computation is no longer the
weakest component of the control loop: a change in one of the
aforementioned parameters may influence the performance.
Hence, the parameter tuning which follows deals only with the
implicit controller. We now present the procedure used to tune
those parameters and then propose a model explaining how α
influences the closed-loop performance.

5.1. Parameters description

First let us recall some basic facts about the parameters α τ, v

and τa. In continuous time, the sliding surface parameter α influ-
ences the error dynamics once the origin is reached. In this case,
the ODE in (15) becomes α + ̇ =e e 0 and the exponential decrease
is controlled by the value of α. Therefore, the value of α impacts
only the transient phase and not the steady state regime. Re-
garding the filtered differentiators, the constants τ τ( ),v a on the
low-pass filter should be tuned such that the dynamics of the
closed-loop system are preserved as much as possible while re-
moving as much measurement noise as possible. It looks reason-
able to assume that when the sampling period decreases, the high
frequency part of the dynamics is richer since the control input
changes more frequently. Hence we expect the optimal value of
those coefficients to decrease with the sampling period. Note that
even in simulation, the closed-loop system with the implicit
controller is giving good results only for a given range of sampling
period. Chattering can suddenly appear, which is not at all con-
sistent with the theory presented in Sections 2 and 3.2.

5.2. Parameters selection procedure

The procedure used to get the values for the triplet α τ τ( ), ,v a has
two steps: first we rely on simulation results to restrict the space
where this triplet gives good performance. To reduce the number
of possibilities, we set τ τ=v a. A set of simulation has to be run for
each value of the sampling period. The metric used to measure the
performance of each triplet is the average tracking error. The si-
mulator is implemented in Simulink and consists of a nominal
model of the plant with the same feedback loop as the one used
during the experiments. Typical results (here for h¼15 ms) are
given in Fig. 15. First note the important variation of the perfor-
mance, which spans over 3 orders of magnitude. An important
observation for the online tuning is that α is the parameter that
impacts the performance the most. Hence, we can start the online
procedure by fixing τv and τa to some “large” values and tune only
α. This parameter is tuned online by considering the noise pro-
duced by the plant, which can be linked to the actuator chattering,
on this setup. Once we have a satisfactory value for the latter, it is
then easier to change one parameter at a time and see whether it
yields any improvement. To illustrate this, consider the plots in
Fig. 16: with a value of α too high, the noise affects the control
input and we have chattering. When α is too small, the system fails
to follow the dynamics of reference signal: the tracking error does
not switch sign often.

5.3. Evolution of the tracking performance w.r.t. α

Since α is the parameter whose variation impacts the most the
average tracking error both in simulation and experiments, we

Fig. 11. Evolution of the control input variation and the error variation with respect
to the sampling time for both implicit and explicit discretizations. The gain used in
every capture was =G 105.

Fig. 12. Evolution of the error variation with respect to the sampling time for both
implicit and explicit discretizations. The gain used in every capture was =G 105.

Fig. 13. Values of the two variables λ1 and λ2 solution to (22) and (23), with
= −G 10 2 and h¼10 ms.

Fig. 14. Evolution of the value of the “optimal” value of α versus the sampling
period.
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focus on it for the rest of the section. Let us present some ex-
perimental data obtained with h¼5 ms and α ∈ [ ]10, 130 . Two
examples of the relation between the average tracking error and
the input chattering are given in Fig. 17: after a quick improvement
in the average tracking error, the best value is obtained. Then the
tracking error increases with the control input variation. It is also
apparent on the left plot in Fig. 17 that the control variation is
increasing with the sliding coefficient α. Thus a good tuning
strategy is to increase α until the average tracking error seems to
deteriorate and the chattering increases. Having narrowed the
interval for the optimal α, we can then try to track it. Finally,
looking at the evolution of the average tracking error with respect
to α as displayed in Fig. 18, we see that there exists a value of α
which gives the smallest average tracking error. Also note the two
asymptotic behaviors: for small values of α, the evolution of the
average tracking error looks like α1/ and for large values of α the
tracking error increases quasi-linearly with α. We also display the
tracking error with an explicit controller: for any value of α we
tested, it underperforms w.r.t. an implicit controller. The almost
flat part of the curve around the best value of α shows the ro-
bustness of the overall scheme with respect to α, a desired
property.

