Formulation dynamique d'un modèle de zone cohésive tridimensionnel couplant endommagement et frottement

Dynamical formulation of three-dimensional cohesive zone model coupling damage and friction

Yann Monerie — Vincent Acary

Laboratoire de Mécanique et d'Acoustique (CNRS - UPR7051) 31, chemin Joseph Aiguier F-13402 Marseille Cedex 20 monerie@lma.cnrs-mrs.fr

RÉSUMÉ. Nous présentons ici une formulation 3D du problème dynamique de contact unilatéral couplant endommagement et frottement. Ce modèle permet la simulation de la fissuration des solides ainsi que celle des interfaces qui les lient. Nous rappelons le modèle de Raous-Cangémi-Cocu [RAO 99] et nous donnons une formulation du problème dynamique associé. Le cadre de la dynamique assure un suivi correct des solutions à saut qui apparaissent, sur le plan mathématique, inhérentes aux modèles de comportement surfacique adoucissant. Une formulation en termes de mesures différentielles permet de plus le traitement des discontinuités de vitesse relatives au contact unilatéral. Une attention particulière est donnée dans ce travail à la résolution numérique de ce problème de dynamique en dimension trois. Une application académique au délaminage par flambement est présentée.

ABSTRACT. We propose in this paper a dynamical formulation of a three-dimensional cohesive zone model, coupling surfacic damage, Coulomb friction and unilateral contact. This model is devoted to the fracture of solids and to the debonding of interfaces. The model of Raous-Cangémi-Cocu [RAO 99] is given and the formulation of the dynamical problem is written. We focus our attention on the jumps of solution, which could appear with such softening surfacic models. A dynamical formulation allows to overcome these problems of nonsmooth solutions. A particular mathematical and numerical framework is used to solve dynamical problems submitted to unilateral constraints. The ability of the associated numerical tool is underlined on a buckling-driven fracture of a square plate.

MOTS-CLÉS : Formulation dynamique, 3D, zone cohésive, endommagement, frottement, contact, éléments finis

KEYWORDS: Dynamical formulation, 3D, cohesive zone model, damage, friction, contact, finite elements

Revue européenne des éléments finis. Volume 10- n° 02-03-04/2001, pages 489 à 503

1. Introduction

Nous présentons dans ce papier une formulation tridimensionnelle du problème dynamique de contact unilatéral couplant endommagement surfacique et frottement. Ce problème est ici traité à l'aide de la notion de zone cohésive. Cette notion offre de remarquables perspectives dans le domaine de la simulation numérique et de l'analyse mécanique de la fissuration des matériaux (par exemple, [XU 94, COS 97, NEE 99]). Les modèles de zone cohésive, implémentés sous forme d'éléments finis surfaciques ou sous forme de conditions mixtes contrainte/déplacement, permettent d'envisager des situations mécaniques complexes (matériaux multiphases, mixité globale et locale des modes de sollicitation, fissuration tridimensionnelle, amorçage des fissures, évolutions dynamiques instables, prise en compte de contact et de frottement sur les lèvres de la fissure), tout en conservant une compréhension fine de la physique à l'échelle locale. Les paramètres énergétiques mis en évidence par le modèle classique de la mécanique de la rupture (le taux de restitution de l'énergie G) sont aussi conservés. Le modèle de zone cohésive retenu est le modèle adhésif/frottant proposé dans [RAO 99]. Il est présenté dans la section 2. Il permet de simuler le comportement mécanique des interfaces renfort/matrice pour les matériaux composites [MON 00] ou des mortiers de liaison entre blocs pour les structures maçonnées [ACA 00].

La mise en œuvre numérique de ces modèles révèle cependant l'apparition de solutions à saut lors d'évolutions quasi-statiques. Sur le plan mathématique, ces solutions non-régulières s'avèrent inhérentes aux modèles de comportement surfacique adoucissant et correspondent à des situations où l'unicité de la solution n'est plus assurée. Ce résultat fait l'objet de la section 3. Nous proposons ainsi, dans la section 4, une formulation dynamique des modèles de zone cohésive qui permet notamment de régulariser ces solutions.

En présence de contraintes unilatérales (contact, frottement), les discontinuités éventuelles de vitesses conduisent à formuler le problème dynamique en terme de mesures différentielles. La résolution numérique de ce problème en dimension trois est présentée dans la section 5. Elle s'appuie sur un schéma d'intégration en temps implicite d'ordre faible. Une application au délaminage par flambement d'une plaque carrée est réalisée (section 6).

2. Un modèle de zone cohésive couplant endommagement, frottement et contact unilatéral

Le modèle de zone cohésive présenté est celui de Raous-Cangémi-Cocu [CAN 96, RAO 97, RAO 99]. Il décrit l'évolution d'une interface entre deux corps déformables initialement adhérents. Il propose une transition d'un état non endommagé à un état frottant dans le plan tangent de l'interface (frottement de Coulomb) et à un état de contact unilatéral dans la direction normale à l'interface (pas d'interpénétration des solides). Une idée fondamentale de ce modèle est d'introduire une variable d'état supplémentaire pour décrire l'état du contact. Cette variable, notée β et initialement introduite dans [FRé 82], permet de distinguer un contact frottant classique d'un contact adhésif. Elle traduit la proportion de liaisons adhésives actives entre les deux corps en contact : $\beta = 1$ l'interface est vierge, $0 < \beta < 1$ l'interface est partiellement endommagée, $\beta = 0$ l'interface est rompue. Cette variable peut aussi être considérée à juste titre comme une variable d'*endommagement surfacique* (avec $D_S = 1 - \beta$).

