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Sur l’équivalence entre les systèmes de complémentarité, les systèmes projetés
et les inclusions différentielles

Résumé : Dans cette note, nous prouvons l’équivalence – sous des conditions appropriées – entre plusieurs formalismes
dynamiques: systèmes dynamiques projetés, deux types d’inclusions différentielles unilatérales, et une classe de systèmes
dynamiques de complémentarité. Chacun de ces systèmes dynamiques peut aussi être vu comme un système dynaique
hybride. L’intérêt d’un tel travail est de généraliser des travaux antérieurs, mais aussi de jeter un nouvel éclairage sur les
relations entre différents formalismes connus.

Mots-clés : Systèmes de complémentarité, dynamique projetée, dynamique unilatérale, systèmes dynamiques hybrides,
inclusion différentielle



On the Equivalence Between Complementarity Systems, Projected Systems and Unilateral Differential Inclusions 3

1 Introduction, notation

Unilateral dynamical systems have long been studied in the applied mathematics literature [11, 12, 1, 8, 13], because they
find important applications in various fields (like mechanics, economics, and electrical circuits as shown recently in [2]).
They usually take the form of differential inclusions or variational inequalities. In parallel the theory of complementarity
problems has witnessed an impressive development [5], essentially motivated by optimization problems. Recently, com-
plementarity systems, which consist of ordinary differential equations coupled to complementarity conditions, have been
the object of deep studies in the control literature [6, 3]. Basic convex analysis tells us that complementarity problems can
equivalently be formulated as a special type of generalized equations (i.e. equations of the form ���������
	 , where ������	
is multivalued). This suggests that there should also exist close links between complementarity systems and unilateral
dynamical systems. From a general perspective in the study of hybrid dynamical systems and their control, it seems quite
important to clarify the relationships between all these various formalisms. First steps in this direction can be found in
[6, 3].

Thus, the object of this note is to study the relationship between four different formalisms: projected dynamical
systems [14, §2.2], unilateral differential inclusions [11, 12, 1, 13, 10], and complementarity dynamical systems [6, 3].
We will also discuss existence of solutions to these systems. For other works related with these problems, see [8, 4, 16].

Our material is fairly standard, concerning convex analysis (for example [9], mainly its Chap. III) and differential
inclusions ([1]). We work in �� considered as a Euclidean space, with scalar product ��������� and associated norm ����� .
Recall that the normal cone to a nonempty closed convex set �����  at ����� is "! ����	$#&%('*)+���  #,�-).�/�10��
�32���� for all �4�5��67�
while the tangent cone is the polar of the normal cone, which means89! ���
	$#:%<;  =! ���
	?>A@1#&%B'DC��5�  #,�E)F�GCH�$2I��� for all )J�  "! ���
	K6
(if �ML��� , we set

 =! ����	7% 89! ���
	7%ON ).
In this paper we are given a nonempty closed convex set PQ�R�S (the feasible set) and two functions T�#��SUWVX�Y

and Z[#.�  V\�  . Associated with this data, we consider (together with the initial condition �]���H	7%��_^+��P )` the Projected Dynamical System a�]��b�	 a.e.%dc�e/f.gih
jlknm.kpo�q�q��i0"ZY���]��b�	�	Y0rT���b�	�	 (PDS)

(a.e. means almost everywhere with respect to b , in the Lebesgue measure),` the two Unilateral Differential Inclusions

0 a�]��b�	 a.e.�OZY���]��b�	�	�stT���b�	�s  h j knm.kpo�q�q � a�]��b�	�	��
0 a�]��b�	 a.e.�OZY���]��b�	�	�stT���b�	�s  "u ���]��b�	/	�v

(UDI- w u )
(UDI- P )

Remark 1 In [14, 7], (PDS) is presented in different but equivalent ways. Section 2.1 below will clarify the equivalence
between the various formulations. x

Note that any solution to any of the above systems must by necessity lie in P . We will also consider the particular
case where P is described explicitly by constraints:

P(%R'D�5�5�  #Fy]����	$2��z�5�Y{|67� (1)

where the functions y~}�#��  V�� , ��%��.�Kv�vKv��/� are hereby assumed continuously differentiable; we will use y]�i�&	�#&%�-y
�.�i�&	���vKvKv��Gy { ��� 	/	�� . The gradient of y~} at � is ��y~}G���
	9���  , so that

y,}G����s�C�	7%�y~}/���
	�s��E��y~}/���
	��/C��]s����/��C��K	 for all C����  .

