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Abstract: In this work we focus on analyzing the relationships between switching sys-
tems defined from a partition of the state space into convex cells, and relay or comple-
mentarity dynamical systems, which are other classes of discontinuous systems. First
the conditions guaranteing the continuity of the vector field of the switching system
at the cells boundaries (in which case the switching system is an ordinary differential
equation with Lipschitz right-hand-side) are recalled. Then well-posedness results (i.e.
results on the existence and the uniqueness of solutions) for different classes of re-
lay and complementarity systems which are also switching systems are reviewed. The
reverse issue (when can a switching system be rewritten equivalently as a relay or a
complementarity system) is also tackled. Many examples from Mechanics, Circuits,
Biology, illustrate the developments all through the paper. The paper focuses on sys-
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Systèmes à commutations, à relais et systèmes de
complémentarité: existence et unicité des solutions, et

équivalences
Résumé : Dans cet article nous nous concentrons sur l’analyse des relations entre les
systèmes à commutations définis à partir d’une partition de l’espace d’état en cellules
convexes, les systèmes à relais et les systèmes de complémentarité. En premier lieu
les conditions garantissant la continuité du champ de vecteur sur le bord des cellu-
les (auquel cas le système est une ODE avec second membre Lipschitz) sont rappelées.
Ensuite des résultats d’existence et unicité concernant diverses classes de systèmes à re-
lais et de complémentarité qui sont des systèmes à commutations sont passés en revue.
Le problème inverse (quand est-ce qu’un système à commutation peut être représenté
comme un système à relais ou de complémentarité) est abordé aussi. De nombreux
examples de la mécanique, des circuits, de la biologie, illustrent les développements.
Le cas des solutions discontinues n’est pas abordé. La convexité apparait comme la
propriété centrale de ces systèmes.

Mots-clés : systèmes discontinus, systèmes à relais, existence et unicité de solutions,
systèmes de complémentarité, systèmes dissipatifs, opérateurs maximaux monotones,
systèmes de Lur’e, inclusions différentielles, systèmes de Filippov.
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Switching, relay and complementarity systems 3

1 Introduction
Discontinuous systems, i.e. dynamical systems whose right-hand side is not a continu-
ous vector field, have become very popular and much studied in various scientific fields
like Applied Mathematics [40, 34], Systems and Control [60, 26], Mechanics [11, 42],
Biology [23, 33, 43], Electricity and Electronics [53, 3, 4, 41], etc. They form such
a huge class of systems (just like nonlinear systems do) that it is mandatory to con-
sider particular subclasses of nonsmooth systems in order to analyze them. A survey of
various mathematical formalisms for nonsmooth systems may be found in [2, Chapter
2] and [3, Chapter 2]. In this paper we consider systems which are defined from the
subdivision of the ambient state space Rn into cells, and with each cell is associated
a smooth vector field. The trajectories may travel from one cell to the other, possi-
bly implying jumps in the system’s right-hand side. Such systems are usually called
switching systems. Despite their apparent simplicity, they are strongly nonlinear and
nonsmooth (i.e. most often their nonlinearity and nonsmoothness cannot be removed
by any suitable state vector change or by feedback). Our objective is mainly to provide
an overview of the results that allow to state the existence and uniqueness of solutions,
and this can be done only for specific cases of switching systems. This paper also
provides information on the relationships between various mathematical formalisms
(switching systems, relay systems, complementarity systems, Filippov’s differential in-
clusions), an objective that may be useful for a better understanding of such nonsmooth
dynamical systems, as advocated in [12, 13, 14, 16]. There are two issues which are
tackled in this survey: when do relay and complementarity systems belong to the class
of switching systems? When can switching systems be represented as relay or com-
plementarity systems? The objective in both studies remains the same: find subclasses
of switching systems that lend themselves well to mathematical analysis (especially
uniqueness of solutions issues), numerical analysis and simulation.
Paper organization. The remainder of the article is organized as follows. In Sec-

tion 2 we list some definitions and notations which are used throughout the paper. In
Section 3 we display the switching systems framework, while in Section 4 conditions
for the existence of classical solutions are discussed. The method based on the Filippov
framework is described in Section 5. Different classes of dynamical systems as well
as interconnections with the general class of switching systems are largely investigated
in Sections 6-10, 12-13. Finally, Section 15 concludes the paper with pointers to the
sections where all these dynamical systems and the relationships between them have
been analyzed (see Figure 1).

2 Basic notations and definitions.
All the notions cited below can be found in [27, 38, 66]. For x ∈ Rn, we write x " 0
if

x1 > 0 or [xi = 0, i ∈ 1, i0 and xi0+1 > 0]

for some i0 ∈ 1, n− 1. If x = 0 or x " 0 we denote it x $ 0. The script ‖.‖ will stand
for the Euclidean norm in Rn and (., .) will denote the inner product. The extended Lp

space is denoted by Lp
loc.
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Switching, relay and complementarity systems 4
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Sect.7,12
Sect.5

Sect.6

MLSSect.10

Figure 1: Relationships between different classes of dynamical systems. SS=switching
systems; MMS=multimodal systems; RS=relay systems; AVS= affine variational sys-
tems; MLS=multivalued Lur’e systems; CS=complementarity systems; FS=Filippov
systems.

We recall that given f : Rn → Rn and h : Rn → R two smooth functions, the Lie
derivative of order k ∈ N of h along f is given by Lk

fh : Rn → R,

Lk
fh(x) =







h(x) if k = 0
(

∂

∂x
Lk−1
f h(x)

)

f(x) if k ≥ 1
.

A switching system is said to have an accumulation point τ ≥ 0 of switches at
the right of τ if for any switched point T > τ , there exists another one T ′ > τ such
that T ′ < T and the sequence of these switches tends to τ . An accumulation point of
switches at the left of τ is defined similarly by taking opposite inequalities in the above
definition.

A matrix M ∈ Mm,m(R) is said to be a P -matrix if all its principal minors are
strictly positive.M is said to be a P0-matrix if all its principal minors are nonnegative.
M•j is its jth column, andMi• is its ith row. The closure of a set χ ⊂ Rn is denoted
χ̄. B(x, r) denotes the closed ball of Rn centered at x ∈ Rn of radius r.

For a convex set S, the normal cone to S at x ∈ S is the set {y :< v − x, y >≤
0, ∀v ∈ S}. For any K ⊂ Rn, the indicator function ψK of the set K is given by:
ψK(λ) = 0 if λ ∈ K , and ψK(λ) = +∞ if λ ,∈ K . The convex closure of a set
A ⊂ Rn is denoted by co(A).

A (possiblymultivalued) operatorF is said to bemonotone if for any x1 ∈ Dom(F ),
x2 ∈ Dom(F ), y1 ∈ F (x1), y2 ∈ F (x2), one has 〈x1 − x2, y1 − y2〉 ≥ 0 where
Dom(F ) = {x : F (x) ,= ∅}. It is maximal if its graph cannot be enlarged without
destroying the monotonicity.

Let X and Y be two topological spaces. A multifunction G : X → P(Y ) is said
to be upper semicontinuous (u.s.c.) at x ∈ X if whenever V is an open subset of Y
that contains G(x), the set {x : G(x) ⊂ V } contains a neighborhood of x. It is called
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Switching, relay and complementarity systems 5

u.s.c. on X, if it is u.s.c. at each x ∈ X . We say that F : Rn → P(Rp) is one-sided
Lipschitz continuous if there exists λ ∈ R such that

(y′ − y′′, x′ − x′′) ≤ λ‖x′ − x′′‖2,

for all y′ ∈ F (x′), y′′ ∈ F (x′′), with x′, x′′ ∈ Dom(F ).
A function f is said to be proper if dom(f) = {x : f(x) < +∞} is non-empty and

the restriction of f to dom(f) is finite. If f is a proper convex function, its conjugate
is the proper convex function

f∗ : z 0→ sup
x∈dom(f)

(〈x, z〉 − f(x)).

3 The class of switching systems
In this section we provide the description of a class of discontinuous systems, usually
known as switching systems [34, 50].

3.1 Description of the cells
Let dj : Rn → R, dj(x) = Hj•x + hj with j ∈ 1, p where H ∈ Mp,n(R), and
hj ∈ R. It is well known that the intersection of half-spaces defined by hyperplanes
is a closed convex polyhedron. In what follows we consider that the state space Rn is
split intom (m ≤ 2p) open polyhedral cells (χi)i∈1,m, with pairwise disjoint interior,
each of them having the following redundant description

x ∈ χ
i
if and only if

{

dj(x) > 0, ∀j ∈ J1
i

−dj(x) > 0, ∀j ∈ J2
i ,

(1)

where J1
i ∪J

2
i = 1, p and J1

i ∩J
2
i = ∅. For j ∈ 1, p, let Σj = {x ∈ Rn : dj(x) = 0};

so the sets χi, i ∈ 1,m are separated by codimension one surfaces (switching surfaces)
and ∪i∈1,mχi = Rn. The expression "redundant" description refers to the fact that
even if one inequality may imply another one, we agree to describe each cell by the
help of all p surfaces in order to have a systematic description.

Example 3.1. Consider in the plane x1Ox2 a family of parallel lines {dj : j ∈ 1, p}
given by

dj : Hj,1x1 +Hj,2x2 + hj = 0

such that Hj,1 < 0 ∀j ∈ 1, p and h1
H1,1

> h2
H2,1

> . . . > hp

Hp,1
. In accordance with the

above description of the cells (herem = p+ 1), we adopt the following

χ1 : d1(x) > 0, d2(x) > 0, . . . , dp(x) > 0; J1
1 = 1, p, J2

1 = ∅
χ2 : d1(x) < 0, d2(x) > 0, . . . , dp(x) > 0; J1

2 = 2, p, J2
2 = {1}

...
χp+1 : d1(x) < 0, . . . , dp(x) < 0; J1

p+1 = ∅, J2
p+1 = 1, p.

The preference for the above redundant description finds explanation in Section 13
when trying to identify a class of discontinuous systems that can be analyzed with the
help of piecewise-linear systems as well as using the theory of relay inclusions. This
may be viewed as an attempt to partially fill the gap between these two formalisms
widely employed in the theory of switching systems.
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Switching, relay and complementarity systems 6

3.2 General formulation of the dynamics
In this paper we focus on dynamical systems ([10], [50]) modelled by the following
autonomous Initial Value Problem (IVP on short):

{

ẋ(t) = f(x(t)), f(x(t)) = fi(x(t)) if x(t) ∈ χi, i ∈ 1,m
x(t0) = x0 ∈ Rn,

(2)

where fi : χi → Rn, i ∈ 1,m is a smooth function in Int(χi), the interior of the set
χi. The system is completely described by (2) outside the discontinuity boundaries,
where two or more different vectors can be associated to a point x ∈ Σj . Without loss
of generality, the initial time can be taken as t0 = 0.

This definition of switching dynamical systems is in fact only a preliminary defini-
tion. The analysis and the numerical simulation of such systems will most of the time
require to add more information in the model, and to drastically narrow, for instance,
the topology of the division of Rn into cells. It is noteworthy that we focus only on
the switching systems with time-continuous trajectories. Systems with state jump are
outside the scope of this paper.

Example 3.2. Let us consider a massm that collides an obstacle modelled as a linear
spring/dashpot system with stiffness k > 0 and damping c > 0. The coordinate of the
mass is q, the state is xT = (q, q̇). The dynamics is:

mq̈(t) =

{

−kq(t)− cq̇(t) if q > 0
0 if q < 0

(3)

An important assumption in (3) is that the switch between contact/non contact phases is
done instantaneously when q passes through 0. From the mechanical point of view this
may not be satisfying as it is known that such a model may create contact forces with the
wrong sign (as if the obstacle would attract the mass instead of always pushing it [5]).
A better way to model the switch will be presented in Example 8.1. It is noteworthy
that since the right-hand side of (3) may be discontinuous, the classical results for the
existence and uniqueness of solutions do not hold. Here we have: p = 1, d1(x) = q,
J1
1 = {1}, J2

1 = ∅. Other mass/spring/dashpot systems are considered in [49].

4 Continuity of f at the boundaries
Obviously, when the right-hand side in (2) is continuous, the existence of classical
solutions (continuously differentiable or, on short, C1 functions) is ensured by the well-
known Peano’s Theorem for ordinary differential equations. The discussion upon the
continuity of dynamical system (2) could be useful for several reasons. For example,
if the system (2) is continuous, then it can be simulated by using classical numerical
methods, while if it is discontinuous, only special numerical methods should be used
[2]. In this section we are concerned with a particular class of dynamical systems
modelled by (2) namely,

ẋ = Aix+ ai if x ∈ χi, (4)

where Ai ∈ Mn,n(R) is a constant matrix and ai ∈ Rn is a constant vector. The dy-
namics in (4) defines a piecewise affine system. In general, if no additional conditions
are stated on the terms Ai, ai, Hj , and hj , the right-hand-side of (4) is discontinuous
at the intersection boundaries ∂χi.
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Switching, relay and complementarity systems 7

The continuity of f at the intersection boundary Σ1,2 ⊆ {x ∈ Rn : Hj•x + hj =
0} between two regionsχi1 and χi2 holds if and only if Σ1,2 ⊆ Ker(Ai1−Ai2), where
the operators Aik : x 0→ Aikx + aik , k = 1, 2, and Ker(Ai1 − Ai2) = {x ∈ Rn :
Ai1x+ ai1 −Ai2x− ai2 = 0}. In the next theorem we show that this condition has to
be fulfilled on all codimension 1 boundaries. At the codimension > 1 boundaries, the
continuity of the system is obtained immediately from the continuity condition between
two any cells separated by a hyperplane.

Theorem 4.1. The right-hand side of the system (4) is continuous if and only if the fol-
lowing condition is satisfied: for any two cells χi1 and χi2 separated by a hyperplane
{x ∈ Rn : Hj•x+ hj = 0}, one has

{x ∈ Rn : Hj•x+ hj = 0} ⊆ Ker(Ai1 −Ai2).

Proof. We prove that Ai1(x) = Ai2 (x) on {x ∈ Rn : Hj•x + hj = 0} if and only if
Ai1(x) = Ai2 (x) on D ∩ {x ∈ Rn : Hj•x+ hj = 0}, whereD is an open subset of
Rn such thatD ∩ {x ∈ Rn : Hj•x+ hj = 0} ,= ∅.

Since the necessity is obvious, let us prove the sufficiency. We suppose thatAi1(x) =
Ai2(x) onD ∩ {x ∈ Rn : Hj•x+ hj = 0} and prove that this equality remains valid
on the whole set {x ∈ Rn : Hj•x+ hj = 0}. Let v ∈ D ∩ {x ∈ Rn : Hj•x + hj =
0} ,= ∅ and r > 0 such that B(v, r) ⊆ D. So Ai1(v) = Ai2(v). We know that for any
hyperplaneH ⊆ Rn and v ∈ H there exists a subspace S ⊆ Rn with dim(S) = n− 1
such that H = v + S. Consider a base {v1, v2, ..., vn−1} in S. Then, for any x with
Hj•x+ hj = 0 there exist λ1, ...,λn−1 ∈ R such that x = v +

∑n−1
k=1 λkvk. We have

Ai1 (x) = Ai2(x)⇔
n−1
∑

k=1

λkAi1vk =
n−1
∑

k=1

λkAi2vk. (5)

Further, for all k ∈ 1, n− 1, define wk = v + r
2‖vk‖

vk. It is clear that wk ∈ B(v, r) ∩

{x ∈ Rn : Hj•x + hj = 0} and therefore, Ai1(wk) = Ai2(wk) which implies
that Ai1vk = Ai2vk. From (5), we conclude that Ai1(x) = Ai2(x) for any x ∈ Rn,
verifyingHj•x+ hj = 0.