Pour $\alpha = 1, 2$, soient deux corps déformables $\Omega^{\alpha} \subset \mathbb{R}^{m}$ (m = 2, 3) de frontières suffisamment régulières $\partial \Omega^{\alpha}$ soumis à des forces volumiques f^{α} et surfaciques F^{α} . On distingue sur $\partial \Omega^{\alpha}$ trois parties disjointes : Γ_{c}^{α} la zone potentielle de contact entre Ω^{α} et l'extérieur, $\partial \Omega_{U}^{\alpha}$ la zone d'application des déplacements et $\partial \Omega_{F}^{\alpha}$ la zone d'application des forces, avec $\partial \Omega^{\alpha} = \overline{\Gamma_{c}^{\alpha}} \cup \overline{\partial \Omega_{U}^{\alpha}} \cup \overline{\partial \Omega_{F}^{\alpha}}$. L'hypothèse des petites perturbations, permet de définir la *zone potentielle de contact* entre les deux solides : $\Gamma_{c} \simeq \Gamma_{c}^{1} \simeq \Gamma_{c}^{2}$ et sa normale $n(x) \simeq n^{1}(x) \simeq -n^{2}(x)$ $(n^{\alpha(x)}$ est la normale extérieure sortante au solide Ω^{α}). On note $u = \{u^{1}, u^{2}\}$ le champ des déplacements dans $\Omega^{1} \cup \Omega^{2}$ et $[u] = u^{2} - u^{1}$ le saut de déplacement à l'interface Γ_{c} . Les forces intérieures duales à ces variables cinématiques sont : $\sigma = \{\sigma^{1}, \sigma^{2}\}$ le champs des contraintes dans $\Omega^{1} \cup \Omega^{2}$ et R la force de contact sur Γ_{c} .

Les variables d'état du modèle sont : la déformation des solides ε , les déplacements normaux et tangentiels u_{N} et u_{T} ($[u] = u_{\text{N}}n + u_{\text{T}}$ avec $u_{\text{N}} = [u] \cdot n$) et l'intensité d'adhérence β . Les variables thermodynamiques associées sont respectivement σ^r , R_{N}^r , R_{T}^r et $-G_{\beta}$ (les exposants (.)^{*r*} et (.)^{*ir*} indiquent les parties réversibles et irréversibles). Les solides sont considérés élastiques et isotropes. Leur comportement thermodynamique est décrit par un potentiel classique d'élasticité (tenseurs de rigidité A^1 et A^2). Par la suite, seul le comportement de la zone cohésive est précisé. Une fomulation thermodynamique locale conduit à l'écriture de la loi de contact unilatéral avec adhérence (1), à la loi de frottement avec adhérence (2) et à la loi d'évolution de l'intensité d'adhérence (3).

$$-R_{\rm N}^r + \beta^2 C_{\rm N} u_{\rm N} \ge 0 , \quad u_{\rm N} \ge 0 , \quad \left(-R_{\rm N}^r + \beta^2 C_{\rm N} u_{\rm N}\right) u_{\rm N} = 0, \qquad (1)$$

$$\begin{cases} R_{\rm T}^{r} = \beta^{2}C_{\rm T} u_{\rm T}, & R_{\rm N}^{r} = R_{\rm N}, \\ \|R_{\rm T} - R_{\rm T}^{r}\| \le \mu |R_{\rm N} - \beta^{2}C_{\rm N} u_{\rm N}|, \\ \text{et} \begin{cases} \|R_{\rm T} - R_{\rm T}^{r}\| \le \mu |R_{\rm N} - \beta^{2}C_{\rm N} u_{\rm N}| \Rightarrow \dot{u}_{\rm T} = 0, \\ \|R_{\rm T} - R_{\rm T}^{r}\| = \mu |R_{\rm N} - \beta^{2}C_{\rm N} u_{\rm N}| \Rightarrow \exists \lambda \ge 0, \dot{u}_{\rm T} = \lambda (R_{\rm T} - R_{\rm T}^{r}), \end{cases} \end{cases}$$
(2)

$$\begin{cases} \dot{\beta} = -[(wg'(\beta) - \beta (C_{\rm N} u_{\rm N}^2 + C_{\rm T} ||u_{\rm T}||^2))^-/b]^{1/p} & \text{si } \beta \in [0, 1[, \\ \dot{\beta} \le -[(wg'(\beta) - \beta (C_{\rm N} u_{\rm N}^2 + C_{\rm T} ||u_{\rm T}||^2))^-/b]^{1/p} & \text{si } \beta = 1, \end{cases}$$
(3)

où $(x)^- = \max(0, -x)$ est la partie négative de $x \in \mathbb{R}$, $C_{\mathbb{N}}$ et $C_{\mathbb{T}}$ sont les raideurs initiales normale et tangentielle de la liaison interfaciale (en MPa/m), w est une énergie de référence à partir de laquelle est défini le seuil d'évolution de la variable d'adhésion β (en J/m^2), $g(\beta)$ est une fonction donnée, μ le coefficient de frottement de Coulomb (sans dimension), b un coefficient de viscosité pour l'évolution de l'endommagement

interfacial (en Ns/m) et $0 \le p \le 1$ une puissance intervenant dans la loi d'évolution de l'endommagement interfacial (sans dimension).

3. Sauts de solution

L'existence de solutions non régulières est une des difficultés majeures des modèles de zone cohésive (le comportement interfacial adoucissant rend le problème mal posé). Si la forme de la courbe contrainte-saut de déplacement de ces modèles n'a pas d'influence sur l'évolution stationnaire de la fissuration (il est possible d'identifier dans ce cas là le taux de restitution de l'énergie à l'énergie de décohésion : $G = \int_0^{\delta} \sigma([u]) \cdot d[u]$ où δ est la norme du saut de déplacement à partir duquel $\beta = 0$), elle devient déterminante à l'amorçage des fissures. Un théorème d'unicité conditionnelle peut être obtenu pour le cas de solides élastiques cohésifs soumis à une évolution quasi-statique. Cette condition d'unicité est explicitée sur l'exemple simple d'une structure plane en traction. Par la suite, nous proposons une formulation dynamique de ce problème qui permet d'équilibrer les bilans énergétiques aux travers de la prise en compte des termes cinétiques.