The constraint-space � { is equipped with the standard dot-product: we write �_�7y for � {}n��� �,}�y~} and the notation��y]���
	/� means � {}��]� �~}-��y~}����
	$�5�Y . The nonnegative orthant of � { is

� { U #:%('*����� { #H�~}��I�9����%��.��vKv�v����r67�
we will also use the notation ����� ; likewise for the nonpositive orthant � { � .

With this notation, we consider in addition to (PDS) and (UDI):` the Complementarity Dynamic System�
0 a�]��b�	 a.e.%�ZY���]��b�	�	�s�T_��b�	lsM��y����]��b�	/	������y]������b�	/	7���5�I� (CDS)

RR n° 5107



4 Vincent Acary , Bernard Brogliato , Aris Daniilidis , Claude Lemaréchal

( � means orthogonality: � � y����]��b�	/	7%�� ).
We will see that (PDS) and (UDI- w u ) are always equivalent, while (UDI- P ) may have more solutions; and (UDI- P )

is equivalent to (CDS) if some additional constraint qualification holds. Ultimately, all of these systems are equivalent if
(UDI- P ) has (no solution at all or) a unique solution which is slow, i.e.

a����b�	 is of minimal norm in the set it belongs to1:

0 a�]��b�	S%OZY������b�	/	�sWT���b�	ls��� � with �� % � e����	��
���� jlknm kno�q�q �KZY������b�	/	�sWT���b�	ls � ��v

2 Basic equivalences

We start by establishing some equivalences which do not use the fact that
a�]��b�	 is the (time) derivative of ����b�	 . These two

vectors are in fact considered as two independent vectors of �  .

2.1 Equivalent formulations of (PDS)

In [14, Def. 2.5] and [7, Def. 2.1], (PDS) is defined under different forms. The first one is2

a�Y��b�	 a.e.%��������� ^ c�eGf g
u ������b�	�s�����	Y0 �]��b�	

� � (2)

where � #&%�0"ZY������b�	/	Y0[T_��b�	 .
Proposition 1 The righthand sides of (PDS) and (2) are the same.

Proof. This is Proposition III.5.3.5 of [9]. x
Another form of (PDS) is presented in [14, 7], for which we need special notation: ��� introduced in the next lemma,

and � u after it.

Lemma 1 Given a closed convex cone �����  and �rL��� @ , the optimization problems

�	���"'�� � � ���3# � ���5�3� � �=2R� 6 (3a)

�	���"'�� � � ���3# � ���5�3� � �9%�� 6 (3b)

have the same value !#"�� and the same unique solution �$� .

Besides, c�eGf g�%��&��	('%�� and �)� % c,e/f.g*%��&��	��c,e/f.g*%��&��	K� .

Proof. By definition of � @ , there exists at least one � in (3a) such that � � � ���+"�� ; hence the optimal value is positive and
must be attained at some �$� of norm 1; strict convexity properties of the unit ball imply that this �,� must be unique. The
first statement is proved.

Now the projection of � onto � is the unique solution of

�	��
�� % � � 0-�_�/.S�
or equivalently

�	��
�� % '�� � 0#��� . #~� � �$%d��c,e/f.g0%��&��	K� 6
(the extra constraint being redundant!). Up to the constant �1�_� . sQ��c�eGf g�%z�2��	�� . , the above optimization problem is
equivalent to

�3��
�4 % 'H0+� � � �����7� � � %<��c�eGf g % �&��	K� 67v
In view of positive homogeneity, this latter problem has a unique solution collinear to that of (3b), namely ��c�eGf g % �&��	K� �5� .
The proof is complete. x

Noting that c�eGf g6%z�2��	7%�� if � �7� @ , we see from (3a), (3b) that the operator � u used in [14, 7] is equal to

� u ���]�6��	7%8�z0I� � � �6��� � � v
1Being closed and convex, this set has a unique point of minimum norm.
2The writing 9;:�< of [14, 7] assumes 9>=?< , i.e. 9A@B< . In fact, the difference quotient in (2) need not have a limit when 9 is allowed to take either

sign.