Remark 4.2. In fact, Theorem 4.1 says that a linear function on Rn vanishes on a
hyperplaneH ⊆ Rn if and only if it vanishes on the intersection ofH with an open set
inRn. More generally, if b1, c1; ...; bn−1, cn−1 ∈ H are such that the vectors b1−c1, ...,
bn−1−cn−1 are linear independent, a linear function vanishes on the whole hyperplane
H if and only if it vanishes at each b1, c1; ...; bn−1, cn−1 (see Example 4.3 below). This
still remains valid if we replace the hyperplane in Rn by an affine manifold (here, by
an affine manifold we mean a linear subspace possibly shifted away from the origin) of
dimension d ≤ n − 1. We recall that a hyperplane is an affine manifold of dimension
d = n− 1. In Rn, the hyperplanes describe tangent planes to a smooth hypersurface.

Example 4.3. In R3 the hyperplanes x1 = 0, x2 = 0 and x3 = 0 determine eight
cells. Let us consider two regions

χ1 : x1 > 0, x2 > 0, x3 > 0
χ2 : x1 > 0, x2 > 0, − x3 > 0

,

separated by the hyperplane x3 = 0. In these cells we suppose that the system (4) is

defined such that for χ1 and χ2 we have: A1 − A2 =





0 1 0
0 −1 0
0 2 0



 and a1 = a2. We
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Switching, relay and complementarity systems 8

notice that A1(x) = A2(x) for all x = (x1, 0, x3)T with x1, x3 ∈ R, so A1 − A2

vanishes on a whole line in the hyperplane x3 = 0, in particular at e1 = (1, 0, 0)T but
not at e2 = (0, 1, 0)T , hence no matter how the system is defined in the other cells, the
global continuity of f fails.

The following theorem establishes necessary and sufficient conditions for the con-
tinuity of the right-hand side of (4). We include here the proof, slightly different from
the one given in [63], which allows one to formulate an algorithm in order to inves-
tigate system (4) for the existence of classical solutions. The proof uses a priori the
previous result contained in Theorem 4.1.

Theorem 4.4. [63] Consider system (4). The right-hand side of system (4) is contin-
uous if and only if the following condition is satisfied: for any two cells χi1 and χi2

having a common boundaryHj•x+hj = 0, there exists v1,2 ∈Mn,1(R) such that the
corresponding matrices Ai1 and Ai2 and the vectors ai1 and ai2 satisfy the equalities

v1,2Hj• = Ai1 −Ai2 (6)

v1,2hj = ai1 − ai2 . (7)

Proof. The sufficiency is obvious. To check the continuity we notice that, for any x
such that dj(x) = 0, we have

v1,2(Hj.x+ hj) = (Ai1 −Ai2 )x+ ai1 − ai2 = 0

so f(.) is continuous on the boundary. In order to prove the necessity, we shall consider
two cases.

Case 1. hj = 0. Then, a compatibility condition for the continuity of f(.) must
hold: ai1 = ai2 . This is readily seen, since f(.) is continuous at any point on the
boundary, in particular at x = 0. In this case, the second equality in the conclusion of
the theorem is proved.

Next, from the continuity of f(.), it results that (Ai1 − Ai2)x = 0 for all x ∈ Rn

with Hj.x = 0. Let us denote by (Ai1 − Ai2)r the r-th line of matrix Ai1 − Ai2 .
So (Ai1 − Ai2)r ∈ (Ker(Hj.))⊥ which is spanned by Hj.. Form this we deduce that
(Ai1−Ai2)r andHj. are collinear, that is there exists µr ∈ R such that (Ai1−Ai2)r =
µrHj.. Putting v1,2 = (µ1, ..., µn)T , we get equality (6) in the conclusion of the
theorem.

Case 2. hj ,= 0. We prove that for any x̃ ∈ Ker(Hj.) we have (Ai1 − Ai2)x =
0. Indeed, for all x ∈ Rn verifying Hj.x + hj = 0 and x̃ ∈ Ker(Hj.) we have
Hj.(x− x̃)+hj = 0. From the continuity of f(.) at x and x̃, we getAi1(x) = Ai2(x).
Next, using similar arguments as in Case 1, we obtain the existence of a vector v1,2
such that v1,2Hj. = Ai1 −Ai2 .

It remains to show the second equality. To this purpose, we invoke again the conti-
nuity of f(.) and replacing Ai1 −Ai2 by v1,2Hj., we may write

v1,2Hj.x+ ai1 − ai2 = 0 ∀x with Hj.x+ hj = 0

and so v1,2hj = ai1 − ai2 .

Remark 4.5. We point out that if ai1 = ai2 (in particular null vectors) andAi1 ,= Ai2

then, in order for f to be continuous, we must have hj = 0. This condition is only
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Switching, relay and complementarity systems 9

necessary. There are cases when hj = 0, but the vector field jumps (see for instance
(3)). This is explained by the fact that, in general, the condition hj = 0 does not
guarantee the collinearity between all the lines of the matrix Ai1 −Ai2 and the vector
Hj•. If, in addition, this condition is satisfied, then the vector field is continuous.

Remark 4.6. From the continuity property it follows that, for any point on the bound-
ary Σj between any two cells χi1 and χi2 , we must have ai2 − ai1 = (Ai1 −Ai2)x ⊂
Im(Ai1 − Ai2). So, in order for (4) to be a continuous system, it should verify the
following consistency condition:

ai2 − ai1 ∈ Im(Ai1 −Ai2).

In the next theoremwe give other equivalent conditions for the continuity of system
(4) in terms of the kernels. For the sake of simplicity, let us denote A1,2 = A1 − A2

and a1,2 = a1 − a2.

Theorem 4.7. The right-hand side of system (4) is continuous if and only if for any
two cells χi1 and χi2 having a common boundary Hj•x + hj = 0, the vector fields
corresponding to these cells satisfy:

A1,2H
+
j•hj = a1,2

Ker(Hj•) ⊆ Ker(A1,2),

where H+
j• = HT

j•(Hj•HT
j•)

−1 stands for the Moore-Penrose pseudoinverse ofHj•.

Proof. By virtue of Theorem 4.1, we know that the global continuity of f holds if and
only if for any two cells χi1 and χi2 having a common boundaryHj•x+ hj = 0, one
has A1,2x+ a1,2 = 0 for all x withHj•x+ hj = 0, that is

A1,2(−H
+
j•hj + α) + a1,2 = 0 ∀α ∈ Ker(Hj•).

Further, this equality is equivalent to the following ones

A1,2H
+
j•hj = a1,2

Ker(Hj•) ⊆ Ker(A1,2),

that completes the proof.

Remark 4.8. i) If Ai1 ,= Ai2 , then rank(A1,2) ≥ 1 and from Theorem 4.7, we deduce
that

dim(Ker(A1,2)) = dim(Ker(Hj•)) = n− 1.

ii) Considering Example 3.2, we notice that for c ,= 0,

KerH = {x = (x1, x2)
T : x1 = 0}

! KerA = {x = (x1, x2)
T : kx1 + cx2 = 0},

so the inclusion in the conclusion of the above theorem is not verified.

To conclude this section, we see that only few systems verify the conditions for
continuity, that is there exist large classes of switching systems as in (4), with dis-
continuities on the boundaries of the sets χi. It is therefore important to propose a
framework that encompasses discontinuous vector fields and possible sliding modes
when considering switching systems.
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Switching, relay and complementarity systems 10

5 The discontinuous case: the general framework of
Filippov

The conditions that guarantee that the vector field is continuous at the boundaries are
somewhat stringent, hence one infers that the case of interest which occurs frequently
in practice, is the discontinuous case. A first approach is to embed the system (2)
into the class of so-called Filippov’s differential inclusions. This however has some
drawbacks:

• When the switching surface is attractive and has codimension larger than 2, the
uniqueness of solutions is in general not provable, because Filippov’s criterion
for uniqueness is limited to codimension 1 sliding surfaces. Multiple "sliding"
solutions may exist [3, Example 2.30].

• The numerical computation of the solutions of Filippov’s inclusions may not be
easy.

• The mathematical formalism of (2) does not lend itself very well to the analysis
with general properties of operators like dissipativity, maximal monotonicity.
More compact formalisms are often much more suitable for the mathematical
analysis and the numerical simulation.

This has motivated a number of mathematicians to work on other, more specific
classes of discontinuous systems. They usually form only a narrow subclass of switch-
ing systems as in (2), however they are tractable from the numerical point of view, and
uniqueness of the solutions can be stated. Before going on let us recall some basic facts
about Filippov’s inclusions.

5.1 Filippov’s differential inclusions
When considering discontinuous vector fields, the classical notion of solution for ordi-
nary differential equations is too restrictive. Thus, depending on the specific problem
at hand, several concepts of a solution associated with a discontinuous system have
been introduced. In this section we recall two basic concepts: Caratheodory solution
and Filippov solution. For the beginning, let us suppose that the discontinuous system
(2) is well-defined over the whole space, i.e. that f is defined on Rn.

Definition 5.1. (Caratheodory solution). Given an initial state x(0) = x0, a func-
tion x : [0,∞) → Rn is a solution of the discontinuous system (2) in the sense of
Caratheodory, if it is absolutely continuous on each compact subinterval of [0,∞) and
satisfies (2) almost everywhere.

It happens that Caratheodory solutions are often not sufficient to assure the global
existence (i.e. for all t ≥ t0) of the solutions. A well-known example is given by the
scalar system:

ẋ(t) =







1 if x ≤ 0
−1 if x ≥ 0
1
2 if x = 0

(8)

Let x(0) = 1 and let f be given by the right-hand side in (8). Then x decreases until
it attains (after a finite time) the value x(1) = 0. One is tempted to state that x should
then stay at the fixed point x∗ = 0 because the trajectory cannot leave the origin (if it
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Switching, relay and complementarity systems 11

increases then it has to decrease immediately in view of the vector field in the negative
axis). The problem is that x(t) = 0 for all t (and ẋ(t) = 0 as well) is not a solution of
(8) since 0 ,∈ f(0). The Caratheodory solution exists only on the time interval [0, 1).
Let now f(0) = 0 in (8). A solution starting at x(0) = 1 decreases until it attains
x(t) = 0 at t = 1. The origin x∗ = 0 is a solution of the system since f(0) = 0. Thus
the solution stays at x = 0 for all t ≥ 1: the Caratheodory solution exists globally.
This has motivated Filippov (see his book [40]) to introduce the set-valued map

F (y) =
⋂

ε>0

⋂

µ(N)=0

cof((y + εB) \N) (9)

where the intersection is taken over all sets N ⊂ Rn of (Lebesgue) measure zero
and over all ε > 0. The Filippov inclusion is usually called a convexification of the
problem. With system (2), we associate the differential inclusion (known as Filippov’s
inclusion),

ẋ(t) ∈ F (x(t)). (10)

For (8), the set is simply F (x) =







1 if x ≤ 0
−1 if x ≥ 0

[−1, 1] if x = 0
. This corresponds to filling-

in the vertical segment in the graph of the right-hand side. The obtained multifunction
is sometimes called the relay function. One notices from (10) that Filippov’s construc-
tion neglects the value of the discontinuous vector field on the switching surface. This
may change the system’s dynamics. Indeed let f(0) = 0, f(x) = 1 if x ,= 0. A solution
starting at x(0) = −1 increases until it attains x(t) = 0 at t = 1. The trivial solution
x = 0 is a solution of the system since f(0) = 0. Thus the solution stays at x∗ = 0 for
all t ≥ 1: the Caratheodory solution exists globally. However the Filippov inclusion
for this system is F (x) = 1 for all x and it has no fixed point. With x(0) = −1 one
gets x(t) = t− 1 for all t ≥ 0. Embedding (2) into Filippov’s inclusions may involve
some modeling assumption.

Definition 5.2. (Filippov solution) An absolutely continuous function x : R+ → Rn

is said to be a (generalized) Filippov solution of the discontinuous system (2), if it
is a solution of differential inclusion (10) for almost all t ≥ 0, satisfying the initial
condition x(0) = x0 ∈ Rn.

Since F in (9) is upper semicontinuous (see Proposition 2.2 in [40]), with closed
convex values, for any initial condition x0, the differential system (2) always has a
solution in the sense of Filippov. See e.g. [37] for a clear exposition of the various
behaviours that may occur in a Filippov differential inclusion: attractive, repulsive sur-
faces, and transversal intersections (called hereafter crossing surfaces). Several criteria
for the uniqueness of solutions have been stated in [40, Section 10]. They rely on two
main arguments: either some kind of monotonicity of the multifunction F (x), known
as the one-sided Lipschitz continuity [2]; or, in the case of a codimension 1 switching
surface Σ, the fact that Σ is either an attractive surface, or a crossing surface.

Example 5.3. The scalar system with F (x) = −1 if x < 0, F (x) = 1 if x > 0,
F (0) = [−1, 1] has three solutions at each time t ≥ 0 such that x(0) = 0: x(t) = 0,
or x(t) = t, or x(t) = −t. This shows that Filippov’s differential inclusions may be
far from enjoying the uniqueness of solutions properties. This can be generalized to
so-called repulsive switching surfaces which yield spontaneous jumps [37].
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Switching, relay and complementarity systems 12

The concept of a Filippov’s solution is important in order to analyze sliding phe-
nomena. Nevertheless, we point out that the solution in the sense of Filippov to differ-
ential systems with discontinuous right-hand side is continuous in time. This implies
that if a solution attains an attractive surface in finite time, it is forced to remain there
and slide on it. Systems with a discontinuous solution, i.e. jumps in the state at a
certain time instance, are not described by the theory of Filippov.

5.2 Calculation of a selection in the codimension ≥ 2 case
As alluded to above, the drawback of the general Filippov framework is that the dif-
ferential inclusion may not enjoy the uniqueness of solutions property on attractive
surfaces of codimension≥ 2. This is due to an ambiguity in defining the sliding vector
field. As we shall see later with relay and complementarity systems, there are classes
of switching systems for which the ambiguity does not exist, whatever the switching
surface codimension. Within the general switching systems class (2) other solutions
exist to suppress the ambiguity, see [37] for a review and references.

5.3 Conditions that guarantee no sliding modes
Sliding trajectories play a quite important role in switching systems, because they de-
crease the system’s dimension. Moreover they destroy the time-reversibility of the
system since several different trajectories may attain in finite-time the same attractive
surface. They are created by attractive surfaces which are attained in finite time, which
is a peculiar feature of discontinuous switching systems [59]. Besides the possible
continuity at the boundaries, one may study the conditions under which the trajectories
cross the boundaries, and do not stay on them. Roughly speaking, a trajectory that
attains a boundary surface may do it with various degrees of tangency, and leave it
similarly to enter another cell. More details will be given in Section 13. Consider the
simplest case n = 2, f1(x) = A1x, f2(x) = A2x, χ1 = {x ∈ R2 : Hx + h > 0},
χ2 = {x ∈ R2 : Hx + h < 0}, H ∈ M1,2, h ∈ R: the plane is divided
in two cells separated by a line. Then the conditions for crossing at a point x(t)
satisfying Hx(t) + h = 0 ⇔ x(t) = −H+h + v(t) with v(t) ∈ Ker(H) and
H+ = HT (HHT )−1, are as follows:















(HTA1x(t), HTA2
1x(t), ..., H

TAi
1x(t), ....) " 0 and

(HTA2x(t), HTA2
2x(t), ..., H

TAi
2x(t), ....) " 0

or
(HTA1x(t), HTA2

1x(t), ..., H
TAi

1x(t), ....) ≺ 0 and
(HTA2x(t), HTA2

2x(t), ..., H
TAi

2x(t), ....) ≺ 0 .

(11)

Remark 5.4. The idea of looking at higher order derivatives is ubiquitous when deal-
ing with systems that attain some boundary surface: sliding mode systems [37], sys-
tems with complementarity conditions and unilateral constraints [28], systems with
Coulomb’s friction [42], etc.