3.1. Existence et unicité conditionnelle de solutions à un problème quasi-statique de décohésion de solides élastiques

Nous considérons ici le problème quasi-statique de deux corps en contact adhésif. Par soucis de simplification, les déplacements imposés sur les bords des corps Ω^1 et Ω^2 sont supposés nuls et on prend p = 1 et $g(\beta) = \beta$. On introduit les ensembles :

$$V^{\alpha} = \left\{ v^{\alpha} \in \left[H^{1}(\Omega^{\alpha}) \right]^{m}; v^{\alpha} = 0 \text{ p.p. sur } \partial \Omega^{\alpha}_{U} \right\} \quad (\alpha = 1, 2), \qquad (4)$$

$$K = \{ v = (v^1, v^2) \in V; v_N \ge 0 \text{ p.p. sur } \Gamma_c \},$$
(5)

$$V = V^1 \times V^2, \quad \text{et} \quad H = L^{\infty}(\Gamma_c). \tag{6}$$

On suppose les forces volumiques et surfaciques assez régulières :

$$f \in W^{1,2}(0,T; [L^2(\Omega^1)]^m \times [L^2(\Omega^2)]^m),$$
(7)

$$F \in W^{1,2}(0,T; [L^2(\partial\Omega_F^1)]^m \times [L^2(\partial\Omega_F^2)]^m), \tag{8}$$

ce qui assure que $\phi \in W^{1,2}(0,T;V)$, où on a posé (sommation sur les indices répétés): $(\phi, v) = \int_{\Omega^{\alpha}} f^{\alpha} \cdot v^{\alpha} dx + \int_{\partial \Omega_{F}^{\alpha}} F^{\alpha} \cdot v^{\alpha} ds, \forall v \in V.$

En l'absence de frottement, en se donnant des conditions initiales $u_0 \in K$ et $\beta_0 \in H \cap [0, 1]$ et en supposant une loi "statique" pour l'évolution de β (sous certaines hypothèses peu restrictives concernant Ψ_S et Φ_S , on peut considérer une fonction g^* telle que $\beta = g^*([u]) \in H$), on obtient, par extension du problème quasi-statique de

contact unilatéral avec frottement considéré dans [COC 96], le problème variationnel suivant :

$$a(u, v - u) + \int_{\Gamma_c} \xi([u]) \cdot ([v] - [u]) \, ds - (\phi, v - u) \ge 0, \, \forall v \in K, \tag{9}$$

où $\xi : [L^2(\Gamma_c)]^3 \to [L^2(\Gamma_c)]^3$ est de manière générale la contrainte interfaciale et $a(u,v) = \int_{\Omega^{\alpha}} A^{\alpha}_{ijkl} \varepsilon_{ij}(u^{\alpha}) \varepsilon_{kl}(v^{\alpha}) dx.$

En supposant ξ lipschitzienne (de constante c_1), on peut alors montrer ([MON 00]) que l'application $\tilde{s} : k \to \xi([u(k)])$ où $u(k) \in K$ est la solution de :

$$a(u,v-u) - (\phi,v-u) + \int_{\Gamma_c} k \cdot ([v] - [u]) ds \ge 0 \quad \forall v \in K,$$

$$(10)$$

admet un unique point fixe \bar{k} dès lors que $\lambda^2 c_1/m < 1$, où m est la constante de coercivité de a (inégalité de Korn et déplacements imposés) et λ est une constante liée à la continuité de l'injection de $[H^{1/2}(\Gamma_c)]^3$ dans $[L^2(\Gamma_c)]^3$ et à celle de l'application trace de $[H^1(\Omega^i)]^3$ dans $[H^{1/2}(\partial\Omega^i)]^3$, pour i = 1, 2. Le déplacement $u(\bar{k})$ est alors la solution du problème (9).

3.2. Un exemple uniaxial

Soit une structure 2D simple composée d'un élément interfacial en série avec un barreau élastique de longueur L et de module E (FIG. 1 : discrétisation spatiale et comportement en série). Pour plus de détails sur cet exemple, nous renvoyons à [CHA 00].

Figure 1. *Exemple uniaxial illustrant l'apparition de "sauts de solution" lors d'une décohésion interfaciale : situation mécanique et comportement local*

Soient U le déplacement global appliqué en BC, T la contrainte résultante et [u] la séparation interfaciale encore notée u. On a : U = u + (L/E)T. Par ailleurs, le

comportement interfacial est donné par : $T = \xi(u)$. Dans le repère (T, u), pour un déplacement imposé U, le point de fonctionnement est obtenu par intersection de la droite T = -E/L(U - u) et de la courbe adoucissante $T = \xi(u)$ ($\xi(u) = 0$ audelà d'une valeur δ de u). Lorsque U croît à partir de zéro, deux situations peuvent se présenter au-delà du pic de la courbe : soit le rapport k = E/L est suffisamment grand, il existe alors toujours un point de fonctionnement et l'évolution est stable ; soit la valeur (négative) de la pente de la droite devient trop faible (en valeur absolue), un saut de solution de u_a à $u_b > u_a$ peut alors se produire. La possibilité d'obtenir deux, voire trois, points de fonctionnement est liée au rapport entre la valeur k de la pente de la droite de la courbe adoucissante ; c'est-à-dire au rapport $|k|/(\operatorname{Sup}_u |\xi'(u)|)$, pour tout u tel que l'on soit au-delà du pic. La condition d'unicité du point de fonctionnement est donc : $\operatorname{Sup}_u |\xi'(u)| / |E/L| < 1$. Si la courbe adoucissante possède un point d'inflexion, le $\operatorname{Sup}_u |\xi'(u)|$ y est atteint. Sinon il est atteint en u_a (ce qui est le cas du modèle limite de [RAO 99]).