INRIA



On the Equivalence Between Complementarity Systems, Projected Systems and Unilateral Differential Inclusions 5

Corollary 1 Set ��#&%d0"ZY���]��b�	/	�0 T_��b�	 and � #:%  =u ���]��b�	�	 . Use the notation of Lemma 1, setting � � %R� if ���-� @ %8 u ���]��b�	�	 . Then the righthand side of (PDS) is

c�eGf g�� j�knm kno�q�q �&��	7%8�z0rc,e/f.g*%��&��	7%8�10�� � � �6��� � � v
Proof. Since

8 u ������b�	�	|% ;  u ���]��b�	�	�> @ , Moreau’s decomposition theorem3 tells us that the righthand side of (PDS) is
�z0rc�eGf g�%��&��	 . Then use Lemma 1, remembering that ��c�eGf g�%��&��	��6���7%d��c�eGf g*%��&��	K� . . x

This proves the equivalence of (PDS) with the other formulation of [14, 7], namelya�]��b�	7% � u ������b�	��K0"ZY������b�	/	�0rT���b�	�	�v
2.2 Geometric formulations: Relations between (PDS) and (UDI)

In this subsection, we deal with the case of an abstract set P , not necessarily described by constraints.

Proposition 2 Let �\�M�  be a nonempty closed convex cone. For any two vectors � and ) in �  , the following relations
are equivalent:

)=%�c�eGf g ! �&��	�� (4a)

�10t)J�  ! �E)*	�� (4b)

)+���[� �10t)J���r@.� �&�z0�)F�G)*�S%���� (4c)

�+0t)J�5� @ �� � �5� @ �"�K)�� . 2B�E)F�6�z0 � �_v
�

(4d)

Proof. Use the variational characterization of a projection: (4a) is equivalent to

)+��� and �&�10t)F�G)���0t)*�$2M�,� for all ) � ��� . (5)

By definition of a normal cone, this is exactly (4b). Since � is a cone,
 J! �-)*	7%�� @
	 ' ).6�� , so that (4b) is also equivalent

to (4c).
Now let � and ) satisfy (4c) and take � �5� @ ; because )J��� , we have � � � )*�32M�1%(�2�]01)F� )D� : (4d) holds. Conversely,

let � and ) satisfy (4d). In particular, � � �G)*� is bounded from above (by �E)F�6����0���)�� . ) when � describes the cone � @ , and
therefore cannot be strictly positive4; thus, � � �G)*� 2(� for all � �W� @ , i.e. ) �W� @G@ %�� ; combining ��0�)4�t� @ with)+��� , we have �-).� �"0�)*�32M� . Besides, take � %�� in (4d) to see that �-)F�G)70����32�� . Piecing together, (4c) holds and the
proof is complete. x

$C$
����

�������

�������������������� �!�����

"$# �&%�'(�����������

� )

Figure 1: The only possible solution to (PDS) and (UDI- w u )

The form (4c) clearly reveals that ) and �z0�) make up the Moreau decomposition of )$s ��0W)+% � ; in particular, it
follows that ��0M) %dc�eGf g !+* �2��	 . Thus, the mere relation (4b) implies that both ) and ��0I) are fairly special points in
their respective cones. This is illustrated by Fig. 1, and the link with Problems (PDS) and (UDI) of §1 is clear:

3See [9, Thm. III.3.2.5]: two mutually polar cones , and ,(- decompose the space. More precisely, the projections onto , and ,(- of a given.+/�021 are the unique elements in , and , - respectively, mutually orthogonal, and summing up to . :.43�5�687:98;=<>.�?A@B5�6C7:98; * <>.�?EDGF>5�6C7H9I;�<J.�?IDI5�687:98; * <>.�?LKM3 <2N
4if FJOQP�DCRHK =?< for some OSPT/(U - , just take O�3WVXOSP with V : @ZY .