6 The class of Affine Variational Systems
It is possible to start from other, quite different definitions of nonsmooth dynamical
systems than the one in (2). One of these consists in coupling a smooth system to a
variational inequality, which we name affine variational systems (AVS). It will be seen
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Switching, relay and complementarity systems 13

that some of these AVS can be recast into the general class of discontinuous systems
(2).

LetK be a nonempty subset of the Euclidean space Rl. An AVS is described by a
multi-input multi-output (MIMO) system of the form







ẋ(t) = g(x(t)) +Bλ(t)
y(t) = Cx(t) + c+Dλ(t)
x(0) = x0 ∈ Rn,

(12)

constrained by a variational inequality

(s− λ(t))T y(t) ≥ 0, ∀s ∈ K, (13)

where g(.) : Rn → Rn, B ∈ Mn,l(R), C ∈ Ml,n(R), D ∈ Ml,l(R) and c ∈ Rl is
a constant. The class of AVS in (12)-(13) represents in fact a large class of nonsmooth
dynamical systems, that is impossible to analyze without being more specific on its
ingredients likeD and the setK . They may in turn be seen as a subclass of differential
variational inequalities (DVI) [61]. The two main well-posedness results for DVI in
[61] are Theorem 6.1 (existence of weak Caratheodory solutions) and Proposition 5.1
(existence and uniqueness of C1 solutions). In the following we present results that
assure both existence and uniqueness, and we focus on two particular classes of AVS
only. Let us notice that if K is a convex closed set, the variational inequality (13) is
equivalent to the "normal cone" inclusion

−y(t) ∈ NK(λ(t)), (14)

that comes simply from the definition of the normal cone to a convex set [2]. This
inclusion is in turn equivalent to

λ(t) ∈ −NK∗(y(t)), (15)

and to the cone complementarity relation

K∗ 6 y(t) ⊥ λ(t) ∈ K, (16)

where the script ⊥ means "perpendicular" and K∗ is the positive dual cone of K ,
defined by

K∗ = {v ∈ Rl : kT v ≥ 0 ∀k ∈ K}.

The AVS in (12)-(13) may belong to the class of switching systems (2) as the following
examples show.

Example 6.1. Let us considerK = R+, n = 1, d > 0; one has:






ẋ(t) = ax(t) + bλ(t)
y(t) = Cx(t) + c+ dλ(t)
0 ≤ λ(t) ⊥ y(t) ≥ 0

(17)

For such an AVS the second and third line define a Linear Complementarity Prob-
lem with unknown λ(t): 0 ≤ λ(t) ⊥ Cx(t) + c + dλ(t) ≥ 0. It is easy to find by
inspection that the following holds: if Cx(t) + c ≥ 0 then λ(t) = 0, if Cx(t) + c ≤ 0
then λ(t) = 1

d (−Cx(t)− c). Therefore (17) is a switching system of the form:

ẋ(t) =

{

ax(t) if Cx(t) + c ≥ 0
(a− b

dC)x(t) − bc
d if Cx(t) + c ≤ 0

(18)

RR n° 7760

in
ria

-0
06

32
10

5,
 v

er
si

on
 1

 - 
13

 O
ct

 2
01

1



Switching, relay and complementarity systems 14

This vector field is continuous on the switching surface and it can be checked that
the conditions exposed in Section 4 hold. As we shall see next, the continuity may be
inferred from another argument that involves either the properties of the solutions of
LCPs (complementarity theory), or projection onto a convex set (convex analysis).

Example 6.2. Let us considerK = [α,β], α < β, n = 1 and






ẋ(t) = ax(t) + bλ(t)
y(t) = Cx(t) + c
−y(t) ∈ NK(λ(t))

(19)

In order to eliminate the unknown λ(t) (that may be considered as a Lagrange multi-
plier) one needs to invert the inclusion. This may be done using convex analysis. The
conjugate function of the indicator function ψK of the set K is the convex function
ψ∗
K(z) = supx∈[α,β] zx so that ψ∗

[α,β](z) = βz if z ≥ 0 and ψ∗
[α,β](z) = αz if z ≤ 0.

The subdifferential of ψ∗
[α,β] in the sense of convex analysis is the multivalued function

∂ψ∗
[α,β](z) = β if z > 0, ∂ψ∗

[α,β](z) = α if z < 0, and ∂ψ∗
[α,β](0) = [α,β]. The

characteristic of ∂ψ∗
[α,β] is as in Figure 2 (a). From convex analysis it follows that

the inclusion in (19) is equivalent to λ(t) ∈ ∂ψ∗
[α,β](−y(t)). One may verify that this

corresponds to an inversion of the normal cone inclusion (see for instance Figure 1.9
in [2] or Figure 2.11 in [3] for a graphical illustration of such a process). Therefore
(19) is equivalently rewritten as:

ẋ(t) ∈ ax(t) + b∂ψ∗
[α,β](−Cx(t) − c) (20)

whose vector field is discontinuous at Cx+ c = 0. Indeed we have:

ẋ(t) ∈







{ax(t) + βb} if Cx(t) + c < 0
{ax(t) + αb} if Cx(t) + c > 0
ax(t) + b[α,β] if Cx(t) + c = 0.

(21)

The formulation of the AVS provides automatically a way to define what happens on
the switching surface: the right-hand side of (21) is multivalued at Cx + c = 0 where
the graph of the discontinuous vector field has been "filled-in". One could have started
with the definition of the discontinuous system in (21), and then compute its associated
Filippov’s set to obtain the same result at Cx + c = 0. Notice that the multifunction
∂ψ∗

[α,β] is maximal monotone. One sees that the system in (18) belongs to the class
of systems in (2), where the dynamics on the switching surface boundary has been
accurately defined.

Example 6.3. Let us now consider the same system as in (19), with D = d > 0:






ẋ(t) = ax(t) + bλ(t)
y(t) = Cx(t) + c+ dλ(t)
−y(t) ∈ NK(λ(t))

(22)

The inclusion is now Cx(t) + c + dλ(t) ∈ −N[α,β](λ(t)). In order to solve it (this is
a generalized equation with unknown λ(t)), we may rely on a basic relation of convex
analysis as follows. Let x ∈ Rn, y ∈ Rn, D = DT > 0, K ⊆ Rn non empty, closed
and convex. Then:

−x+ y ∈ D−1NK(x)⇔ x = projD(K; y)
⇔ x = argminz∈K

1
2 (z − y)TD(z − y)

(23)
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Switching, relay and complementarity systems 15

where projD(K; y) means the projection of y on K in the metric defined by D. Using
(23) one sees that it is possible to rewrite (22) as:

ẋ(t) = ax(t) + b proj
(

[α,β];−
Cx(t) + c

d

)

. (24)

The projection operator being a Lipschitz continuous function, it is obvious that the
right-hand side of (24) is continuous. So once again the system (22) belongs to the
class of switching systems (2) but with a continuous vector field.

Example 6.4. Let us reconsider Example 6.1 with d = 0:






ẋ(t) = ax(t) + bλ(t)
y(t) = Cx(t) + c
0 ≤ λ(t) ⊥ y(t) ≥ 0.

(25)

The inclusion now reads as Cx(t) + c ∈ −NK(λ(t)) that is equivalent (since
K = R+) to λ(t) ∈ −NK(Cx(t) + c). The AVS in (25) is therefore the differential
inclusion:

−ẋ(t) + ax(t) ∈ NK(Cx(t) + c). (26)

There is a strong discrepancy between the case d > 0 and the case d = 0. Consider
that Cx(t)+c ∈ K . Then at time t one gets−ẋ(t)+ax(t) = 0, becauseNK(Cx(t)+
c) = {0}, the null vector of Rn. Suppose now that Cx(t) + c ∈ ∂K , i.e. the system
evolves on the boundary of K . This is possible if for instance a < 0 and C = 1, c = 0
(we may also add a time-varying term (a sort of control action) to complicate a little
the dynamics). Then NK(Cx(t) + c) is the set {z ∈ R : z ≤ 0}, since NK(0) = R−.
The case Cx(t) + c ,∈ K is excluded, as one may just define that the normal cone is
the empty set. The complementarity system (25) is thus equivalent to:

−ẋ(t) + ax(t) ∈

{

{0} if Cx(t) + c > 0
R− if Cx(t) + c = 0

. (27)

The system switches between an ordinary differential equation (here linear invari-
ant), and a differential inclusion into a normal cone.

What is to be learned from these four simple examples? Essentially that AVS as
in (12)-(13) contains an important subclass that belongs to switching systems as in (2).
And that this depends heavily on D and K . Let us come back to (12) coupled to (14),
that involves the generalized equation −Cx − c −Dλ ∈ NK(λ). Following [17] we
may rewrite equivalently this inclusion as:

λ ∈ (D ·+NK)−1(−Cx− c) (28)

and the AVS as the differential inclusion:

ẋ(t) ∈ g(x(t)) +B(D ·+NK)−1(−Cx(t) − c). (29)

The above examples show that depending on D and K , the operator in (28) may
be single valued and continuous, or multivalued. Its domain may not be the whole
of Rn. In the above examples we have not specified the initial condition x(0) = x0.
Actually x0 ∈ Dom(ϕ), ϕ : x 0→ (D · +NK)−1(−Cx − c). In Examples 6.1, 6.2,
and 6.3, the domain is R. In Example 6.4 the domain is restricted to those x0 such that
Cx0 + c ∈ R+.
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Switching, relay and complementarity systems 16

There is another thing to be learned from these four examples: some AVS keep their
dimension (Examples 6.1 and 6.3) while others may live on low-dimensional subspaces
(Examples 6.2 and 6.4). The case of Example 6.2 with a = 0, α < 0, β < 0, b > 0, is
common in switching systems (2) where attractive sliding surfaces which are attained
in finite time exist. We say that a system lives on a low-dimensional subspace if there
exists a time interval [t0, t1], t1 > t0, such that h(x(t)) = 0 for all t ∈ [t0, t1], where
h : Rn → R is a C1 function. In other words, the system is subject to state equality
constraints on positive time intervals. In the case of Example 6.4, the state is subject
to an inequality Cx + c ≥ 0 defining an admissible domain for x, and may evolve on
the boundary of this domain depending on a, C and c. We shall come back later on the
differential inclusions as in (26), that do not fit with (2).

It is quite interesting to compare the conditions in Example 6.3 that guarantee that
the right-hand-side is continuous, and those of Theorems 4.1 and 4.4. The positive
definiteness of D assures directly the continuity at the boundaries of the cells, without
having to check the conditions one by one. Other “global” conditions assuring conti-
nuity (so that the right-hand-side is single-valued) will be given later in Sections 8 and
10.

We have not yet presented any well-posedness results. In the next two sections
we focus on two specific classes of AVS, that correspond to K a closed rectangle
(relay systems) andK a polyhedral cone (complementarity systems), and provide some
existence and uniqueness of solutions results that have been proposed in the literature.

7 Relay systems
Relay systems are widely used in Systems and Control, because they allow one to
design robust discontinuous feedback controllers [60]. They may also model some me-
chanical systems with one-dimensional Coulomb friction [2], or electrical circuits with
ideal Zener diodes [3]. Let K be a closed rectangle, given by K = {λ ∈ Rl; αi ≤
λi ≤ βi, i ∈ 1, l}, with αi < βi, αi,βi ∈ R. Let us first use some convex anal-
ysis to rewrite the AVS under a relay system form. Similar calculations have been
made in Example 6.2 to invert the multivalued part of the system. Let fi be proper
convex such that fi(zi) = αizi if zi ≤ 0, and fi(zi) = βizi if zi ≥ 0. Let f(z) =
f1(z1) + ...+ fl(zl). Then the subdifferential of f is ∂f(z) = ∂f1(z1) + ...+ ∂fl(zl),
and ∂fi(zi) = αi if zi < 0, ∂fi(zi) = βi if zi > 0, ∂fi(0) = [αi,βi]. If αi = −1
and βi = 1, then ∂fi(zi) is the multivalued sign function, or relay multifunction.
Then we may denote ∂f(z) = Sgn(z) with Sgn(z) = (Sgn(z1), ..., Sgn(zl))T . By
extension and some abuse of notation we shall denote ∂fi(zi) as Sgn(zi) for any
αi and βi. Now we have from convex analysis that ξ ∈ ∂f(z) ⇔ z ∈ ∂f∗(ξ),
where f∗ is the conjugate of f . Here f∗(ξ) = ψ[α1,β1](ξ1) + ... + ψ[α1,β1](ξl), so
that ∂f∗(ξ) = (N[α1,β1](ξ1), ..., N[αl,βl](ξl))

T = NK(ξ). From (14) we deduce that
−y(t) ∈ NK(λ(t)) is equivalent to −y(t) ∈ ∂f∗(λ(t)) so λ(t) ∈ ∂f(−y(t)) and
λi(t) ∈ Sgn(−yi(t)), where λi(t) and yi(t) stand for the i-th component of λ(t) and
of y(t), respectively. The AVS in (12)-(13) is therefore equivalent to the so-called relay
system:











ẋ(t) = g(x(t)) +Bλ(t)
y(t) = Cx(t) + c+Dλ(t)
λi(t) ∈ Sgn(−yi(t)), i ∈ 1, l
x(0) = x0 ∈ Rn.

(30)
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Switching, relay and complementarity systems 17

O ξi

Sgn(ξi)

αi

βi

O ξi

sgn(ξi)

αi

βi

Figure 2: (a) The general relay characteristics. (b) The general relay single-valued
map.

For i ∈ 1, l, each pair (λi, yi) satisfies a general relay characteristic, as depicted in
Figure 2 (a). Notice that if αi = −βi, βi > 0, then Sgn(−yi(t)) = −Sgn(yi(t)).
Moreover, the graph of the sign multifunction in Figure 2 (a) is maximal, while the one
in Figure 2 (b) is not maximal, but both are monotone.

From the above four examples, a question emerges naturally: when is the general
system (30) a switching system of the form (2) and how can we describe the cells in
this case? To address this question, we reconsider the relay system (30) as a special
class of AVS and use the constructive theory of Affine Variational Problems. First we
rewrite inequality (13) as

(s− λ(t))T (Cx(t) + c+Dλ(t)) ≥ 0, ∀s ∈ K. (31)

Let us introduce some notions we use hereafter.

Definition 7.1. [38] Let f : Rl → Rl be a continuous function such that there exists
a finite family of affine functions {f1, ..., fk} that maps Rm into itself and for every
x ∈ Rl there is an i ∈ 1, k such that f(x) = f i(x). Then, f is said to be piecewise
affine (PWA). If, in addition, det(Jf i) has the same nonzero sign for all i ∈ 1, k, then
the PWA function f is said to be coherently oriented.

The next theorem is a particular case of the results in [61] and is recalled in de-
tail here, because it contains the conditions under which the generalized equation in
(31), written as a variational inequation, possesses a unique solution whatever the data
Cx(t) + c.

Theorem 7.2. If g : Rn → Rn is Lipschitz continuous andD ∈Ml,l(R) is a P-matrix,
then the relay system (30) has a unique C1 solution.

Proof. Since D is a P -matrix, according to Example 4.2.9 in [38], the normal map
associated to the pair (K,D), given by

Mnor
K : Rl → Rl, Mnor

K (λ) = D · ΠK(λ) + λ−ΠK(λ),

where ΠK(λ) = proj(K;λ) (the projection of λ on K with respect to the Euclidian
metric) is coherently oriented. Then, by Theorem 4.3.2 in [38], the affine variational
inequality (31) has a unique PWA solution:

λ(Cx(t) + c) = ΠK

(

(Mnor
K )−1(−Cx(t) − c)

)
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Switching, relay and complementarity systems 18

and thus, Lipschitz continuous, as a function of Cx(t) + c. Putting v(x) = λ(Cx+ c)
we get that also x 0→ v(x) is Lipschitz continuous. The relay system (30) becomes







ẋ(t) = g(x(t)) +BΠK

(

(Mnor
K )−1(−Cx(t)− c)

)

y(t) = Cx(t) + c+DΠK

(

(Mnor
K )−1(−Cx(t) − c)

)

x(0) = x0 ∈ Rn.
(32)

The right-hand side in the first equation of (32) is a Lipschitz continuous function,
hence we obtain that the solution of (32) is of class C1 in time. Moreover, since the
solution of (31) is PWA, from Proposition 4.2.1 in [38] we get that there exists a poly-
hedral subdivision {χi}i∈1,m of Rn and a finite family of affine functions {fi}i∈1,m
such that the right-hand side in the state equation in (30) coincides with fi on each cell
χi. Finally, we recall that each polyhedron χi could be described by a finite number of
affine inequalities in Rn like in Section 3.1.