Nous avons souligné que la forme de cette courbe adoucissante n'a pas d'influence sur la propagation stationnaire des fissures (les modèles de zone cohésive sont équivalents entre eux dès lors qu'ils présentent la même "aire sous la courbe"). L'exemple présenté montre qu'elle en a cependant dans deux situations : 1) lorsqu'il n'est plus possible d'écrire à bon droit la quantité $\int_0^{\delta} \sigma([u]) \cdot d[u]$ (ce qui est le cas lors d'un saut de solution, i.e. entre u_b et u_a), c'est-à-dire lorsque la fissuration n'est plus *stationnaire*, 2) à l'amorçage de la fissuration. Les modèles de zone cohésive indépendants de la vitesse de sollicitation donnent donc lieu plus ou moins facilement à des sauts de solution : les modèles qui présentent la plus forte pente dans leur régime adoucissant sont les plus instables.

Pour pallier ces problèmes de solutions à saut, différentes régularisations ont été envisagées dans la littérature : évolution visqueuse de l'endommagement surfacique ([ALL 95, CAN 96, CHA 00]), modèles non locaux, raffinement de maillage, pilotage local de l'évolution de la décohésion. La sensibilité des modèles avec régularisation visqueuse à la vitesse de sollicitation masque cependant certains phénomènes que l'on souhaite mettre en évidence. Par ailleurs, l'existence physique de cette viscosité n'est pas établie pour tous les matériaux. Les modèles non locaux introduisent aussi certaines longueurs caractéristiques qu'il est parfois difficile d'interpréter physiquement. Enfin, le pilotage local de la solution conduit à définir des états d'équilibre intermédiaires dont la signification mécanique n'est pas claire. Nous présentons donc ci-dessous une formulation dynamique des problèmes de fissuration par zone cohésive en 3D et en présence de contact et de frottement.

4. Contact, frottement et adhérence en 3D - Méthode NSCD

La méthode "Non-Smooth Contact Dynamics" (NSCD), initiée et développée par J.J. Moreau et M. Jean, est dédiée à la résolution de problèmes relatifs aux systèmes dynamiques en présence de contraintes unilatérales. Elle fournit un cadre mathématique rigoureux, sur les plans théorique et numérique, permettant d'appréhender correctement les problèmes de contact frottant. En particulier, elle propose un traitement non régularisé (pas de compliance, pas de pénalisation) des conditions de contact unilatéral et de frottement de Coulomb. De plus, une attention particulière est portée à l'intégration numérique en temps des équations du mouvement en présence de telles contraintes, susceptibles de générer des discontinuités en vitesses. Pour plus de détails concernant la méthode NSCD et ses fondements, nous renvoyons à [MOR 74, MOR 88] et [JEA 99].

Nous proposons ici de prendre en compte l'adhérence dans le cadre de la méthode NSCD, en considérant chaque point de contact comme une zone cohésive. Les paramètres mécaniques relatifs à ces zones cohésives peuvent varier en tout point de la discrétisation spatiale du problème. L'outil numérique correspondant est donc adapté aux problèmes de contact adhésif/frottant pour des collections à grand nombre d'objets (rigides ou déformables) et/ou aux problèmes de fissuration des matériaux multiphases (fissuration des constituants et décohésion des interfaces qui les lient).

4.1. Cinématique et équation de la dynamique

Le problème dynamique posé est composé des équations (1–3) et de la discrétisation spatiale de l'équation de la dynamique :

$$M(q,t)\ddot{q} = F(q,\dot{q},t) - r, \tag{11}$$

où q, \dot{q} et \ddot{q} sont respectivement les vecteurs déplacement, vitesse et accélération discrets, M est l'opérateur d'inertie supposé lentement variable par rapport au déplacement, F est l'opérateur des forces intérieures supposé continu et borné et r est le représentant global des réactions sur la zone cohésive.

En présence de contraintes unilatérales, l'espace des fonctions à variations bornées est un cadre fonctionnel adéquat pour les vitesses, potentiellement discontinues (l'accélération ne peut plus être définie comme la dérivée temporelle classique de la vitesse). Le cadre des mesures différentielles et des distributions permet de remédier à ce problème. L'équation de la dynamique est donc écrite ici en termes de mesures :

$$M(q,t)d\dot{q} = F(q,\dot{q},t)dt - rd\nu, \tag{12}$$

où dt est une mesure de Lebesgue, $d\nu$ est une mesure réelle positive, et $d\dot{q}$ est une mesure différentielle associée à $\dot{q}(t)$ de la manière suivante (mesure de Stieltjes relative une fonction à variations bornées):

$$\int_{t_1}^{t_2} d\dot{q} = q(t_2^+) - q(t_1^-) , \ \forall t_2 > t_1.$$
(13)

Par intégration de (12) entre t_1 et t_2 compris dans]0, T], on obtient :

$$\begin{cases} \int_{]t_1, t_2]} M(q, t) d\dot{q} = \int_{t_1}^{t_2} F(q, \dot{q}, t) dt - \int_{]t_1, t_2]} r d\nu, \\ q(t_2) = q(t_1) + \int_{t_1}^{t_2} \dot{q}(\tau) d\tau. \end{cases}$$
(14)