RR n° 5107



6 Vincent Acary , Bernard Brogliato , Aris Daniilidis , Claude Lemaréchal

Corollary 2 Given two vectors �|%��]��b�	$��P and
a�|% a����b�	$���� , the following three statements are equivalent:

(i) (PDS) holds;
(ii) (UDI- w u ) holds;
(iii) (UDI- P ) holds, together with the following two equivalent properties:

(iii) �90 a����b�	7%�ZY������b�	�	�s�T_��b�	lsWc�eGf g � j knm kno�q�q��i0"ZY���]��b�	/	Y0rT���b�	�	 .
(iii) . the vector 0 a�]��b�	 is of minimum norm in ZY������b�	/	]stT���b�	ls  u ���]��b�	�	 ,

Proof. Apply Proposition 2 with � #&% 8 u ���]��b�	�	 (which is nonempty), and �r#&% 0"ZY���]��b�	/	S0�T_��b�	 , )�#:% a����b�	 ; note that� @ %  =u ������b�	/	 . Then (4a) = (PDS), (4b) is (UDI- w u ) and the first line of (4d) is (UDI- P ).
Now write the second line in (4d) as

�E��0I��0")*	���� � 0-��	Y0��i0")*	��92M� for all � � 0#��	9��� @$0#�

to see that it means 0")"%�c�eGf g ! *�� � ���H	 : 0")=% � e����	��
�� ! *�� � � � �Y�
which is (iii) � . The form (iii) . comes with the change of variable � s���% � � :

0") %8� e����	��
���  !+*W� � �,0-�_�Yv x
Thus, (UDI- P ) is equivalent to the other ones if and only if it has the so-called slow solution [4] (

a�]��b�	 is of minimal
norm) as only possible solution. Note also that the last form in the statement of Corollary 2 can be written

a����b�	�%
�z0rc�eGf g � j knm kno�q�q��&��	 with ��%�0"ZY������b�	�	�0[T_��b�	 , which is just the formulation of [14, 7] (remember Corollary 1).

2.3 Formulation using constraints explicitly

In this subsection, we turn to (CDS), which requires some more notation and material from convex analysis.
For �5��P , we denote by � ���
	$#:%B'D�S�r'F�.��vKv�v����r6J#Fy } ����	7%���6 (6)

the set of active constraints at � and we linearize the constraints, introducing the cones

w������
	$#:%('DC����  #~�E��y } ����	��GCH� 2M���,�S� � ���
	 6
�	�,���
	$#:%(; w������
	?> @ %�
�� } � knmDq � } ��y } ���
	9#F� } �I�,���7� � ���
	�� (7)

(still with the convention w������
	 % ���,����	3%RN if �ML�[P ). Beware that they need not coincide with the usual tangent and
normal cones5 to P at � . Nevertheless we always have

 u ���
	�� ���~����	 and
89u ���
	9�Mw��,����	 .

Actually, a key assumption for what follows is
8"u % w � , or equivalently

 =u % � � . This is guaranteed under any of
the following qualification conditions (see [9, § VII.2.2] for example):

� �5�5PI����C�����{ such that �E��y~}G���
	��/C������ for � � � ����	 , (QC.1)

which is dually equivalent to the so-called Mangasarian-Fromowitz assumption:

� } � k�m�q � } ��y } ����	7%��
with �,}S�M�9���S� � ����	

� %�� � } %��9�Y� � � ����	�v (QC.2)

Note that (QC.2) holds in particular if

The gradients of the active constraints at � are linearly independent (QC.3)

(just remove the restriction �
}$��� in (QC.2)!). When the y
} ’s are convex, it can be seen that (QC.1) is equivalent to the
so-called Slater assumption: �3������  #"y } �1���	��M�9�_��%B�F�KvKv�v����dv (QC.4)

5With � 3�� , the set
'

of (1) defined by the constraint � <�� ?! 3�"#�$" % makes a counterexample:
' 3'& <�( but )+* < < ?(3$0 1 , although,.- < < ?M3/& <�( .

INRIA



On the Equivalence Between Complementarity Systems, Projected Systems and Unilateral Differential Inclusions 7

Proposition 3 Two vectors �|%��]��b�	 and
a�|% a�]��b�	 in �S satisfy (CDS) if and only if they satisfy

0 a����b�	$�5ZY������b�	�	�s�T_��b�	ls � � ������b�	�	_v (UDI- y )

If
8 u %�w�� , which holds for example under one of the qualification conditions (QC.1-4), this system is in turn equivalent

to (UDI- P ).