Remark 7.3. The above theorem says that the Lipschitz continuity of g together with
the P -matrix property of D are sufficiently strong to guarantee the existence and even
the uniqueness of classical solutions.

Let us come back on the generalized equation (31) that we rewrite equivalently as
the inclusion:

Cx+ c+Dλ ∈ −NK(λ). (33)

In the scalar case one has K = [α,β], and let us denote D as d. The uniqueness
of solutions depends greatly on the sign of d as depicted in Figure 3. The solution λ
corresponds to the intersections between the graph of the maximal monotone operator
λ 0→ NK(λ) and the affine maps λ 0→ −Cx − c − dλ. If d > 0 there is always a
unique solution; if d < 0 there may be multiple solutions. This is a particular case
of a more general result on existence and uniqueness of solutions of 0 ∈ F (λ), that
is guaranteed if F is a maximal monotone operator [38]. When D = DT > 0 the
solution is calculated as in (23).

d > 0

d < 0

0

α

β

NK (λ)

λ

Figure 3: Uniqueness and non uniqueness of solutions for (33).
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Switching, relay and complementarity systems 19

7.1 Linear relay systems
In the particular case when g is a linear function given by g(x) = Ax with A ∈
Mn,n(R) and c = 0, the well-posedness of the above system was studied in [55], [54]
and [65].

Definition 7.4. A triple (λ, y, x) : [0,∞)→ Rl×Rl×Rn is called a forward solution
to the relay system (30), if t 0→ x(t) is continuous on [0,∞) and there exists a countable
number of switching times 0 = t0 < t1 < ... < tj < ... such that for every interval
[tj , tj+1) the triple (λ, y, x) verifies the following conditions:

i) For any i ∈ 1, l and t ∈ [tj , tj+1), λi(t) and yi(t) correspond to one and only
one of the following three branches:

[yi(t) > 0 and λi(t) = αi] or [yi(t) < 0 and λi(t) = βi] or
[yi(t) = 0 and λi(t) ∈ [αi,βi] ].

ii) (λ, y, x) is analytic (on [tj , tj+1)).
iii) (λ, y, x) verifies (30) with initial condition x(tj) = limt↗tj x(t). For j = 0 the

initial condition is given in (30) i.e., x(t0) = x0.

We notice that the above definition excludes the existence of right-accumulations
of switches (a kind of Zeno behaviour) but allows for left-accumulations. In short, a
forward solution is continuous and analytic between the switching instants, that may
accumulate on the left. The conditions under which the system (30) admits a unique
forward solution are contained in the following theorem.

Theorem 7.5. [54] Let g(x) = Ax, A ∈ Mn,n(R) and c = 0. Suppose that there
exists s0 ≥ 0 such that G(s) = C(sIn −A)−1 B+D is an invertible P0-matrix for
s ≥ s0. Then, for any initial condition x0 = x(0), the relay system (30) admits a
unique forward solution (λ, y, x), t ≥ 0 in the sense of Definition 7.4.

Since the works in [54, 55, 65] use the notion of a transfer matrix and the linear
complementarity theory as basic analysis tools, they are restricted to the "all linear
invariant" case, i.e. the vector fields fi have to be linear invariant and the cells χi have
to be constant polyhedra. The strength of the results lies in the fact that they allow
for P0 transfer matrices and non zero D matrices. Linear relay systems satisfying the
conditions of Theorem 7.5 may exhibit sliding modes or accumulations of switches as
the following examples show. However repulsive surfaces as in example 5.3 are not
admitted, since they yield non unique analytic solutions.

Example 7.6. Let n = 2,A = 0,C = I2,B =

(

1 0
6 1

)

. The transfer matrix is 1
sB and

B is a P−matrix. Then ẋ(t) = Bλ(t), λ1(t) ∈ −Sgn(x1(t)), λ2(t) ∈ −Sgn(x2(t))
and [λ(t)]T = (λ1(t),λ2(t)). The four vector fields are easily computable as (−1 −
7)T , (1 5)T , (1 7)T , (−1 − 5)T in the first, second, third and fourth quadrants
respectively (hence the system belongs to the class in (2)). All trajectories starting
outside the axis x1 = 0 attain this line in a finite time and slide on it towards the
origin x = 0. The line x2 = 0 is a crossing surface. See Figure 4 (a). One sees that
in the case of an attractive surface the forward solution matches with the Filippov’s
solution, because this is the unique possible solution. When attaining the line x1 = 0,
the trajectory cannot go back in x1 < 0, it cannot cross to x1 > 0, so it can only slide
on x1 = 0.
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Switching, relay and complementarity systems 20

Example 7.7. Let n = 2, A = 0, C = I2, B =

(

1 −2
2 1

)

. The transfer matrix is 1
sB

and B is a (non symmetric) positive definite matrix, hence a P−matrix. The trajec-
tories initialized outside the origin reach it in finite time after an infinity of switches,
when the solution crosses the two switching surfaces x1 = 0 and x2 = 0 (see for
instance [2]). See Figure 4 (b).

x(0)

x(0)

(a) (b)

x1

x2
x2

x1

x(0)

Figure 4: Linear relay systems with (a) sliding motion, and (b) accumulation of
switches.

Example 7.6 indicates that the general existence result of Filippov (that states the
existence of absolutely continuous solutions) can be refined to the existence of contin-
uous piecewise analytic solutions in some cases. The simplest case that indicates this
point is the differential inclusion ẋ(t) ∈ −Sgn(x(t)) that indeed possesses a unique
forward solution whatever x(0). This example can also be analyzed with Theorem
7.11 below. Another interesting result is stated in [65] for the single relay case.

Theorem 7.8. [65] Let y(t) and λ(t) be scalars, andD = 0. Then for any initial con-
dition x(0) there exists a unique forward solution if and only if the leading Markov pa-
rameterMr = CAr−1B is positive, where r = min{i = 1, 2, ..., such that CAi−1B ,=
0}.

The uniqueness of Filippov (hence absolutely continuous) solutions is a different
matter, see Section 7.3.

7.2 Nonlinear relay systems
In what follows we will study two classes of relay systems for the particular case when
D = 0, so Theorem 7.2 fails to apply. Contrary to the above linear relay systems, they
allow for some nonlinearity in their ingredients. When D = 0, the relay system (30)
becomes the differential inclusion







ẋ(t) ∈ g(x(t)) −BSgn(Cx(t) + c)
y(t) = Cx(t) + c
x(0) = x0 ∈ Rn,

(34)

where

Sgn(Cx(t) + c) = (Sgn(C1•x(t) + c1), ..., Sgn(Cl•x(t) + cl))
T
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Switching, relay and complementarity systems 21

and the graph of Sgn(yi), yi = Ci•x + ci is depicted in Figure 2 (a). Set hj(x) =
Cj•x+ cj , j ∈ 1, l and the relay inclusion is of the form (2).

Remark 7.9. It should be pointed out that the multiplication between the matrix B
and the set-valued signum map Sgn is understood in the sense of multiplication of
the sets by scalars. More precisely, for B and Sgn(Cx + c) as above, the product
BSgn(Cx+ c) is allowed in the following sense:

B






Sgn(C1•x+ c1)
...

Sgn(Cn•x+ cn)




=

∑

j∈1,n

B•jSgn(Cj•x+ cj) (35)

which is different from





B1•Sgn(Cx+ c)
...

Bn•Sgn(Cx+ c)




 =

∑

i∈1,n

Bi•Sgn(Cx+ c)ei, (36)

where ei stands for the i-th canonical unit vector in Rn. An illustration of this fact is
given in Section 7.4.

Definition 7.10. A solution to the differential relay inclusion (34) is a pair (x, y) of
absolutely continuous functions, x : R→ Rn and y : R→ Rl, such that x satisfies the
first equation in (34) a.e. on [0,∞) with initial condition x(0) = x0 and the output y
satisfies y(t) = Cx(t) + c for each t ≥ 0.

The well-posedness of this class of relay systems was stated in [1], using the max-
imal monotonicity property of the subdifferential of a certain convex function. The
result we give below could be useful when characterizing the Filippov solutions of
certain relay systems which will be discussed in Section 7.4.

Theorem 7.11. [1] Suppose that g is Lipschitz continuous and there exists a positive
definite matrix P = PT such that PB = CT . Then, for an initial condition x0 ∈ Rn,
the differential inclusion (34) admits a unique Lipschitz solution with an essentially
bounded derivative.

Proof. (Sketch of the proof) The main theoretical tool that is used in the proof is the
maximal monotonicity of a multivalued operator. The first step consists in performing
a suitable state vector change z = Rx, with R the symmetric positive definite square
root of P . This has been introduced in [13]. Once this is done, the relay system is put
under the following canonical form:

ż(t) ∈ g(z(t), t)− FTSgn(Fz(t) + c) (37)

with F = CR−1. The basic convex analysis tool that is used is the chain rule [2, propo-
sition A.3] and then a general result about the existence and uniqueness of solutions for
differential inclusions with a maximal monotone multivalued function [9]. We notice
from (37) that the vector fields fi take a special form. Indeed suppose that g(z, t) = 0.
We obtain that ż(t) ∈ −

∑m
i=1 F

T
i•Sgn(Fi•z(t)+ ci). The vector fields fi are obtained

from the sum of vector fields orthogonal to the switching surfacesΣi = Fi•z+ ci = 0.
Suppose further that F ∈ Rm×n has full rank m, so that FFT is symmetric positive
definite. Then the codimensionm surface ∩1≤i≤mΣi is attractive and attained in finite
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Switching, relay and complementarity systems 22

time. The proof may be led with the function V (z) = 1
2 (Fz + c)(FFT )−1(Fz + c).

Along the trajectories of (37) with g(z, t) = 0 and as long as z ,∈ Σi for all 1 ≤ i ≤ m,
one has V̇ (t) = −

∑m
i=1 |Fi•z(t) + ci|. Therefore V , which is a positive definite

function of the variables σi = Fi•z + ci, decreases to zero in finite time.

Suppose that g(z, t) = Az in (37). Then the transfer matrix of Theorem 7.5 is
G(s) = F (sIn − A)−1FT . In Theorem 7.11 one does not impose that G(s) should
be P0, however D = 0 and B = FT . Let us come back to Theorem 7.5. Notice that
we may rewrite G(s) = 1

sC(In − A
s )

−1B + D so that for large s one has G(s) ≈
1
sCB +D. This seems to indicate that when g(x) = Ax Theorem 7.5 is more general
than Theorem 7.11. However it is noteworthy that Theorems 7.5 and 7.11 do not deal
with the same functional spaces of solutions and can therefore hardly be compared from
this point of view. Indeed it is known that a relay system can admit unique forward
solutions, while it admits several absolutely continuous Filippov solutions, for instance
(see Section 7.3). Notice that the system of Example 7.7 does not satisfy the conditions
of Theorem 7.11.

Example 7.12. Consider that B = (bji) is a diagonal matrix with bii > 0, ∀i ∈ 1, n,
C = In and c = 0. Assume also that g is Lipschitz continuous. Then there exists a
positive definite matrix P = B−1 such that PB = CT , and according to Theorem
7.11, the relay inclusion

{

ẋ(t) = g(x(t))−
∑

i∈1,n biiSgn(xi(t))ei

x(0) = x0 ∈ Rn,
(38)

has a unique Lipschitz solution with an essentially bounded derivative. We will return
to this example in remark 7.18, when regarding the above system as the Filippov’s
regularization of the relay system obtained by replacing the set-valued map signum by
its single-valued version.

Let us now investigate the existence of classical solutions for another class of non-
linear relay systems:

{

ẋ(t) = g(x(t)) +B(x)sgn(Cx(t) + c)
x(0) = x0 ∈ Rn,

(39)

where g(.) : Rn → R, B(x) = (bji(x))j,i∈1,n and bji(.) : Rn → R for all j and
i. Here, sgn(Cx + c) = (sgn(C1•x + c1), ..., sgn(Cn•x + cl))T and sgn(yi) stands
for the generalized signum single-valued map, −sgn(0) ∈ [αi,βi] whenever yi =
Ci•x + ci = 0 (see Figure 2 (b)). Clearly, this system can be recast into (2), by
defining dj(x) = Cj•x+ cj , j ∈ 1, n.

The next theorem is a consequence of Proposition 1 in [30] that states sufficient
conditions for the continuity and smoothness of the right-hand side of a general dis-
continuous dynamical systems. Let us consider that C is a diagonal matrix with
diag(C) = (C11, ..., Cnn) with nonzero diagonal entries.

Proposition 7.13. Consider the system (39). Suppose that bji and g are smooth func-
tions. If for each j ∈ 1, n, bji verifies

bji

(

x1, ..., xi−1,−
ci
Cii

, xi+1, ..., xn

)

= 0 ∀i ∈ 1, n,
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Switching, relay and complementarity systems 23

then, there exists at least one classical solution to the system (39). If, in addition, bji
verifies

∂bji
∂xi

(

x1, ..., xi−1,−
ci
Cii

, xi+1, ..., xn

)

= 0 ∀i ∈ 1, n, (40)

then the system (39) admits a unique classical solution on R.

Proof. The functions xi 0→ sgn(Ci•xi + ci) are piecewise smooth functions with a
single non-smoothness point δi = − ci

Cii
and bji(x1, ..., xi−1, δi, xi+1, ..., xn) = 0.

Hence, due to Proposition 1 in [30], the right-hand side in (39) is a continuous function
onRn and the solutions of the above system are continuously differentiable. Moreover,
if bji verifies relations (40), then the right-hand side in (39) is smooth onRn, hence the
system (39) has a unique C1solution.

To illustrate the applicability of Theorem 7.13, let us consider the following

Example 7.14. Is is easy to see that if g is a certain smooth function and bji(x) =

bji
(

xi+
ci
Cii

)2
for j, i ∈ 1, n then, the conditions from Theorem 7.13 are satisfied, so

the nonlinear relay system








ẋ(t) = g(x(t)) +
∑

i∈1,n

B•i

(

xi +
ci
Cii

)2

sgn(Ciixi(t) + ci)

x(0) = x0 ∈ Rn,

(41)

admits a unique classical solution.

Remark 7.15. One can see that the discontinuity of the right-hand side does not nec-
essarily imply the non-existence of classical solutions (for instance if the switching
surface is of the crossing type). However, in general, when considering discontinuous
systems, classical solutions for IVP (2) might not even exist. This is the case when
attractive surfaces, that create sliding trajectories, exist. This is why it is required
to consider other notions of solution to a discontinuous system. Another reason for
considering generalized notions of solutions is that one would like that a system like
ẋ(t) = g(t) − sgn(x(t)) possesses global-in-time solutions for a large class of func-
tions g. Let us simply state that |g(t)| < 1 for all t ≥ 0. Then filling-in the graph of the
sign function (Figure 2 (b) with αi = −1 and βi = 1) allows one to state the existence
and the uniqueness of solutions to ẋ(t) ∈ g(t) − Sgn(x(t)), relying for instance on
Theorem 7.11. Keeping the sign function would allow this only for specific g(t).