4.2. Discrétisation temporelle

Dans le cadre de la mécanique non-régulière, l'évolution du terme $rd\nu$ de l'équation (12) est donnée par une inclusion différentielle modélisant les contraintes unilatérales. L'intégration en temps de cette inclusion éxige un schéma implicite ([MOR 74]). En supposant que $\forall \tau \in]t_i, t_{i+1}] M(q(\tau), \tau) = M(q_{i+1}, t_{i+1})$ et en considérant l'impulsion moyenne r_{i+1} comme variable du problème, l'intégration proposée, sur un intervalle $]t_i, t_{i+1}]$ de longueur h, s'écrit :

$$\begin{cases} \int_{]t_{i}, t_{i+1}]} r d\nu = hr_{i+1} \quad (\text{notation}), \\ \int_{t_{i}}^{t_{i+1}} M(q, t) d\dot{q} = M(q_{i+1}, t_{i+1}) \left(\dot{q}((t_{i+1})^{+}) - \dot{q}((t_{i})^{+}) \right). \end{cases}$$
(15)

Plus classiquement, l'utilisation d'une θ -méthode ($\theta \ge 1/2$) pour l'intégration des forces intérieures et pour l'estimation des déplacements conduit à :

$$\begin{cases} \int_{t_i}^{t_{i+1}} F(q, \dot{q}, t) dt = h \left\{ (1-\theta) F_i + \theta F_{i+1} \right\}, \\ q_{i+1} = q_i + h \left\{ (1-\theta) \dot{q}_i + \theta \dot{q}_{i+1} \right\}. \end{cases}$$
(16)

On utilise ici la notation générique : $X(t_i) = X_i$, étendue aux fonctions de plusieurs variables : $F(q(t_i), \dot{q}(t_i), t_i) = F_i$. En utilisant (16) et (15), le système (14) devient ainsi (pour des raisons évidentes, les variables numériques ont une valeur unique à un incrément de temps donné) :

$$\begin{cases} M_{i+1} \left(\dot{q}_{i+1} - \dot{q}_i \right) - h \left\{ (1 - \theta) F_i + \theta F_{i+1} \right\} + h r_{i+1} = 0, \\ q_{i+1} = q_i + h \left\{ (1 - \theta) \dot{q}_i + \theta \dot{q}_{i+1} \right\}. \end{cases}$$
(17)

La première équation de (17) est du type $\mathcal{R}(\dot{q}_{i+1}) = 0$. Elle est résolue par une méthode de Newton-Raphson (k est l'exposant d'itération). On note :

$$\begin{cases}
M^{k} = M(q_{i+1}^{k}, t_{i+1}), \\
C^{k} = -\frac{\partial F_{i+1}}{\partial \dot{q}}(\dot{q}_{i+1}^{k}, q_{i+1}^{k}, t_{i+1}), \\
K^{k} = -\frac{\partial F_{i+1}}{\partial q}(\dot{q}_{i+1}^{k}, q_{i+1}^{k}, t_{i+1}), \\
w^{k} = (M^{k} + h\theta C^{k} + h^{2}\theta^{2}K^{k})^{-1},
\end{cases}$$
(18)

où C^k est la matrice d'amortissement tangente, K^k la matrice de raideur tangente, w^k l'inverse de la matrice des itérations. Dans la suite, on désigne par \dot{q}_{ib}^{k+1} la valeur de la vitesse \dot{q}_{i+1}^{k+1} en l'absence de contact (i.e. lorsque $r_{i+1}^k = 0$). La résolution de (17) conduit au système suivant :

$$\begin{cases} \dot{q}_{i+1}^{k+1} = \dot{q}_{ib}^{k+1} - w^k hr_{i+1}^k, \\ q_{i+1}^{k+1} = q_i + h\left\{(1-\theta)\dot{q}_i + \theta\dot{q}_{i+1}^{k+1}\right\}. \end{cases}$$
(19)

4.3. Contact, frottement et prise en compte de l'adhérence

Pour la simplicité des écritures et de la mise en œuvre, le problème de contact frottant avec adhérence est résolu pour chaque contact α dans son repère local. Pour ce faire, les variables locales sont alors liées aux variables globales de la manière suivante :

$$\dot{U}^{\alpha} = H^{\star \alpha}(q)\dot{q} , \quad r^{\alpha} = H^{\alpha}(q)R^{\alpha}.$$
⁽²⁰⁾

Les vitesses sont liées par l'intermédiaire de relations cinématiques linéaires $(H^{\star \alpha})$. Par dualité, R^{α} est le représentant local de la réaction r^{α} au contact α . Les applications linéaires H^{\star} et H vérifient : $H^{\star} = H^{T}$.

En utilisant (20), l'écriture locale de la première équation de (19) donne :

$$\begin{split} (\dot{U}^{\alpha})_{i+1}^{k+1} &= (\dot{U}_{\scriptscriptstyle \mathrm{lib}}^{\alpha})^{k+1} - \sum_{\beta} (W^{\alpha\beta})^k h(R^{\beta})_{i+1}^k, \\ &= (\dot{U}_{\scriptscriptstyle \mathrm{lib}}^{\alpha})^{k+1} - \sum_{\beta \neq \alpha} (W^{\alpha\beta})^k h(R^{\beta})_{i+1}^k - (W^{\alpha\alpha})^k h(R^{\alpha})_{i+1}^k, \\ &\underbrace{\underbrace{(\dot{U}_{\scriptscriptstyle \mathrm{lib}}^{\alpha}}^{\alpha})^{k+1} - \sum_{\beta \neq \alpha} (W^{\alpha\beta})^k h(R^{\beta})_{i+1}^k}_{&= (\dot{U}_{\scriptscriptstyle \mathrm{lib}}^{\alpha})^{k+1} \pmod{2} \end{split}$$

où on a posé, pour le contact α :

$$(W^{\alpha\beta})^{k} = H^{\star\alpha}(q^{k})w^{k}H^{\beta}(q^{k}) \quad \text{et} \quad (\dot{U}^{\alpha}_{_{\rm lib}})^{k+1} = H^{\star\alpha}(q^{k})\dot{q}^{k+1}_{_{\rm lib}}.$$
 (21)