5.4. Analysis of the influence of α on the tracking error

Let us provide some analytical basis for the two trends we just
mentioned and a proposal for further improvements. To do so, the
experimental data is used to fit the function + + +

+
ax bx cx d

x ex

3 2

2
which

captures the two asymptotical behaviors, as shown in Fig. 18.
Now that our perceived trends are backup by this fitting, let us

formulate an explanation for them. Firstly, we focus on the be-
havior when α is small: in this case, we can see in Fig. 19 that the
mean absolute value of s is constant for α between 10 and 60. This
is also true for the mean absolute value of the control input in
Fig. 20. We also claim that the system is in the discrete-time
sliding phase since the control bounds are never hit (remember
the right plot in Fig. 17). Therefore, the system is trying to bring the
sliding variable value to 0 in one sampling period. This gives the
relation: σ α= + ̇ =+ + +e e Pk k k k1 1 1 where Pk accounts for all the noise
and unmodeled dynamics effects. We approximate ̇ +ek 1 by

−+e e
h

k k1 ,
which leads to

α α= + + + ( )+e e
h

h
h

P
1 1

. 27k
k

k1

This relation implies that the error ek forms an arithmetico-geo-
metric sequence, with the common ratio α=r P /k . In the following
the expected value of the error ek is computed under the hy-
pothesis that the expected value of Pk is independent of k and is
denoted by [| |]P( . The quantity we display in Fig. 18 is ∑ | |e N/k k .
From (27), we get the following bounds:

α α α α+ − + ≤ ≤ + + ++
h

h
P

h
e e

h
e h

h
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1
1

1
1

1 1
.k k k k k1

Summing N times this relation, ignoring the terms at the power N,
and working with the expectation of the error yields
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Neglecting the constant terms divided by N, we finally get
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at the limit. This small derivation corroborates the data in Fig. 18
for small values of α, where the asymptotical behavior is like α1/ .

For large values of α, the average tracking error looks like a
linear function of the sliding parameter. This appears to be also the
case for the mean absolute value of the control input, see the left
plot in Fig. 20. Note also the saturation of the control input: on the
right plot in Fig. 20, for values of α greater than 90 (or 110 for the
other differentiator parameters), u is hitting its bound, and it oc-
curs more frequently as α increases. We link this to the loss of
homogeneity in the discrete-time controller, which is far beyond
the scope of this paper. It is noteworthy that this degradation of

Fig. 15. Heat map of the precision for various values of the differentiator coeffi-
cients and the sliding coefficients. The sampling period was set to 15 ms.

Fig. 16. Tracking error with α = 130 (left) and α = 10 (right), with parameters τ τ= = .5v a and h¼5 ms.
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performance was already seen in simulation Huber (2015, Section
4.1.3). Hence we suspect that this deterioration is related to the
approximation on either the computation of the derivatives or the
discrete-time model (21). Further investigations could include
using a better differentiator and a more accurate discrete-time
model to enable the use of higher values of α and if the average
tracking error is improved.

6. Comparison to the classical first-order sliding mode
controller

Let us present some results with an implicit equivalent control
based sliding mode controller (ECB-SMC) instead of a twisting
controller. For a comparison between explicitly and implicitly
discretized controller for the ECB-SMC, see (Wang et al., 2015),
where it is shown that the implicit controller gives much better
results than the explicit one. The implicit controller in the first-
order sliding mode case has the following structure:

σ∈ − ( )+u G Sgn .k k 1

The relative degree between the output y and the input u forces us
to define the following sliding surface:

σ ξω ω= ¨ + ̇ + ( )e e e2 , 282

with two design parameters: ξ and ω. To keep the search of the
best sliding surface trackable, we fixed ξ = 0.7 in an analogy to the
second-order ODE analysis, to theoretically ensure the fastest
convergence within a 5% boundary layer of the sliding manifold.
The value of ω was then tuned online to provide the best

Fig. 17. Control variation relationship with the sliding parameter α and the average tracking error.

Fig. 18. Evolution of the average tracking error versus the sliding coefficient α, with
filtered coefficient values: τ τ= =0.1, 0.05v a . The line is the graph of a function
fitting the data.

Fig. 19. Evolution of the mean absolute value of the sliding variable s versus the
sliding coefficient.

Fig. 20. Evolution of the mean absolute value of the control input and the percentage of control input values that are saturated versus the sliding parameter α.
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performance. However for the sake of brevity we do not discuss
here in depth: the same procedure as presented in Section 5.2 has
been applied. The necessity of the tuning is backed up by Fig. 2 in
Wang et al. (2015). In this reference, the values of ξ and ω stay the
same for all sampling periods: the performance quickly degrades
with a change in the sampling period. In our experiments, only ω
changes; the values for different sampling periods are given in
Fig. 21. We are able to provide very good performance for a sub-
stantially larger range of sampling periods: [1, 100] ms versus [2,
15] ms in the previous work.