Proof. Since an �]��b�	zL�5P can satisfy neither system, we may assume ����b�	$��P . The second line in (CDS) means: �l}���� ,�J% �.��vKv�v���� and �~}=%Q� if y~}/���]��b�	/	 �d� , i.e. if �|L� � ���
	 . From the definition (7) of � � , (CDS) is therefore exactly
(UDI- y ). The result follows. x

Let us summarize this section: the following relations hold –
�

(P) standing for the solution set of a problem (P):
�

(PDS) =
�

(UDI- w u ) � � (UDI- P ) � � (UDI- y ) =
�

(CDS)

and the second inclusion becomes an equality if qualification holds. The first inclusion becomes an equality when
�

(UDI-P ) is either empty or reduces to the slow solution.

3 Existence results

The content of the previous results is void if the various systems in §1 have no solution. In fact, our results in §2 show that
existence for (PDS) = (UDI- w u ) implies existence for (CDS) = (UDI- P ) (under constraint qualification); and uniqueness
for (CDS) = (UDI- P ) implies for (PDS) = (UDI- w u )
– either non-existence,
– or uniqueness (with equivalence) in case the solution is slow.

This latter situation occurs for example in the following framework:

Theorem 1 Assume that T ��� � ��� U 	 , and that Z is continuous over �  and monotone:

�-ZY���
	�0�ZY����	���� 0 ���3�M� for all � , �4���  .

Then, for any initial condition �]���H	$�5P , (UDI- P ) has a unique solution over the whole of �3U , which is slow:
a����b�	 is

of minimal norm in the set ZY���]��b�	/	]stT���b�	ls  u ������b�	/	 .
Proof. Note that the multivalued mapping � #:% Z�s  u is maximal monotone ([1, Cor. 2.7])6 and write (UDI- P ) asa�Y��b�	�s���������b�	/	���0$T���b�	 . The result is [1, Prop. 3.4]. x

The conclusion is then straightforward:

Theorem 2 Make the assumptions of Theorem 1. For any �]���H	$�5P , all of the problems stated in §1 have the same unique
solution. Furthermore

a����b�	$� 8 u ���]��b�	/	 .
Let us conclude with some remarks.
We believe that our results easily extend to a nonconvex but so-called regular set P [15, Def. 6.4]; see also [4, 17] for

a study of differential inclusions in this context. In case of explicit constraints, regularity occurs when the differentiabley~} are not necessarily convex – but satisfy the qualification condition.
Note also a consequence of [1, Prop. 3.4]: if T is piecewise continuous, the solution mentioned in Theorem 2 has a

right derivative
a��U���b�	 at all b : “almost everywhere” can then be suppressed from the formulations, if

a� is replaced by
a�]U .

A common approach to derive (UDI- w u ) from (CDS) proceeds as follows: under constraint qualification, (CDS) can
be written (see Proposition 3)

0 a����b�	7%�ZY���]��b�	�	�s�T_��b�	�s � � with � %���y]���]��b�	�	/���  u ������b�	�	_v
This is equivalent to (UDI- w u ) = (4c) if and only if � � � a�Y��b�	��S%�� , i.e.

�-��y]������b�	/	���� a�S��b�	/�7%�� � a� ��b�	S%��9�
where we have set � ��b�	 #&% y]���]��b�	�	4� � { (writing

a
� U���b�	 would be more precise). Our results clearly imply that this

extra property holds if and only if the only possible solution of (UDI- P ) is slow.
6The mapping ���	 :�
 - <�� ? is maximal monotone: it is the subdiffential of the (convex) indicator function of

'
( < on
'

, @ZY outside).

RR n° 5107



8 Vincent Acary , Bernard Brogliato , Aris Daniilidis , Claude Lemaréchal

4 Conclusion

The study of relationships between various formalisms of hybrid systems is of interest [3], and this note sheds some
new light on the equivalences between complementarity systems, projected dynamical systems, and unilateral differ-
ential inclusions. In particular an alternative, simpler proof of a result in [7] is provided in this note. Let us remark
in passing that the difference between Moreau’s first order sweeping process, i.e. dynamical systems of the form0 a����b�	�� � ! knm.kpo�q�� o�q ���]��b�	/	 [10, 11, 12, 13], and projected dynamical systems, is that the former concerns a “fixed point”
that is swept by a moving convex domain, while the latter concerns a “moving point” that is constrained to remain in a
fixed convex domain. Merging both concepts is still an open field. The interest of showing such equivalences, apart from
a pure mathematical motivation, lies in the fact that techniques developed for one formalism can be used for the others,
with a broadened scope of applications.
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