Pour la prise en compte du contact unilatéral et du frottement, nous notons synthétiquement que le couple $\left((\dot{U}^{\alpha})_{i+1}^{k+1}, (R^{\alpha})_{i+1}^{k+1} \right)$ doit respecter les graphes de Signorini et de Coulomb. Brièvement (et avec les conventions des équations (1) et (2)) si un couple (\dot{x}, y) respecte les graphes de Signorini et Coulomb, on a le système (22).

$$\begin{cases} (x_{\rm N}, y_{\rm N}) \text{ vérifient} : x_{\rm N} \ge 0, \ y_{\rm N} \le 0, \ x_{\rm N} y_{\rm N} = 0 \\ (\dot{x}_{\rm T}, y_{\rm T}) \text{ vérifient} : \begin{cases} \|y_{\rm T}\| \le \mu |y_{\rm N}|, \\ \|y_{\rm T}\| < \mu |y_{\rm N}| \Rightarrow \dot{u}_{\rm T} = 0, \\ \|y_{\rm T}\| = \mu |y_{\rm N}| \Rightarrow \exists \lambda \ge 0, \ \dot{x}_{\rm T} = \lambda y_{\rm T}. \end{cases}$$
(22)

En omettant les indices d'itération et d'incrément, on peut réécrire le problème tridimensionnel sous la forme du système (23) où $\rho > 0$ et $D(\mu | R_{N}^{\alpha} |)$ est le disque de rayon $\mu | R_{N}^{\alpha} |$ centré en l'origine.

$$\begin{pmatrix} \dot{U}^{\alpha} - \dot{U}^{\alpha}_{\text{ibloc}} + W^{\alpha\alpha}hR^{\alpha} = 0, \\ R^{\alpha}_{N} - \operatorname{proj}_{\mathbb{R}^{-}} (R^{\alpha}_{N} + \rho U^{\alpha}_{N}) = 0, \\ R^{\alpha}_{T} - \operatorname{proj}_{D(\mu|R^{\alpha}_{N}|)} (R^{\alpha}_{T} + \rho U^{\alpha}_{T}) = 0. \end{cases}$$

$$(23)$$

Il existe donc une fonction ϕ telle que l'on ait: $\phi(\dot{U}^{\alpha}, R^{\alpha}) = 0$. Les racines de cette équation non linéaire sont calculées par un algorithme de Newton généralisé aux fonctions non régulières (*voir* [ALA 88]).

Selon le modèle présenté au paragraphe 2, la prise en compte de l'adhérence dans les problèmes de contact frottant peut se faire par le changement de variable suivant : $\widetilde{R} = R - R_{adh}$, où R_{adh} est en toute généralité une force de résistance supplémentaire dont l'intensité diminue lorsque la décohésion progresse. En particulier, on a ici : $R_{adh} = \beta^2 (C_N U_N n + C_T U_T)$.

En posant $\widetilde{\dot{U}_{\text{libloc}}^{\alpha}} = \dot{U}_{\text{libloc}}^{\alpha} + W^{\alpha\alpha}hR_{\text{adh}}^{\alpha}$, la réécriture de la première équation de (23) est alors :

$$\dot{U}^{\alpha} = \dot{U}^{\alpha}_{\text{libloc}} - W^{\alpha\alpha}h\tilde{R}^{\alpha} = \overleftarrow{\dot{U}^{\alpha}_{\text{libloc}}} - W^{\alpha\alpha}hR^{\alpha}.$$
(24)

5. Mise en œuvre numérique

Une particularité des développements numériques proposés est le découplage entre les non-linéarités usuelles en mécanique des milieux continus (algorithme de Newton-Raphson) et l'endommagement surfacique en présence de frottement (modèles de zone cohésive). Du point de vue de la mise en œuvre numérique, des algorithmes traditionnels, traitant des non-linéarités matérielles et géométriques peuvent ainsi être pris en compte aisément. Dans l'exemple qui suit, une formulation éléments finis lagrangienne totale est notamment utilisée pour la résolution d'un problème de flambement.

L'algorithme de résolution s'articule de la manière suivante :

```
\begin{bmatrix} \underline{boucle}: \text{ incrément de temps et Newton-Raphson} \\ \underline{boucle}: \text{ couplage adhérence/frottement} \\ \text{ point fixe sur } \dot{U}, R, \beta \\ \begin{bmatrix} \underline{boucle}: \text{ parcours des nœuds de contact} \\ (\alpha nœud courant) \\ 1. \text{ évaluation de } \dot{U}_{\text{inbloc}}^{\alpha} \\ 2. \text{ calcul de } \beta^{\alpha} \text{ après estimation de } U^{\alpha} \\ 3. \text{ calcul de } R_{\text{adh}}^{\alpha} \\ 4. \text{ changement de variable } \widetilde{U}_{\text{inbloc}}^{\alpha} = \dot{U}_{\text{inbloc}}^{\alpha} + W^{\alpha\alpha}hR_{\text{adh}}^{\alpha} \\ 5. \text{ calcul de } \dot{U}^{\alpha} = \widetilde{U}_{\text{inbloc}}^{\alpha} - W^{\alpha\alpha}hR^{\alpha} \\ \begin{bmatrix} \underline{boucle}: \text{ résolution de } \phi(\dot{U}^{\alpha}, R^{\alpha}) = 0 \\ \text{ itérations de la méthode de Newton généralisée.} \end{bmatrix}
```

Les contraintes unilatérales sont prises en compte dans cet algorithme avec certaines spécificités de mise en œuvre numérique.