The control scheme is as follows: the sliding surface (28) has
the dynamics

σ ξω ω̇ = − + ¨ + ̇… …
y y e e2 ,

d

2

which leads to dynamics close to the twisting case (18). The
nominal version of this dynamics is:

σ Φ Ψ̇ = ′ + u,

where Φ Ψ ξω ω′≔ − + ¨ + ̇…
y u e e2 2 and Ψ is the same as in (17). The

discrete-time model is then derived using the same procedure as
for the twisting controller. The nonlinear terms are approximated
by constant terms over [ ]+t t,k k 1 and hence we get the system

σ σ Φ Ψ
σ

= + ′( ) + ( )
∈ − ( )

+

+

h t h t u

u Sgn ,
k k k k k

k k

1

1

which is also an AVI. Therefore the existence and uniqueness
properties of the control input value can be checked by using the
tools from Section 2. For the implementation of the controller, we
used the code given in Appendix A, which turns out to be very
simple since the sliding variable is scalar.

The resulting performance, again in term of the average
tracking error (25) is displayed in Fig. 22, alongside the results
obtained with the implicit twisting controller. As with the latter,
the controller is able to provide good performance. The relation-
ship between the average tracking error and the sampling period

appears to be linear. The implicit twisting and the ECB-SMC con-
trollers yield very similar results on this experimental setup.
Amongst the differences, one of the most prominent was the
tuning of the sliding surface. Indeed in Fig. 22, for a sampling
period of 1 ms, the closed-loop system with the implicit twisting
controller performs poorly. The average tracking error is one order
of magnitude worse than with the sampling period 3 ms. This is in
our opinion due to the fact that we could not find a good set of
parameter values τ τ α( ), ,v a such that the system behaves well. The
behavior of the closed-loop system was similar to the case where
the parameters were not properly set. This illustrates the fact that
with the twisting controller, the online tuning of the parameters
was getting harder as the sampling period h decreased, to the
point that we failed to tune them for h¼1 ms. For the same
sampling periods, the tuning with the implicit classical sliding
mode controller was much easier. However for the largest sam-
pling periods, the situation was reversed: the implicit ECB-SMC
controller was harder to tune than the twisting one.

The data presented here have to be put into perspective: the
performance of the closed-loop system is usually limited by the
weakest component in the control loop. Our interpretation of the
results obtained from this experiment is that the “limiting” com-
ponent is not the controller, but rather the ones that generate the
data used to feed it, like the filtered differentiators and the line-
arization scheme. Enhancing those parts of the controller scheme
may yield better performance and might enable us to see a clear
difference between the two controllers.

7. Conclusion

In this article we presented the results of a study of two dis-
crete-time twisting controllers: the implicit and the explicit one.
Extensive experiments were conducted in the context of a position
tracking problem. The analysis of the data reveals that on this
electropneumatic setup, the implicit twisting controller outper-
forms the explicit one on 3 criteria: the tracking error and both the
input and output chattering. Despite the complexity of the control
loop arising from the high relative degree, meaningful illustrations
of theoretical results are provided, like the insensitivity with re-
spect to an increase in the control gain. The implicit discretization
allows to drastically reduce both the output and the input chat-
tering, without modifying the controller structure compared to its
continuous-time version. The other important contribution is the
emphasis put on the choice of some design parameters. Tuning
those greatly helps improving the results. We singled out the
parameter α, introduced to cope with the relative degree 3 in the
system, since this investigation may pertain to closed-loop sys-
tems sharing the same property. We also illustrate that a similar
tuning has to be done with the EBC-SMC. This analysis also shows
future directions to further enhance the performance: using Le-
vant's differentiator and a better discrete-time dynamics. Video
recordings of the experiments can be found online1.
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Appendix A. MATLAB code for SMC

We present here the code used in the implementation of the
implicit first order sliding mode controller in the case where the

Fig. 21. Evolution of the best value of ω versus the sampling period for an implicit
sliding mode controller.

Fig. 22. Comparison of the average tracking error with the implicit twisting and
the implicit sliding mode controller, for sampling periods in the range [1, 100] ms.
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sliding variable is scalar. The controller is created in Simulink in-
side a “Matlab function” block, with the code written in the Matlab
language. It is then translated into C and compiled for the targeted
microcontroller by the real-time workshop toolbox. The code used
to implement the discrete-time twisting controller can be found in
Appendix C in Huber (2015).
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