7.3 The influence of the relative degree
The relative degree of a system ẋ(t) = Ax(t) + Bλ(t), y(t) = Cx(t) +Dλ(t), y(t)
and λ(t) scalars, is zero if D ,= 0, one if D = 0 and CB ,= 0, and is the smallest
integer r such that CAi−1B = 0 for all 1 ≤ i < r and CAr−1B ,= 0. In the multivari-
able case one may define a uniform relative degree r in the same way. It is apparent
that the results of Theorems 7.5, 7.8 and 7.11 imply some relative degree condition.
Indeed as alluded to above the conditions of Theorem 7.5 are satisfied if either D or
CB are P−matrices, hence full-rank. The condition PB = CT of Theorem 7.11 im-
plies that CB = BTPB that is symmetric positive definite if B has full rank. Thus
one may roughly say that the well-posedness results hold with relative degrees 0 or
1. For the case of scalar y(t) and λ(t) (a unique feedback relay), the results may be
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Switching, relay and complementarity systems 24

refined. Theorem 7.8 states the uniqueness of forward solutions. However Filippov’s
solutions may not be unique. Roughly speaking, Filippov’s solutions are unique when
CB > 0 or CB = 0 and CAB > 0 (Theorems 2 and 3 in [65]). The relay system
x(3)(t) ∈ −Sgn(x(t)) has been studied in depth in [65], where the relative degree in-
fluence is considered on relay system’s well-posedness. Obviously r = 3. It is shown
in [65] that despiteCA2B > 0 there exists an infinity of Filippov’s solutions starting at
x(0) = ẋ(0) = ẍ(0) = 0. These solutions start with a right-accumulation of switches,
something that is not permitted if analyticity is imposed as in forward solutions. It
follows from this and Theorem 7.8 that forward and Filippov, absolutely continuous
solutions, are quite different one from each other.

Remark 7.16. The loss of uniqueness when the solutions are not analytic, is also met
in mechanical systems with frictionless unilateral constraints, where the solutions may
"emerge from the emptyness" with a right-accumulation of impacts [7]. Analyticity
of the data prevents such spurious phenomena. The discrepancy between the above
relay system with relative degree three, and the mechanical systems studied in [7], is
that the relay system shows this phenomenon in an intrinsic autonomous way, while in
mechanics one needs to add an external force to produce it.

7.4 Relay inclusions versus Filippov inclusions
As stipulated in [31], relay inclusions in (34) are Filippov regularizations (convexifica-
tions) of the relay systems







ẋ(t) = g(x(t)) −Bsgn(Cx(t) + c)
y(t) = Cx(t) + c
x(0) = x0 ∈ Rn,

(42)

with the mention that the multiplication BSgn(Cx(t) + c) should be meant as in (35).
On the opposite, if adopting the multiplication in the sense of (36), such inclusions are
larger than the Filippov regularizations of the corresponding relay systems. To illustrate
it further, let us consider the following two dimensional example. The dynamics is
given by










ẋ(t) = g(x(t))−

(

b1 b2
b3 b4

)(

sgnx1(t)
sgnx2(t)

)

y(t) = x(t)
x(0) = x0 ∈ Rn.

(43)

It is readily seen that the Filippov inclusion associated to the above relay system is










ẋ(t) ∈ g(x(t))−

(

b1
b3

)

Sgn(x1(t)) −

(

b2
b4

)

Sgn(x2(t))

y(t) = x(t)
x(0) = x0 ∈ Rn,

(44)

which is strictly contained in the inclusion derived by using (36),










ẋ(t) ∈ g(x(t)) −

(

b1Sgn(x1(t)) + b2Sgn(x2(t))
b3Sgn(x1(t)) + b4Sgn(x2(t))

)

y(t) = x(t)
x(0) = x0 ∈ Rn,

(45)
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Switching, relay and complementarity systems 25

where b1, b2 and b3, b4 are multiplied by arbitrary elements in Sgn(x1(t)) andSgn(x2(t)),
respectively. Simple computations show that for g ≡ 0, bi = 1, i = 1..4 and the initial
condition x0 = (1, 0)T , system (44) admits a unique constant solution x(t) ≡ (1, 0)T ,
while system (45) admits besides this solution, an infinity of solutions parameterized
by λ ∈ [−1, 1), namely

x(t) =

{

((λ− 1)t+ 1, 0)T if t ∈ [0, 1/(1− λ)]
(0, 0)T if t > 1/(1− λ)

.

However, when B is a diagonal matrix, the relay inclusion of the form (34) always
represents a Filippov regularization, no matter the definition of the productBSgn(Cx(t)+
c) is employed. In fact, this is still valid for any matrix B verifying bi1jbi2j = 0 and
bij1bij2 = 0 for all i1, i2, j1, j2, i, j ∈ 1, n.

Nevertheless, it appears that only few results are available for the uniqueness of
Filippov solutions. Let us return to the class of relay systems described in (39). We
notice that by taking B(x) = diag(b11, ..., bnn), C = In and c = 0, we cannot apply
Theorem 7.13 to the following system:

{

ẋ(t) = g(x(t)) +
∑

i∈1,n B•isgn(xi(t))
x(0) = x0 ∈ Rn.

(46)

Thus, the existence and uniqueness of solutions to the discontinuous system (46) will
be analyzed through the corresponding system obtained by Filippov regularization,
namely

{

ẋ(t) ∈ g(x(t)) +
∑

i∈1,n B•iSgn(xi(t))
x(0) = x0 ∈ Rn.

(47)

In the next theorem we state the conditions under which the system (46) admits a
unique Filippov solution, in the sense of Definition 5.2.

Theorem 7.17. [29] Consider the system (46). The following assertions hold.
i) If g is Lipschitz continuous and satisfies a growth condition, that is there exists

k > 0 such that
‖g(x)‖ ≤ k(1 + ‖x‖) ∀x ∈ Rn

then, there exists a Filippov solution to the system (46).
ii) If, in addition, the matrix (bji)j,i∈1,n has only non-positive elements, then system

(46) admits a unique Filippov solution.

Sketch of the proof. The right-hand side in (46) is u.s.c. with non-empty closed,
convex values and for any i = 1..n the multifunctions biiSgn(xi) are one-sided Lips-
chitz continuous. Further, a result of Filippov [40] concerning the uniqueness of solu-
tions for differential equations with one-sided Lipschitz continuous right-hand side is
applied.

Remark 7.18. Let us reconsider the relay inclusion in Example 7.12 and suppose,
in addition, that the function g satisfies a growth condition. Then, due to Theorem
7.11, the unique Filippov solution of system (38) is Lipschitz continuous, having an
essentially bounded derivative.
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Switching, relay and complementarity systems 26

7.5 Another class of nonlinear relay systems
In Section 7.2. we presented the most common class of nonlinear relay systems, i.e.
relay systems which are nonlinear in the single-valued part of the vector field, but
which are linear with respect to the multivalued signum function. In contrast to this
class, we introduce here another class of relay systems arising in biological models,
that describes genetic regulatory networks. The nonlinearity of such systems refers
to complex combinations of signum functions that model switch-like interactions be-
tween different components of the regulatory network: DNA, RNA, proteins and small
molecules. Their general form can be described as follows.

ẋi(t) = −γixi(t) +
∑

l∈Li

kilbil(x(t)), i = 1..n, (48)

where xi denotes the cellular concentration of the product gene i, γi > 0 is the
degradation rate of xi, kil > 0 is a rate parameter and Li a possibly empty set of
indices. The nonlinearity of the above system is expressed by the boolean functions
bil : Rn

+ → {0, 1} defined in terms of sums and multiplications of step functions, s+
and s− given by

s+(xj , θj) =
1 + sgn(xj − θj)

2
; s−(xj , θj) = 1− s+(xj , θj),

for some threshold θj > 0. They specify the conditions under which the gene i is ex-
pressed at a rate kil. System (48) has been widely studied in the literature, mainly in the
framework of genetic networks (see [32] and references therein). In vector notations,
(48) rewrites as

ẋ = −γx+
∑

l∈L

kl
∏

j=1,n

(

1 + cljsgn(xj − θlj)
)

, (49)

where γ = diag(γ1, ..., γn), clj ∈ {−1, 0, 1},L counts all products of step functions in
the definition of kil, l ∈ Li, i = 1, ..., n and for each l ∈ L, kl ∈ Rn. The use of step
functions allows one for a compact description of the dynamics of genetic regulatory
networks, based on differential inclusions. In this case Filippov framework is employed
([33], [40], [43]).

An alternative method in the study of (48) is based on replacing step functions by
special smooth functions, namely sigmoids (also called "logoids") and investigating
the system thus obtained. The main technical tool consists in analyzing the limit when
all sigmoids approach step functions. In [64], it is shown that in this case the solutions
for sigmoids approach the limit solution uniformly in a finite time. A complete mathe-
matical comparison between these two approaches has been featured recently [56].

8 Complementarity systems
In this section we treat the case when K ⊆ Rl in (13) is a nonempty closed convex
cone. Proposition 1.1.3 in [38] establishes an equivalence between the variational prob-
lem given by the inequality (13) and the conewise complementarity problem, denoted
CCP (K), to follow: for each t ≥ 0, find λ(t) ∈ Rl such that

K 6 λ(t) ⊥ y(t) ∈ K∗. (50)
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Switching, relay and complementarity systems 27

Hereafter we will consider linear (or affine) conewise complementarity systems
(CCS) of the form:







ẋ(t) = Ax(t) +Bλ(t) + a
K 6 λ(t) ⊥ y(t) = Cx(t) + c+Dλ(t) ∈ K∗

x(0) = x0 ∈ Rn.
(51)

Let us present some examples which illustrate the relevance of the study of CCS.

Example 8.1. (mass and spring/dashpot, relative degree 1). Let us come back to Ex-
ample 3.2. Let us introduce ξ as the spring/dashpot coordinate (its deformation), and
define xT = (q, q̇, ξ). We write the dynamics as [12, Example 3]:

{

ẋ(t) = Ax(t) +Bλ(t)
0 ≤ y(t) = Cx(t) ⊥ λ(t) ≥ 0

(52)

with A =





0 1 0
0 0 0
0 0 −k

c



, BT = (0 1
m − 1

c ), C = (1 0 − 1); λ(t) has the physical

interpretation of a contact force. There are two modes: if y(t) > 0 then λ(t) = 0 and
q̈(t) = 0. If y(t) = 0 on some time interval [t0, t1], t0 < t1, then the complementarity
conditions are rewritten in "velocity" [42] [2, Propositions C.8, C.9]: 0 ≤ ẏ(t) =
CAx(t) + CBλ(t) ⊥ λ(t) ≥ 0, and since CB = 1

c > 0 this LCP always has a
unique solution. This is found by inspection to be λ(t) = 0 if q̇(t) + k

c q(t) > 0, and
λ(t) = −cq̇(t)− kq(t) if q̇(t) + k

c q(t) ≤ 0.
The switching conditions are rather different from those in Example 3.2. Such

a system has a relative degree one between λ (the "input") and y (the "output"). This
model guarantees that the contact force keeps the right sign for all times. The kinematic
restitution coefficients that result from (3) and from (52) are quite different one from
each other [5]. Obviously we can rewrite (52) as the differential inclusion

−ẋ(t) +Ax(t) ∈ B NK(Cx(t)) (53)

with K = R+. The same comments as for Example 6.4 apply: this is not a switching
system as in (2). When c = 0 however both systems are the same because the con-
tact force is equal to −kq whose sign is the same as the signed distance between the
obstacle and the mass.

Example 8.2. (RLC circuit with ideal diode, relative degree 0) Let us consider the
circuit in Figure 5 (a), where the diode is an ideal diode [3, 4]. Its dynamics is given
by:









ẋ1(t) = x2(t)− 1
RC x1(t)−

λ(t)
R

ẋ2(t) = − 1
LCx1(t)−

λ(t)
L

0 ≤ λ(t) ⊥ y(t) = λ(t)
R + 1

RC x1(t)− x2(t) ≥ 0

(54)

where x1 is the charge of the capacitor and x2 is the current through the inductor.
The signal y depends directly on λ, so the relative degree between them two is 0.
This systems belongs to the class (2) and the switching surface is easily identified as
1

RC x1−x2 = 0. The vector field is continuous, which means that the criteria of Section
4 are satisfied.
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L
R

D

(a)

L

R

C

D

C

(b)

Figure 5: Electrical circuits with capacitors, resistors and ideal diodes.

Example 8.3. (RLC circuit with ideal diode, relative degree 1). Let us consider the
circuit in Figure 5 (b), where the diode is an ideal diode. Its dynamics is given by:







ẋ1(t) = x2(t)

ẋ2(t) = −R
Lx2(t)− 1

LCx1(t)−
λ(t)
L

0 ≤ λ(t) ⊥ y(t) = −x2(t) ≥ 0
. (55)

The signal y does not depend directly on λ, however its time derivative along the
system’s trajectories does. The relative degree is equal to 1.

When K = Rl
+, the linear CCS (51) results in what is simply called a Linear

Complementarity System (LCS):






ẋ(t) = Ax(t) +Bλ(t)
0 ≤ λ(t) ⊥ y(t) = Cx(t) + c+Dλ(t) ≥ 0
x(0) = x0 ∈ Rn.

(56)

IfD is a P−matrix, a well-known result from complementarity theory states that λ(t)
is a piecewise-linear function of Cx(t) + c [27]. Thus, (56) is an ordinary differen-
tial equation with Lipschitz continuous right-hand side and C1 solutions. A general
rewriting of the LCS in (56) with c = 0 and D a P−matrix, as a switching system (2)
is given in [22, Equation (2.17)]. The switching surfaces however appear only in an
implicit way, because for a generic P−matrix it becomes rapidly impossible to get an
explicit description of the different modes of the LCP. In the next example the cells of
a planar complementarity systems are explicitly described, for a non trivialD matrix.

Example 8.4. Consider (in the plane) the complementarity condition in (56) with C =

I2, c = 0 andD =

(

2 1
1 1

)

(soD is a P -matrix). The following cases are in range.

i) λ1,λ2 > 0 and x1 + 2λ1 + λ2 = 0, x2 + λ1 + λ2 = 0. Then, the complemen-
tarity problem has the unique solution λ = (x2 − x1, x1 − 2x2)T if x ∈ R1 where
R1 = {x ∈ R2 : x1 < 0, x2 ∈

(

x1,
x1
2

)

}.
ii) λ1 > 0,λ2 = 0 and x1+2λ1+λ2 = 0, x2+λ1+λ2 ≥ 0. The complementarity

problem has the unique solution λ =
(

−x1
2 , 0

)T if x ∈ R2 where R2 = {x ∈ R2 :
x1 < 0, x2 ≥

x1
2 }.

iii) λ1 = 0,λ2 > 0 and x1+2λ1+λ2 ≥ 0, x2+λ1+λ2 = 0. The complementarity
problem has the unique solution λ = (0,−x2)T if x ∈ R3 where R3 = {x ∈ R2 :
x2 < 0, x1 ≥ x2}.
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Switching, relay and complementarity systems 29

iv) λ1 = λ2 = 0 and x1 +2λ1+λ2 ≥ 0, x2 +λ1 +λ2 ≥ 0. The complementarity
problem has the unique solution λ = (0, 0)T if x ∈ R4 where R4 = {x ∈ R2 :
x1, x2 ≥ 0}.

It is easy to see that x 0→ λ(x) is piecewise linear (thus, continuous) and there are
four regions that can be described like in Section 3.1, where the system is completely
defined (see Figure 6). So, for any A,B ∈ M2,2(R), system (56) admits a unique
classical solution and thus, the continuity obtained in the right-hand side of system
(56) allows for weak instead of strict inequalities in the final description of the regions.

x1 = x2

x2 = x1
2

R1

R2

R3

R4

x1

x2

O

Figure 6: The four regions in Example 8.4.