Une attention particulière est notamment portée au choix des repères locaux. Pour chaque contact α , deux repères distincts sont introduits. Le premier est le repère local classique en mécanique du contact (approche maître-esclave), actualisé à chaque incrément de temps. Le second est celui de l'adhérence coïncidant avec le premier repère à l'instant initial. Il est ensuite fixé de manière à conserver l'histoire des variables internes u_{N} et u_{T} du modèle de zones cohésives.

Par ailleurs, la formulation en vitesse est un choix délibéré qui apparaît naturel pour le traitement du frottement de Coulomb. Elle impose de recourir à des estimations convenables des interstices pour le contact unilatéral et des sauts de déplacements pour le modèle de zone cohésive. La vitesse relative au contact intégrée par une θ -méthode fournit une estimation cohérente des sauts de déplacements. Une estimation prédictive est retenue pour les interstices afin d'assurer la stabilité du schéma et d'éviter les artefacts oscillatoires habituellement rencontrés dans ce type de problèmes (*voir* [JEA 99]).

6. Un exemple académique : délamination par flambement

Pour illustrer les perspectives de ce modèle et de l'outil numérique, nous présentons un exemple de fissuration par flambement d'une plaque carrée. La plaque, de côté 2L présente une pré-fissure carrée en son centre de côté 2D, située à une profondeur h_1 de son épaisseur h (voir FIG. 3). En compression biaxiale (déplacements imposés u sur les cotés), le premier mode de flambement est un mode local de cloquage de la partie la plus fine de la plaque. Dans le cas d'une pré-fissure circulaire, nous renvoyons à [COC 91] pour l'étude de ce type de flambement.

Le maillage est composé d'éléments H8 en formulation lagrangienne totale. Sur la surface carrée de chacun de ces éléments correspondant à la zone de contact, on place quatre points de contact adhésif de position relative $\{(\frac{1}{4}, \frac{1}{4})(\frac{1}{4}, \frac{3}{4})(\frac{3}{4}, \frac{1}{4})(\frac{3}{4}, \frac{3}{4})\}$. Les paramètres géométriques et matériels sont donnés par :

$$L = 40mm, D/L = 0.6, h/L = 0.1, h_1/h = 0.2,$$
 (25)

$$E = 130GPa, \ \nu = 0.3, \ \rho = 2500kg/m^3,$$
 (26)

$$\mu = 0.1, \ w = 100 J/m^2, \ C_{\rm N} = 130 GPa/mm, \ C_{\rm T} = C_{\rm N},$$
 (27)

$$p = 1, \ g(\beta) = \beta, \ b = 0.$$
 (28)

Les paramètres mécaniques de la zone cohésive (27-28) conduisent à une évolution de la fissuration indépendante de la vitesse de sollicitation (p = 1, b = 0). L'énergie de décohésion est fixée à $100J/m^2$. Les raideurs normale et tangentielle assurent que le comportement du système solide/zone cohésive/solide avant décohésion est très voisin du comportement élastique du solide seul. Avant amorçage de la fissuration, la

présence de la zone cohésive ne remet donc pas en question le comportement élastique de la plaque. Enfin, les comportements de la zone cohésive en mode I et en mode II-III sont consirérés identiques.

Les rapports géométriques (25) conduisent, pour une pré-fissure circulaire dans un matériau isotrope, au meilleur compromis entre une charge de flambement faible et une énergie de fissuration élevée ([EVA 84]). Ces valeurs représentent le cas critique entre les deux cas extrêmes suivants : pour une pré-fissure proche de la surface $(h_1/h \ll 1)$ et peu étendue $(D/L \ll 1)$, le flambement apparaît prématurément puis se développe progressivement selon un mode local générant une énergie de fissuration faible, à l'inverse, pour une pré-fissure profonde et étendue, un mode de flambement local apparaît pour des valeurs de charges de flambement élevées puis se développe rapidement selon un mode global.

Figure 2. Propagation de la décohésion

Le pas de temps est choisi de manière à simuler une évolution quasi-statique de la structure en l'absence de propagation de fissures ($\Delta T = 4.10^{-6}s$). Les effets dynamiques ne jouent ainsi un rôle qu'en présence d'une rupture brutale.

Dans le cas présenté ici d'une pré-fissure carrée, la FIG. 2(a) illustre qu'un mode de flambement local croît progressivement jusqu'à $u/u_{max} = 0.890$. Au-delà, ce flambement devient le moteur de la fissuration : l'énergie élastique stockée dans le mode de flambement est dissipée par fissuration lorsque le seuil énergétique de décohésion est atteint. La FIG. 2(b) indique qu'un mode global de flambement apparaît ensuite, faisant intervenir du contact unilatéral et du frottement. Cette situation est une conséquence de la propagation de la fissure qui conduit à une diminution de la charge limite de flambement global de la plaque. L'endommagement surfacique progresse alors rapidement en mode mixte. L'évolution de la variable d'endommagement β au cours de la fissuration est donnée sur les FIG. 3 et 4.