Let us denote by Sol(Cx, c,D) the solution set of the complementarity problem
given by the complementarity condition in (56). It follows from [21, Proposition 2.1]
that the LCS has a unique C1 solution if and only if Sol(Cx, c,D) is a singleton for all
x ∈ Rn. More generally, in [38] it is shown that in the case when K is a polyhedral
cone, the set of all solutions of the complementarity problem:

K 6 λ(t) ⊥ y(t) = Cx(t) + c+Dλ(t) ∈ K∗ (57)

is a singleton if the following conditions are satisfied:
i)D is positive semidefinite (possibly non symmetric),
ii) CRn ⊆ −DK +K∗,
iii) (K −K) ∩Ker(D +DT ) ⊂ Ker(B).
From (i) it follows that the LCS (56) has a piecewise linear right-hand side, and this

corresponds to a uniform relative degree 0 between λ and y (if in addition D = DT

then one may apply (23) with K = Rl
+). From (57) one has that λ(t) ∈ (D ·

+NK)−1(−Cx(t) − c) so that i), ii) and iii) guarantee that this operator is single-
valued. In a more general setting, Proposition 5.1 and Theorem 5.1 in [61] provide
quite general conditions such that the variational inequality possesses a unique solution
(Lipschitz continuous) so that the dynamical system (a differential variational inequal-
ity in [61], an AVS in this paper) has a unique C1 solution. These results in fact provide
conditions under which the operator B(D · +NK)−1(−Cx − c) is single-valued, so
that (29) is an ordinary differential equation.

In the case when D = 0 but CB has full-rank, the relative degree is equal to 1.
The complementarity systems in Examples 8.1 and 8.3 have a relative degree 1. As
we have seen in Example 6.4 such an LCS cannot be recast into (2). We therefore do
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Switching, relay and complementarity systems 30

not insist on this case, but it is worth noting that the relative degree one is a common
case for physical systems like mechanical or electrical systems, showing the limitations
of the models as discontinuous systems as in (2). Let us mention anyway that using
the results in [17] or [16] one may prove the existence and uniqueness of absolutely
continuous, or Lipschitz continuous, solutions in the relative degree one case. This
suggests that the regularity (or the smoothness) of the solutions is intimately linked to
the relative degree between the multiplier λ (playing the role of an input signal) and
the complementarity variable y (playing the role of an output signal). This is indeed
the case, see [6] for more details.

Finally, we notice that relay systems may also be recast into complementarity sys-
tems, since the sign multifunction in Figure 2 (a) lends itself to a description via com-
plementarity, see e.g. [2, Chapter 1]. This is in fact a particular case of representing a
piecewise linear multifunction (vertical segments are admitted) into a complementarity
framework [53]. See Section 12.

9 Time-varying switching systems
The frameworks of relay and of complementarity systems allow one to consider in
a rather natural way the case of nonlinear and/or time-varying vector fields fi in (2)
and of time-varying cells χi(t). For instance [19] considers linear complementarity
systems of the form:

{

ẋ(t) = Ax(t) +Bλ(t) + g(t)
0 ≤ y(t) = Cx(t) +Dλ(t) + h(t) ⊥ λ(t) ≥ 0

(58)

where (A,B,C,D) is supposed to be a dissipative (or positive real) quadruplet ([15]).
When D = 0 this implies in particular that an input/output constraint PB = CT as
in Theorem 7.11 is satisfied. Otherwise the dissipative linear matrix inequality implies
D + DT ≥ 0. Notice that both the smooth dynamics in Examples 8.2 and 8.3 are
dissipative. Theorem 7.5 in [19] states conditions under which (58) has a unique global
solution (x,λ, y) where g and h are so-called piecewise Bohl functions. The solutions
are the sum of functions (regular terms) in the extendedL2

loc space, and Dirac measures
(impulsive terms). It is noted in [19] that the jumps in the state x show up only at the
times where h is discontinuous (such a fact is explained also in [16] in the context
of measure differential inclusions, where a rigorous meaning of the complementarity
conditions at the times of state jumps is provided).

LetD be a P−matrix, it is clear that (58) can be interpreted as a switching system
(2) with time-varying vector fields and cells.

Example 9.1. Let us consider the scalar system with d > 0:






ẋ(t) = ax(t) + bλ(t) + g(t)
y(t) = Cx(t) + c+ dλ(t) + h(t)
0 ≤ λ(t) ⊥ y(t) ≥ 0

. (59)

The multiplier λ(t) is the solution of the LCP: 0 ≤ Cx(t)+c+dλ(t)+h(t) ⊥ λ(t) ≥ 0,
that is given by: λ(t) = 0 if Cx(t) + c + h(t) > 0 and λ(t) = −Cx(t) − c − h(t)
if Cx(t) + c + h(t) ≤ 0. The system in (59) is therefore equivalent to the switching
system:

ẋ(t) =

{

ax(t) + g(t) if Cx(t) + c+ h(t) > 0
(a− bC)x(t) + f(t) if Cx(t) + c+ h(t) < 0

(60)
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Switching, relay and complementarity systems 31

where f(t) = −bc−bh(t)+g(t), that is a switching system with time-varying switching
surface Σt = {z ∈ R : Cz + c+ h(t) = 0}.

It is easy to add some current or voltage sources in the circuits in Figure 5 so that
(54) and (55) become time-varying. The relay systems as in (34) also form a class of
non-autonomous switching systems, whose cells do not vary but whose vector fields fi
do. The time-varying linear complementarity systems (58) have also been studied in
[16]. The overall framework in [16] is that of the perturbedMoreau’s sweeping process,
that is a specific differential inclusion into normal cones to time-varying convex sets
K(t), roughly: −ẋ(t) + g(x(t), t) ∈ NK(t)(x(t)). The main assumption is that there
exists P = PT > 0 such that PB = CT . Then a state space transformation as in
Theorem 7.11 is done to recast (58) into a differential inclusion of the form (when
D = 0):

−ż(t) +RAR−1z(t) +Rg(t) ∈ NS(t)(z(t)). (61)

The time-variation of the convex polyhedral set S(t) is due solely to the term h(t)
in (59). The solutions are absolutely continuous when S(t) is (as a set), and of local
bounded variation when S(t) is (as a set). In the latter case solutions may jump and the
differential inclusion (61) has to be rewritten as a measure differential inclusion. The
case D ≥ 0 is alluded to in [16]. This case is however more deeply treated in [17], but
with h(t) = 0 (hence one is no longer in the framework of Moreau’s sweeping process
because the underlying convex set within which the system’s state evolves, becomes
constant). The solutions are then continuous (see Section 10).

10 Multivalued Lur’e dynamical systems
It happens that all the foregoing systems (relay, complementarity) possess a very strong
underlying structure of a continuous, single-valued system with a feedback intercon-
nection that consists of a multivalued, static (i.e. independent of the state), possibly
time-varying, nonlinearity. Such a point of view is obvious from (12)-(13). This
makes such systems much more structured than the general switching systems (2). The
point of view of Lur’e dynamical nonsmooth, multivalued systems is taken in [13, 17].
Therein one starts from a formalism that is close to the one in (12)-(13) and reads
as follows. Let A : Rn → Rn be a (possibly) nonlinear operator, B ∈ Mn,p(R),
C ∈ Mp,n(R) and D ∈ Mp,p(R) given matrices, f : R+ → R continuous such
that ḟ ∈ L1

loc(R+;Rn) and Φ : Rp → R ∪ {+∞} a given proper convex and lower
semicontinuous function (see [66]). Let x0 ∈ Rn be some initial condition, we con-
sider the problem : Find x : R+ → Rn continuous such that ẋ ∈ L∞

loc(R+;Rn) and
x right-differentiable on R+, λ : R+ → Rp continuous and y : R+ → Rp continuous
satisfying the nonsmooth Lur’e systemNSLS(A,B,C,D, f,Φ, x0):











ẋ(t) = A(x(t)) +Bλ(t) + f(t), a.e. t ≥ 0
y(t) = Cx(t) +Dλ(t), t ≥ 0
λ(t) ∈ −∂Φ(y(t)), t ≥ 0
x(0) = x0

. (62)

Two paths are followed in [17]. The first one consists of considering that D ≥ 0
has the structure diag(DI , 0) with DI ≥ 0, and to transform the system (62) into a
suitable variational inequality so that Kato’s theorem (or one of its variant, see [52])
applies directly. Roughly, this uses the fact that the part of y that does not depend on λ
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Switching, relay and complementarity systems 32

corresponds to a multivalued nonlinearity, whereas the part that depends on λ via DI

defines a single valued operator (in a way quite similar to what happens in Example
6.3). The single-valued part of the feedback interconnection is therefore incorporated
into the single-valued part of the system, i.e. it is added to A(x)), while the feedback
interconnection is left with only the multivalued part.

The second path uses in fact the rewriting of the system using an operator as the
one in (28). Using convex analysis tools one may invert the inclusion in (62) so that it
rewrites: 









ẋ(t) = A(x(t)) +Bλ(t) + f(t), a.e. t ≥ 0
y(t) = Cx(t) +Dλ(t), t ≥ 0
y(t) ∈ −∂Ξ(λ(t)), t ≥ 0
x(0) = x0

(63)

for some convex, proper, lower semicontinuous function Ξ that is obtained from Φ by
an inversion process similar to the one used in Example 6.2, i.e. Ξ(z) = Φ∗(−z)
(the minus sign is here to preserve the minus sign in the feedback interconnection
in (63)). The Lur’e system structure clearly appears in (63). By properly choosing
Φ (hence Ξ) one may recover some classes of nonlinear conewise complementarity
system (Φ = ΨK for some closed, non empty convex cone K) and of nonlinear relay
systems (Φ(y) = |y1| + ... + |yl|). It is clear from (63) that the crucial operator for
this differential inclusion is x 0→ B(D · +∂Ξ)−1(−Cx) 6 λ. The works in [17] aim
at characterizing it accurately depending on D and Ξ. For instance, it follows from
Corollary 1 in [17] that this operator is single-valued and Lipschitz continuous when
Φ = ΨK withK a closed convex cone if (compare with the conditions below (57)):

(i)D is positive semidefinite (possibly non symmetric),
(ii)Ko ∩Ker(D +DT ) = {0},
(iii) Im(C) ⊂ Im(D +DT ) ⊂ Ker(B),

where Ko is the polar cone of K . Other criteria that guarantee that the fundamental
operator is single-valued are given in Section 3 of [17].

iC

vC vL

LC
R

vR

iL

iDR1

iDF1 iDR2

iDF2

iR

Figure 7: A 4-diode bridge wave rectifier.

Example 10.1. Let us consider the four-diode bridge wave rectifier in figure 7, with a
capacitorC > 0, an inductance L > 0, a resistorR > 0. Its dynamics is given by:

[

ẋ1(t)
ẋ2(t)

]

=

[

0 − 1
C

1
L

0

] [

x1(t)
x2(t)

]

+

[

0 0 − 1
C

1
C

0 0 0 0

]

λ(t)

0 ≤ y(t) ⊥ λ(t) ≥ 0

(64)
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where x1 = vL, x2 = iL, λ = (−vDR1 − vDF2 iDF1 iDR2)T , y = (iDR1 iDF2 −
vDF1 − vDR2)T and

y =







0 0
0 0
−1 0
1 0







[

x1

x2

]

+







1
R

1
R
−1 0

1
R

1
R

0 −1
1 0 0 0
0 1 0 0







λ (65)

Notice that in this example one has n = 2 and l = 4. The matrix D is full rank, semi-

definite positive. The relation PB = CT holds with P =

(

C 0
0 p22

)

, p22 > 0, where

C > 0 is the capacitor parameter. This example shows that considering D ≥ 0 (and
notD > 0 norD = 0) is important for applications.

The relative degree one systems in Examples 8.1 and 8.3 can also be analyzed
with the tools developed in [17]. The approach in [17] strongly relies on a "dissipative
input/output" constraint similar to the one of Theorem 7.11, i.e. there exists P = PT >
0 such that PB = CT . The matrix D is supposed to be positive semi-definite. The
underlying property is the maximal monotonicity of the multivalued part of the system.

Remark 10.2. Electrical circuits as in example 10.1 show that non symmetric matrices
are common in complementarity systems. It is noteworthy that the system in (64) has a
full rank D that is only semi positive definite, because of its non zero skew-symmetric
part. This shows that the relative degree r = 0 is not sufficient by itself to guarantee
that the LCP is well-posed. In the multivariable case we have that D > 0 ⇒ r = 0,
but r = 0 does not implyD > 0 (it does if D = DT ).

Example 10.3. Let us consider two masses moving on a line, linked by a constant
spring with stiffness k (possibly nonlinear), subject to Coulomb friction with friction
coefficients µ1 > and µ2 > 0, and acted upon by two external forces F1 and F2. The
dynamics is given by:

{

m1q̈1(t) ∈ −m1µ1gSgn(q̇1(t)) + k(q2(t)− q1(t)) + F1(t)
m2q̈2(t) ∈ −m2µ2gSgn(q̇2(t)) + k(q1(t)− q2(t)) + F2(t)

(66)

The subspace {x ∈ R4 : q̇1 = q̇2 = 0} where x = (q1 q̇1 q2 q̇2)T represents
a codimension 2 attractive surface. The well-posedness of this relay system may be
stated using Theorem 7.11 or the results in [17]. There exists P = PT > 0 such
that PB = CT , where B and C are easily identified from (66): P = diag(pii) with
p11 > 0, p33 >, p22 = 1

gµ1
, p44 = 1

gµ2
. More examples such mechanical systems with

one-dimensional Coulomb friction may be found in [8], where they are analyzed via
maximal monotone differential inclusions.

Example 10.4. Consider now the system made of two masses m1 and m2, with m1

sliding on the top of m2 while m2 is in contact with the ground. The coefficients of
friction are µ1 > 0 between the two masses, and µ2 > 0 betweenm2 and the ground.
The dynamics is given by:







m1q̈1(t) ∈ −m1µ1gSgn(q̇1(t)− q̇2(t))
m2q̈2(t) ∈ m1µ1gSgn(q̇1(t)−

−q̇2(t)) − (m1 +m2)gµ2Sgn(q̇2(t))
(67)
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Switching, relay and complementarity systems 34

This system is compactly rewritten as ẋ(t)∈−BSgn(Cx(t)), with C =

(

1 −1
0 1

)

,

B =

(

µ1g 0
−m1

m2
µ1g

m1+m2
m2

µ2g

)

. There does not exist P = PT > 0 such that PB =

CT , except if m1+m2
m1

= µ1

µ2
. However the transfer matrix

G(s) =
1

s

(

µ1g
(

1 + m1
m2

)

−m1+m2
m2

µ2g

−m1
m2

µ1g
m1+m2

m2
µ2g

)

is a P−matrix since all its principal minors (there are three) are positive. Therefore
Theorem 7.11 does not apply, neither the results in [17], but Theorem 7.5 applies.

11 Summary and comments
From the above results summarized in Sections 7 to 10, it follows that the main tools
and assumptions that have been employed to study the AVS (12)-(13) are:

• Complementarity theory and the P property of matrices or functions,

• Maximal monotonicity of multivalued operators,

• Dissipativity of dynamical systems.

The fundamental operator for the analysis of the AVS in (12)-(13) is

Φ : x 0→ B(D ·+NK)−1(−Cx− c) (68)

whose properties dependmainly onD andK . It may be single-valued (e.g. D = DT >
0 andK a convex set) or multivalued (e.g. D a P0−matrix and K a closed rectangle).
The functional spaces for the solutions vary from one result to the other: C1, absolutely
continuous, Lipschitz continuous,L2, of local bounded variations, locally or piecewise
analytic. The advantage of the AVS (12)-(13) over (2) is that it provides compact
formalisms with a strong structure that are very suitable for mathematical analysis,
time-discretization, and stability analysis. For instance, they allow the introduction of
time-varying cells, of nonlinearities, and they are more tractable for proving uniqueness
using powerful tools of convex, complementarity, or nonsmooth analysis. Determining
the continuity of the underlying vector field f may be done via high-level tools like
(23) that dispenses one with examining each vector field fi at each cell boundary as it
is done in Section 4. On the contrary, the structure of a general switching system as (2)
is quite loose. It is worth noticing that the monotonicity (and its extensions like one-
sided Lipschitz continuity) is a very important property for proving the uniqueness of
solutions. However, in [26], there are identified other sufficient conditions specifically
tailored for piecewise continuous systems. The great advantage of all the techniques
based on maximal monotonicity is that they allow one to consider non-linearities.