Figure 3. Evolution de la variable d'endommagement β au cours de la fissuration de la plaque

Figure 4. Evolution de la variable d'endommagement β à l'angle de la pré-fissure

7. Conclusion

Une formulation dynamique tridimensionnelle du modèle de zone cohésive de Raous-Cangémi-Cocu [RAO 99] a été proposée. Ce modèle, couplant endommagement, frottement de Coulomb et contact unilatéral permet de simuler l'amorçage et la propagation de la fissuration des solides et de la décohésion des interfaces. Il permet notamment de modéliser les décohésions de l'interface fibre/matrice [RAO 99], les interactions fissure matricielle/interface dans les composites [MON 00], ou encore les mortiers de liaison entre blocs de maçonnerie [ACA 00].

Lorsque la fissuration ou la décohésion interfaciale est stationnaire, on retrouve le modèle classique de la mécanique de la rupture avec une prise en compte supplémentaire d'éventuelles conditions de non pénétration et de frottement sur les lèvres de la fissure. Il a cependant été montré que ce type de comportement surfacique adoucissant peut conduire à des solutions à saut. La formulation dynamique que nous avons proposée permet en particulier de régulariser ces solutions.

La mise en œuvre numérique du modèle a été réalisée dans le cadre de la méthode "Non-Smooth Contact Dynamics" dédiée au traitement des évolutions dynamiques en présence de contraintes unilatérales. Le cadre mathématique sur lequel elle repose autorise notamment un traitement convenable des évolutions éventuellement discontinues des vitesses sur la zone de contact (problème d'impact). La pertinence du modèle et de l'outil numérique correspondant a été soulignée sur un exemple tridimensionnel de fissuration par flambement d'une plaque carrée pré-fissurée. Pour le cas d'une préfissure carrée, on retrouve qualitativement des résultats précédemment obtenus dans la littérature pour une pré-fissure circulaire.

8. Bibliographie

- [ACA 00] ACARY V., « Contribution à la modélisation mécanique et numérique des édifices maçonnés », PhD thesis, Université d'Aix-Marseille II, 2000.
- [ALA 88] ALART P., CURNIER A., « A generalized newton method for contact problems with friction », *Journal de Mécanique Théorique et Appliquée*, vol. 7, 1988, p. 67-82.
- [ALL 95] ALLIX O., LADEVÈZE P., CORIGLIANO A., « Damage analysis of interlaminar fracture specimens », *Composite Structures*, vol. 31, 1995, p. 61-74.
- [CAN 96] CANGÉMI L., COCU M., RAOUS M., « Adhesion and friction model for the fibre/matrix interface of a composite », *Third biennal Joint Comference on engineering* system design and analysis, Montpellier, July 1-4 1996, ASME, p. 157-163.
- [CHA 00] CHABOCHE J.-L., FEYEL F., MONERIE Y., « Interface debonding model: a viscous regularization with a limited rate dependency », *Int. J. Solids Structures*, vol. à paraître, 2000.
- [COC 91] COCHELIN B., POTIER-FERRY M., « A numerical model for buckling and growth of delaminations in composite laminates », *Computer Meth. Appl. Mech. and Engrg.*, vol. 89, 1991, p. 361-380.
- [COC 96] COCU M., PRATT E., RAOUS M., « Formulation and approximation of quasistatic frictional contact », Int. J. Eng. Sci., vol. 34, n° 7, 1996, p. 783-798.
- [COS 97] COSTANZO F., WALTON J., « A study of dynamic crack growth in elastic materials using a cohesive zone model », *Int. J. Engng Sci.*, vol. 35, nº 12-13, 1997, p. 1085-1114.
- [EVA 84] EVANS A., HUTCHINSON J., « On the mechanics of delamination ans spalling in compressed films », *Int. J. Solids Structures*, vol. 20, n° 5, 1984, p. 455-466.
- [FRé 82] FRÉMOND M., « Equilibre des structures qui adhèrent à leur support », C. R. Acad. Sci. Paris, vol. 295, n° Série II, 1982, p. 913-916.
- [JEA 99] JEAN M., « The Non Smooth Contact Dynamics method », MARTINS J., KLAR-BRING A., Eds., Computer Meth. Appl. Mech. and Engrg., Special Issues on Computational Modeling on Contact and Friction, vol. 177, 1999, p. 235-257.
- [MON 00] MONERIE Y., « Fissuration des matériaux composites: rôle de l'interface fibre/matrice », PhD thesis, Université d'Aix-Marseille II, 2000.
- [MOR 74] MOREAU J.-J., « On unilateral constraints, friction and plasticity », CAPRIZ G., STAMPACCHIA G., Eds., New variational techniques in mathematical physics, CIME II ciclo 1973, Edizioni Cremonese, 1974, p. 175-322.
- [MOR 88] MOREAU J.-J., « Unilateral contact and dry friction in finite freedom dynamics », MOREAU J.-J., PANAGIOTOPOULOS P., Eds., *Nonsmooth mechanics and applications*, p. 1-82, CISM 302, Spinger Verlag, 1988.
- [NEE 99] NEEDLEMAN A., ROSAKIS A., « The effect of bond strenght and loading rate on the conditions governing the attainment of intersonic crack growth along interfaces », J. Mech. Phys. Solids, vol. 47, 1999, p. 2411-2450.
- [RAO 97] RAOUS M., CANGÉMI L., COCU M., « Un modèle couplant adhérence et frottement pour le contact unilatéral entre deux solides déformables », C. R. Acad. Sci. Paris, vol. 329, n° Série II b, 1997, p. 503-509.
- [RAO 99] RAOUS M., CANGÉMI L., COCU M., « Consistent model coupling adhesion, friction and unilateral contact », *Computer Meth. Appl. Mech. and Engrg.*, vol. 177, n° 3-4, 1999, p. 383-399.
- [XU 94] XU X.-P., NEEDLEMAN A., « Numerical simulations of fast crack growth in brittle solids », J. Mech. Phys. Solids, vol. 42, n° 9, 1994, p. 1397-1434.