Another fundamental parameter in AVS is the relative degree between λ and y.
The relative degree influences the uniqueness of solutions in relay systems (see Section
7.3) and the smoothness of the solutions in linear complementarity systems (see [6]).
In this setting the dissipativity property is quite useful since a positive real quadruplet
(A,B,C,D) has D + DT ≥ 0 and, if D = 0, satisfies a constraint of the form
PB = CT with P = PT > 0.
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• The various sets which play a role in the above developments (the cells χi, the
sets K for the AVS) are all convex. Convexity therefore appears to be a cen-
tral property (the positive definiteness of the matrix D may also be interpreted
as a convexity property). Convexity is in fact closely related to the maximal
monotonicity and to the dissipativity. Indeed when K is a closed convex non
empty set, then the mapping λ 0→ NK(λ) is maximal monotone. The general-
ized equation in (33) has a unique solution when D is positive definite and K
is closed convex non empty. More generally the well-posedness of the differen-
tial inclusion ẋ(t) ∈ Φ(x(t)) relies heavily on convexity properties. The role of
dissipativity-like properties and their link to convexity is highlighted in Theorem
7.11, where the chain rule for convex functions plays a central role. Whether or
not all the material that is presented in this paper extends to non convex sets, is
an interesting question. Starting from the point of view of inclusions into nor-
mal cones as in (29) (or of AVS in (12) and (13)), a natural extension is that of
prox-regular sets [16, 25]. Another closely related important point is that the
argument of the sign multifunction for relay systems, and the variable y(t) for
complementarity systems, have been considered as linear (or affine) functions
of x and λ. This means that the associated sets χi in the switching system for-
malism, are convex. Thus starting from prox-regular AVS might help in defining
well-posed switching systems with non convex cells χi.

• Another interesting point is to investigate how the dissipativity and monotonicity
properties used in the framework of AVS (relay, complementarity systems) relate
to dissipativity of switching systems as in [76]. The AVS framework allows one
to state the dissipativity with a unique supply rate and a unique storage function
(more precisely, a unique passivity linear matrix inequality [15, Chapter 3]),
whereas the criterion in [76] uses several supply rates and storage functions. This
may constitute a strong advantage of working within the AVS framework, when
this is possible, and paves the way towards extensions of feedback controllers
synthesis as in [35]. Observer design for classes of set-valued systems using
dissipativity has been proposed in [18] and [47]. The applications in the stability
and the feedback control of nonsmooth electro-mechanical systems and circuits
seems to be a promising field of research.

• Switching feedback controllers formulated through complementarity conditions
have not yet received much attention, except in [51]. The parameter identifi-
cation of nonsmooth systems using multiple relay functions is also a topic that
deserves attention [24]. The results on relay and complementarity systems may
be used as a theoretical foundation for the design of such inputs and identfication
techniques. The relay system used in [24, Equ.(7)–(10)] fits with (30), however
Theorems 7.5 and 7.11 do not apply. This system is similar to the so-called
twisted controller of sliding-mode control, for which specific stability results
have been developed that relax the uniqueness of solutions [60, Chapter 3].

• It is known in circuit theory that feedback controllers implemented through cur-
rent or voltage sources may increase the relative degree (the index when one
remains within the DAE framework). The relative degree influences the unique-
ness of solutions in relay systems (see Section 7.3) and the smoothness of the
solutions in linear complementarity systems (see [6]). Stability, control and sim-
ulation of nonsmooth circuits with higher relative degree is still a largely open
field.
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Switching, relay and complementarity systems 36

• The properties of finite-time convergence, which are a particular feature of non-
smooth systems [59, 60], can certainly be used in a more systematic way to
refine the well-posedness results. Indeed in many instances the solutions are
“more than absolutely continuous”, as stated by general results on differential
inclusions. This is especially true for set-valued Lur’e dynamical systems as in
Section 10.

• The control of relay systems in biology and gene regulatory networks (see Sec-
tion 7.5) is a topic with promising applications, see [39].

As announced above in this survey only systems with continuous solutions are dealt
with. State jumps may occur in AVS when some unilateral effects are present (state in-
equality constraints), like in complementarity systems with D = 0. Roughly speaking
state jumps may occur each time the domain of the operator in (68) is not the whole of
Rn, and x(t−) does not belong to this domain at some t. Then the state has to jump
to some admissible value x(t+). There are two issues with state jumps: (i) formulate
a coherent state jump law (in Contact Mechanics this belongs to the realm of impact
modeling, for electrical circuits see [41])), (ii) correctly rewrite the dynamics, since the
solutions usually no longer are functions but distributions (see [6] for a complete study
of a class of distribution differential inclusions that extend Moreau’s measure differ-
ential inclusions [57, 58]). Notice that the fundamental operator may be multivalued
but with no unilateral effects, as in relay systems. On the contrary unilaterality implies
some kind of multivaluedness.

Finally let us point out that nonsmooth systems like AVS may be recast in the class
of so-called "hybrid dynamical systems", see e.g. [12, 22]. This approach is used in
[22] to determine when a conewise switching system (the cells χi are cones, i.e. hj = 0
in the definition of dj) undergoes at most a finite number of switches in finite time (non
Zeno behaviour).

12 From switching systems to AVS
In the previous sections we have analyzed several classes of nonsmooth systems (re-
lay and complementarity systems) which are, under certain conditions, switching sys-
tems as in (2). Let us now make the inverse process: is it possible to construct an
AVS from (2)? The answer is yes in some particular cases. Such an issue is closely
related to finding the representation as a complementarity problem, of a piecewise-
linear function. Let us study the simplest case of a switching system with switching
surface Σ = {x ∈ Rn : Hx + h = 0} that separates the state space in two cells
χ1 = {x ∈ Rn : Hx + h > 0} and χ2 = {x ∈ Rn : Hx + h < 0}. The two vector
fields are A1x + a1 and A2x + a2, and we suppose that the continuity holds on Σ, so
that the conditions of Theorem 4.4 hold true. It is then not difficult to see that for B
andD such that v1,2 = B

D withD > 0 (for instance,D = |h| or even moreD = 1 and
B = v1,2), the LCS:

{

ẋ(t) = A1x(t) + a1 +Bλ(t)
0 ≤ λ(t) ⊥ Hx+ h+Dλ(t) ≥ 0

(69)

is the complementarity representation of the switching system. Indeed whenHx+h >
0 then λ = 0, when Hx + h < 0 then λ = − 1

D (Hx + h) and the vector field
is (A1 − 1

DBH)x + a1 − 1
DBh that is equal to A2x + a2, by Theorem 4.4. It is
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Switching, relay and complementarity systems 37

possible to extend this to more complex switching systems. This has been tackled in
[53, 72]. For instance, all continuous piecewise-linear functions of x in the plane, can
be equivalently represented via complementarity conditions between multipliers and
variables x. The case of "star-shaped" cells is detailed in [53].

In the case the vector field f is discontinuous onΣ, a relay representation is possible
as follows

ẋ(t) ∈ 1
2 (A1 +A2)x(t)
− 1

2 [(A2 −A1)x(t) + a2 − a1] Sgn(Hx(t) + h)
+ 1

2 (a1 + a2)
(70)

This relay system does not belong to the class of relay systems studied in Section
7, however its well-posedness is guaranteed if the switching surface Σ is attractive or
crossing, using a criterion by Filippov for codimension one switching surfaces (see
[40, Section 10]). Notice that if the continuity holds then the right-hand side of (70)
is 1

2 (A1 + A2)x + v1,2|Hx + h|+ 1
2 (a1 + a2) for some v1,2 from Theorem 4.4. The

same process can be done for multiple switching surfaces, but then the uniqueness of
solutions may not be assured on codimension ≥ 2 sliding surfaces (which is the case
for the classes of relay systems studied in Section 7). The results in [53, 72] also apply
in the case where the graphs possess vertical branches, that correspond to a multivalued
right-hand side of the evolution problem.

For n = 2, consider the system (2) with {dj : j ∈ 1, p} as in Example 3.1. Under
the continuity conditions imposed on the vector field f(x) = Aix + ai if x ∈ χi, i ∈
1, p+ 1, the LCS representation reads as follows











ẋ(t) = A1x(t) + a1 +B1λ1 + . . .+Bpλp

0 ≤ λ1 ⊥ H1x+ h1 +D1λ1 ≥ 0
...

0 ≤ λp ⊥ Hpx+ hp +Dpλp ≥ 0

whereDj > 0 andBj ∈M2,1(R) satisfy Bj

Dj
Hj = Aj−Aj+1 and Bj

Dj
hj = aj−aj+1

for all j ∈ 1, p.
Further, dropping the continuity conditions, we may embed the system

ẋ(t) = Aix+ ai if x ∈ χi, i ∈ 1, p+ 1

into the following relay system

ẋ(t) ∈ Ax(t) + a −[B1x(t) + C1]Sgn(H1x(t) + h1)− . . .
−[Bpx(t) + Cp]Sgn(Hpx(t) + hp),

where A,Bj ∈ M2,2(R), Cj ∈ M2,1(R) for all j ∈ 1, p are uniquely determined
from the algebraic systems

{

A1 = A−B1 −B2 − . . .−Bp

a1 = a− C1 − C2 − . . .− Cp
;

{

A2 = A+B1 −B2 − . . .−Bp

a2 = a+ C1 − C2 − . . .− Cp
;

. . . . . .
{

Ap+1 = A+B1 +B2 + . . .+Bp

ap+1 = a+ C1 + C2 + . . .+ Cp
.
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Switching, relay and complementarity systems 38

(this follows simply from the fact that

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 −1 . . . −1
1 1 −1 . . . −1
...
1 1 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

p+1

= 2p ,= 0.)

As mentioned in [2] it is possible to construct in a systematic way a relay system
from any switching system as in (2), using the functions 1−sgn(dj(x))

2 and 1+sgn(dj(x))
2 .

However, the analysis of the relay systems that arise here (involving products of sign
functions) is subtle and deserve more particular attention, despite their very clear def-
inition in the interior of the cells χi. Finding the class of switching systems such that
this "sign formula" provides a well-posed relay system is still largely open.

Under the assumption that for (2) there are p attractive surfaces that generates ex-
actly m = 2p different regions and therefore 2p vector fields fi’s, the authors of [36]
justify a definition of the system on the discontinuity boundaries, starting from a more
general nonlinear relay system close to (49) with γi = 0, i = 1, ..., n, the constants kl
replaced by the functions fl(x) for each l ∈ L = {1, ...,m} and sgn(xj−θlj) replaced
by sgn(dj(x)), j = 1, ..., p. The main tool in order to identify a selection consistent
with the Filippov convexification approach, is to reformulate the multivalued sign func-
tion and then to impose the condition that this selection lie in the tangent plane at the
discontinuity boundary; this condition is necessary for the sliding motion to occur.

13 Multimodal systems with multiple criteria
Let us now turn our attention to a class of switching systems known as piecewise-
linear (PWL) systems [49, 48]. The mechanical system of Example 3.2 belongs to this
class. The above models (relay, complementarity systems) cannot be used to prove
their well-posedness. PWL systems have been studied in several papers: see [49] for
bimodal systems with single criterion and [49], [48], [74] for multimodal systems with
multiple criteria. Recently, the study of the well-posedness developed in the above
mentioned works was successfully extended by [73] to the more general class of non-
linear systems with multiple modes and multiple criteria. In this section we turn back
to the general form of discontinuous system (2). As stressed out from the beginning,
the system (2) is not defined on the intersection boundaries ∂χi. In contrast with the
theory of Filippov, in the theory of multimodal systems, to each point on a common
boundary of some cells, one associates exactly one of the corresponding vector fields
that define the system on a neighborhood of that point. This means that for bimodal
systems defined outside the boundary by f1 and f2, at a point on the discontinuity sur-
face the multivalued part is given by the set of the two vectors, while in the Filippov
regularization case, the multivalued part is given by the line segment of ends f1 and f2.
As an example of PWL system, one may consider Example 3.2.

13.1 The general framework for PWL systems
In order to give a complete definition of the discontinuous system (2), let us introduce
the multifunction F : Rn → Rn,

F (x) =







{fi(x)} if x ∈ χi
⋃

i∈I

{fi(x)} if x ∈
⋂

i∈I

χi for some I ⊆ 1,m .
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Switching, relay and complementarity systems 39

The discontinuous system (2) will be restated by the differential inclusion:

ẋ(t) ∈ F (x(t)). (71)

Definition 13.1. Suppose that there are no left-accumulations of switches. For a given
initial state x(0) = x0, a function x : [0,∞) → Rn is a solution of the discontinuous
system (2) in the sense of Caratheodory, if it is absolutely continuous on each compact
subinterval of [0,∞) and there exists a (measurable) selection f̃ of F such that x and
f̃ satisfy the integral equation

x(t) = x0 +

∫ t

0
f̃(x(τ))dτ, ∀t ≥ 0.

We note that the above definition extends naturally to the frame of differential in-
clusions, the concept of a Caratheodory solution for a discontinuous system contained
in Definition 5.1.

For k ≥ 1, i ∈ 1,m, j ∈ 1, p , we introduce the following notations:

Si,j,k =
[

dj , Lfidj , ..., L
k−1
fi

dj
]T

,

Ti,j,k =

{

{x ∈ Rn : Si,j,k(x) $ 0}, j ∈ J1
i

{x ∈ Rn : Si,j,k(x) < 0}, j ∈ J2
i

,

Ti =
⋂

j∈1,p

⋂

k≥1

Ti,j,k,

Ki,j = {x ∈ χi ∩ χj : fi(x) = fj(x)}, i ,= j.

Remark 13.2. It is easy to verify that for any i, i1, i2 = 1..m one has

Int(χ)i = χi ⊂ Ti ⊂ χi;

χi = Int(Ti) and χi = T i;

T i1 ∩ T i2 = χi1 ∩ χi2 .

and if Ti1 ∩ Ti2 ,= ∅ then (J1
i1 ∩ J2

i2 ,= ∅) or (J
1
i2 ∩ J2

i1 ,= ∅).

Necessary and sufficient conditions for the well-posedness of system (2) in the
sense of Definition 13.1 have been studied in [73]. In the sequel we give a correct
version of Theorem 3.1 in [73]) that wrongly states necessary conditions.

Hypotheses 13.3. i) For any M > 0 and each i ∈ 1,m, there exists ki,M > 0 such
that f verifies the following growth condition

‖fi(x)‖ ≤ ki,M (1 + ‖x‖), ∀x ∈ Rn, ‖x‖ ≤M.

ii) f is piecewise analytic in the sense that, for any i ∈ 1,m, fi is analytic.

Theorem 13.4. Suppose that Hypotheses 13.3 are satisfied. If for any initial condition
x0 = x(0), the differential inclusion (71) admits a unique solution (in the sense of
Caratheodory), then

⋃

i∈1,m

Ti = Rn, Ti ∩ Tj ⊂ Ki,j for all i ,= j and

Ti1 ∩ Ti2 ⊂
⋂

k≥1
j=1..p

Ker(Si1,j,k − Si2,j,k) for i1 ,= i2.
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Switching, relay and complementarity systems 40

Proof. Let x0 ∈ Rn and x(.) a solution, with x(0) = x0. Then ∃i = 1..m and ε > 0
such that x0 ∈ χi and x(t) ∈ χi on [0, ε), that is for t ∈ [0, ε) we have

dj(x(t)) ≥ 0 ∀j ∈ J1
i

dj(x(t)) ≤ 0 ∀j ∈ J2
i .

Case 1. If dj(x0) ,= 0 ∀j = 1..p, then x0 ∈ Int(Ti,j,k)∀k ≥ 1 and j = 1..p, so
x0 ∈ Ti.

Case 2. If there exists j = 1..p such that dj(x0) = 0 and dj(x(t)) ≥ 0 on [0, ε).
Cf. [49], ∃k0 ≥ 1 such that dj(x0) = 0 . . . (dj ◦ x)k0−1(0) = 0 and (dj ◦ x)k0 (0) >
0 ⇔ Lk0

fi
dj(x0) > 0. We obtain Si,j,k ! 0 ∀k ≥ 1, hence x0 ∈ Ti,j,k. Similarly, if

dj(x0) = 0 and dj(x(t)) ≤ 0 on [0, ε), we get Si,j,k " 0 ∀k ≥ 1 and again x0 ∈ Ti,j,k.
From the above we conclude that x0 ∈ Ti, so

⋃

i=1..m Ti = Rn. Further, let
x0 ∈ Ti1 ∩ Ti2 . We know from Lemma 3.1 in [73] that if x1 and x2 are two solutions
with the same initial condition x0, then x1 ≡ x2 on some interval [0, ε). We obtain
that fi1 ≡ fi2 and Lk

fi1
dj(x1(t)) = Lk

fi2
dj(x2(t)) ∀k ≥ 0 on [0, ε). The last equality

implies that x0 ∈ Ker(Si1,j,k − Si2,j,k)∀k ≥ 0 and j = 1..p.

Remark 13.5. As alluded to in section 5.3, the conditions of Theorem 13.4 guarantee
that the switching surfaces are of the crossing type: there are no sliding motions, nor
repulsive surfaces. The intuition behind the construction of the sets Ti and of Si,j,k is
that one observes the way the solutions reach the boundaries, and how they leave them.
The solutions may reach and leave the boundaries with various degrees of tangency, as
reflected by the calculations of the Lie derivatives that form Si,j,k.

As already remarked in [73], the conditions of the above theorem are difficult
to check because of the infinite number of intersections in the definition of the sets
Ti. Therefore, the authors of [73] also considered special cases of switched systems,
namely systems with single criterion, where the cells χi, i ∈ 1,m are described by one
and only one inequality. The results in [73] extend to nonlinear systems the results in
[74] obtained for piecewise linear systems with multiple modes and multiple criteria,
described by lexicographic inequalities. In turn, the work in [74] is an extension of
papers [49] and [48], where equivalent conditions for the well-posedness of bimodal
linear systems with multiple criteria are investigated.

Example 13.6. Let us look at the following system:

ẋ(t) =

{

1 if x(t) ≥ 0
−1 if x(t) ≤ 0

(72)

x(0) = x0. (73)

The discontinuity surface is given by x = 0 and here the multivalued part is F (x) =
{−1, 1}. For χ1 = R∗

+ and χ2 = R∗
−, we have

T1 = {x ∈ R : [x, 1, 0, ..., 0] $ 0} = R+

T2 = {x ∈ R : [x, 1, 0, ..., 0] < 0} = R−

We have T1 ∩ T2 = {0} ! K1,2 = ∅, so the above bimodal system does not have a
unique Caratheodory solution for any initial point x0. In fact, if x0 = 0 the system
tends to jump to one of the two possible modes, i.e. there are two solutions: x(t) ≡ ±t.
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Switching, relay and complementarity systems 41

Reversing the sign in the above system (see also Example 8), we remark that T1 =
R∗

+, T2 = R∗
− and T1 ∪ T2 ,= R2, even if T1 ∩ T2 = ∅ ⊂ K1,2; so Theorem 13.4

above says that the system is not well-posed. In fact we notice that there is no solution
starting from 0, while in the context of Filippov regularization the system has a unique
solution for any x0 ∈ R and the surface x = 0 is attractive.

Example 13.7. Let us return to Example 3.2 and associate the following bimodal sys-
tem:

ẋ(t) =











(

0 1
−k0

m − c
m

)

x(t) if x1(t) ≥ 0
(

0 1
0 0

)

x(t) if x1(t) ≤ 0

(k0 stands for the stiffness). Since p = 1,m = 2, for all k ≥ 3 we obtain:

S1,k(x) =

[

x1, x2,−
ko
m

x1 −
c

m
x2, ..., c

1
k−3x1 + c2k−3x2

]

,

S2,k(x) = [x1, x2, 0, ..., 0],

T1,k = {(x1, x2) : x1 > 0 ∨ x1 = 0, x2 ≥ 0},

T2,k = {(x1, x2) : x1 < 0 ∨ x1 = 0, x2 ≤ 0},

where c1k−3, c
2
k−3 ∈ R are some constants. Then T1 ∩ T2 = {(0, 0)} ⊂ K1,2 = {x ∈

R2 : k0x1 + cx2 = 0} and the necessary condition of Theorem 13.4 is verified.
The well-posedness of the mass spring/dashpot system as in Example 3.2 is pro-

vided in [62] where it is shown that q is C1, q̇ is absolutely continuous and q̈ exists
almost everywhere. The model used in [62] assumes that the damping term takes the
value 0 at q = 0.

13.2 A particular case of PWL system
Since it is the purpose of our work to identify common subclasses between various
types of switching systems, let us consider a subclass of the above PWL systems, that
allows us to make a link with relay systems. Let f0 : Rn → Rn be a given function
and B ∈ Mn,p(R) . In the cells (χi)i∈1,m, we consider the following discontinuous
system

ẋ(t) = f0(x(t)) + λi if x(t) ∈ χi, (74)
where λi = −

∑

j∈J1
i
B•j +

∑

j∈J2
i
B•j , λT

i ∈ Rn.
Since on the intersection boundaries between χi, i ∈ 1,m the system is not yet

defined, we shall consider two different definitions of the discontinuous system ẋ(t) =
f(x(t)) on these boundaries, in order to have a good definition of the system on the
whole space Rn. Different definitions may be considered on the boundaries.
I. The first approach deals with the possibility for the discontinuous vector field

f to take, at every point on the intersection boundaries, any value from the set of all
values of the vector fields that define the system on a neighborhood of this point; this
definition allows one to settle a necessary and sufficient condition in order to have a
unique smooth continuation from any initial state and so, the well-posedness of the
discontinuous system (74).

Let fi : χi → Rn, fi(x) = f0(x) +λi, i ∈ 1,m and suppose that f0 is an analytic
function that satisfies Hypotheses 13.3, i) with fi replaced by f0. Then, Theorem 13.4
can be applied to the problem (74) and the well-posedness is straightforward.
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Switching, relay and complementarity systems 42

In what followswe present a corollary of Theorem 13.4which may also be regarded
as an extension to affine systems of the results in [74]. Let A ∈ Mn,n(R) be a given
matrix and let us consider in the cells (χi)i∈1,m a discontinuous affine system defined
as follows

ẋ(t) = Ax(t) + λi if x(t) ∈ χi. (75)

Due to the particular form of dj and fi we have

Lk
fidj(x) = Hj•A

k−1fi(x) for all k ≥ 1.

For i ∈ 1,m, j ∈ 1, p, let us adopt the following notations:

Si,j =
[

dj , Lfidj , ..., L
kj−1
fi

dj
]T

,

Ti,j =

{

{x ∈ Rn : Si,j(x) $ 0}, j ∈ J1
i

{x ∈ Rn : Si,j(x) < 0}, j ∈ J2
i

,

Ti =
⋂

j∈1,p

Ti,j ,

where kj is the maximal integer value (kj ≤ n+1) such that the matrix
[

HT
j•, (Hj•A)T ,

. . . ,
(

Hj•Akj−2
)T

]T
has a row-full rank (in particular, this holds if (Hj•A) is observ-

able).
We remark here that fi and dj are analytic, ∀i ∈ 1,m and j ∈ 1, p. Moreover, by

taking

M = max






‖A‖1,

∑

j∈1,p

‖B•j‖1






,

we find that for any i ∈ 1,m, fi satisfies the linear growth condition

‖fi(x)‖1 ≤ ‖A‖1‖x‖1 +
∑

j∈1,p

‖B•j‖ ≤M(1 + ‖x‖1),

where ‖A‖1 stands for the matrix norm (the maximum absolute column sum).
The particular description of the cells (Section 2.1) together with the above defi-

nition of the discontinuous vector field f along χi allows one to derive an equivalent
condition for the well-posedness of the discontinuous system which is easier to verify
(the definition of Ti is given in terms of finite intersections). This is done in the next
proposition.

Proposition 13.8. For any initial condition x0 = x(0), the discontinuous system (75)
admits a unique solution (in the sense of Caratheodory) if and only if

⋃

i∈1,m

Ti = Rn and Ti ∩ Tj ⊂ Ki,j for all i ,= j.

Proof. It is easy to see that for any i ∈ 1,m and j ∈ J1
i , the set Ti,j may be written as

an infinite intersection as follows

Ti,j = {x ∈ Rn;Si,j(x) $ 0}

=
⋂

k≥2

{

x ∈ Rn :
(

dj(x), Hj•fi(x), . . . , Hj•Ak−2fi(x)
)T
$ 0

}

,
(76)
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that is Ti,j is the limit of a decreasing sequence of sets. Indeed, the inclusion "⊇" is
obvious, while for the other one, it is sufficient to observe that Si,j(x) = 0 (componen-
twise) implies, by the choice of kj , that Hj•Akfi(x) = 0 for any k ≥ kj + 2. Similar
arguments work for Ti,j with j ∈ J2

i .

II. The second approach yields a sufficient condition for the well-posedness of the
system (2). Employing the standard multivalued Sign function (|αi| = |βi| = 1 in
Figure 2 (a)), we embed (74) into the following differential inclusion:

ẋ(t) ∈ f0(x(t)) −BSgn(d(x(t))) (77)

where Sgn(d(x)) = (Sgn(d1(x)), . . . , Sgn(dp(x)))T . Clearly, for x ∈ χi, the right-
hand side in (77) is exactly fi(x). If x ∈

⋂

i∈I

χi for some I ⊆ 1,m and

J(x) = {j ∈ 1, p : dj(x) = 0},

the right-hand side in (77) becomes

f0(x) −
∑

j /∈J(x)

B•jSgn(dj(x)) +
∑

j∈J(x)

B•j [−1, 1].

Now, by (77), the system (2) is well-defined on the whole state space.

Hypotheses 13.9. a) The function f0 is Lipschitz continuous, that is there exists L > 0
such that

‖f0(x) − f0(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.

b) There exists a symmetric positive definite matrix P ∈Mn,n(R) such thatPB = CT

for all i ∈ 1, n.

The next result is an application of Theorem 7.11 to the particular case of differen-
tial inclusions considered in (74).

Proposition 13.10. Consider inclusion (77) and assume that Hypotheses 13.9 are sat-
isfied. Then, for any initial condition x0 ∈ Rn, the differential inclusion (77) has a
unique Lipschitz solution with essential bounded derivative.

Remark 13.11. We emphasize here that in both of these approaches, the employed
solution concept is that of a Caratheodory solution for a differential inclusion (see
Definition 7.10). However, in the first approach, taking into account the conditions to
be verified for the existence and uniqueness of a Caratheodory solution, supplementary
assumption should be required namely, the non existence of right-accumulation of the
switches.

14 Numerical computation of the solutions
The numerical simulation of nonsmooth dynamical systems (mechanical systems with
impact and friction, electrical circuits with ideal components) is a vast field of inves-
tigation [2, 3, 4]. Two major methods exist for the simulation of dynamical systems
with nonsmooth events: time-stepping (or event-capturing) schemes, and event-driven
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schemes (see e.g. [2, pp.199-201] for a definition). Let us focus on time-stepping
schemes. The AVS in (12)-(13) is discretized as:







xk+1 = xk + hg(xk+1) + hBλk+1

yk+1 = Cxk+1 + c+Dλk+1

(s− λk+1)T yk+1 ≥ 0, ∀ s ∈ K
(78)

where h > 0 is the time step. The last line is equivalent to −yk+1 ∈ NK(λk+1) ⇔
λk+1 ∈ ∂ψ∗

K(−yk+1). Therefore the discrete-time system (78) can be rewritten equiv-
alently in different ways depending on the data (mainly D and K), still using the
convex analysis tools as in the above examples. We retrieve here that the operator
xk+1 0→ (D ·+NK)−1(−Cxk+1− c) plays a central role in (78), which can be rewrit-
ten compactly as:

xk+1 = xk + hg(xk+1) + hB(D ·+NK)−1(−Cxk+1 − c) (79)

that is a generalized equation with unknown xk+1 to be solved to advance the scheme
from step k to step k + 1.

It is noteworthy that in practice one often chooses a more general discretization
such as θ-methods [2, 61]. The convergence of Euler-like implicit time-stepping meth-
ods has been shown in [20] for LCS and for linear relay systems in [46], see also [61,
Sections 7 and 8] in the more general setting of differential variational inequalities, and
[45] for generalizations of [20]. The main assumptions in [20] and [46] are made onD
and on the existence of solutions to (79), which is an LCP for discretized LCS. The dis-
cretized differential inclusion (34) satisfying the conditions of Theorem 7.11 is studied
in [1]. The results of [9] can then straightforwardly be used to prove the convergence
of the implicit Euler method, with order 1

2 . Most interestingly it is shown in [1] that
the implicit method, contrarily to the explicit one [75], can numerically stabilize the
discrete solution on the sliding surfaces in a smooth way, without spurious numerical
oscillations (despite both the implicit and the explicit method converge, their qualita-
tive behaviour on sliding surfaces is quite different, see the simulation results in [1] and
[75]). Finally let us mention the works [70, 69] in which a specific description of the
cells χi is made, that allows one to derive accurate event-driven schemes. The advan-
tage of event-driven schemes over time-stepping ones, is that they may allow for higher
accuracy. However they are also prone to "epsilon-tuning" process due to the necessity
to incorporate higher-order derivatives estimations when the trajectories attain, or lie
on boundary surfaces. This is often quite a burden in the numerical implementation.
Moreover they cannot be implemented (except if the solution is known in advance!)
when accumulations of events exist.

15 Conclusions
This paper presents a brief introduction to switching systems, their well-posedness and
their relationships with relay and complementarity dynamical systems, as summarized
in Figure 1. The Filippov’s regularization allows one to embed switching systems
into a general framework of differential inclusions with absolutely continuous solu-
tions. This however is often not sufficient to prove the uniqueness of the solutions,
to derive good numerical algorithms, and more compact formalisms lend themselves
much better to deep mathematical and numerical analysis. This is why relay and com-
plementarity systems offer a very attractive point of view, despite they represent only
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Switching, relay and complementarity systems 45

narrow classes of switching systems from the point of view of the cells topology. Dis-
sipativity, the P property of matrices and maximal monotonicity of operators appear
to be essential tools. From the point of view of applications, they however represent
large and important classes of systems: mechanical systems with piecewise linear in-
terface laws (impacts, friction), electrical circuits with piecewise linear components
(ideal diodes, switches), feedback systems with relay and discontinuous controllers,
genetic regulatory networks etc. It may even be said that from the applications point
of view, switching systems as in (2) model only a narrow class of mechanical and elec-
trical systems, which often possess a positive relative degree and solutions that have
to be sought in distribution spaces. Convexity appears to be a central feature for all
mathematical formalisms considered (convexity of the cells of the switching systems,
convexity of the sets that define the underlying variational inequality constraint for re-
lay and complementarity systems). Whether all this material extends to non convex
cases (considering for instance the so-called prox-regular sets which are an interesting
extension of convex sets [16, 25]) may be a topic of interest. Finally we focus on dis-
continuous systems with continuous solutions. Indeed including state jumps requires
to reconsider all the mathematical formalisms (one then has to work with measure or
distribution differential inclusions), and this is beyond the scope of this paper.

Remark 15.1. Dedicated software for the class of set-valued, nonsmooth dynamical
systems studied in this paper and based on the above time-stepping schemes, are not
widely developed. Let us mention the SICONOS platform, an open-source software
developed at INRIA [1, 3, SICONOS].
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