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Abstract. During the last decade Virtual Reality has benefited of numerous works dedicated to
the modeling and the simulation of multibody systems. Even if a large set of methods are already
used by the community of computer graphics and virtual reality, some progresses need still to
be made to bridge the gap between accurate mechanical simulation and efficient simulations
in real-time of realistic systems. Particularly, the problem of the three dimensional frictional
contact with impacts is a key point for the applications with haptic feedback. The work aims
at adapting the outstanding methods in computational mechanics to the real-time constraints
induced by Virtual Reality. For efficiency reasons, our work is based on the Non Smooth Con-
tact Dynamics (NSCD) framework introduced by Moreau (1988). Two major advantages of the
method can be exhibited for the real-time context: the method uses a time-stepping numerical
scheme without explicit event-handling procedure and an unilateral contact impact formulation
associated with the 3D Coulomb’s friction law. In the present paper, we use and compare dif-
ferent iterative algorithms (Non Smooth Gauss-Seidel, projected conjugate gradient, the PATH
solver) for complementarity problems with a direct one (Lemke). The efficiency of the methods
is compared in terms of complexity, of quality ratio between visual feed-back of solution and
convergence criterion and of CPU time keeping in mind the real-time constraint.
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1 Introduction
Fast simulations of multibody systems appear as a recurrent theme in Computer Graphics [6,

16], in Robotics [23] and in Computational Mechanics [8]. Since more than fifteen years, the
Computer Graphics community has developed and optimized several numerical methods for
3D simulations of multibody systems. To ensure the realism of a 3D scene, the simulation of
the motion and of the interaction between objects must respect the fundamental principles of
Mechanics and Thermodynamics and at least, the basic behavior required by the Physics. For
the virtual reality, the challenge is to reach this goal together with the real-time constraint.
To face this problem one solution is to adapt the methods of computational mechanics for

the real-time simulation of multibody systems. The work of the Computational Mechanics
community focuses on an accurate description of interaction through a theoretical, experimental
and numerical framework. In this context, the real-time constraint can hardly be preserved due
to the complexity of models which leads to heavy computations. The non smooth mechanics
approach, together with adapted numerical methods based on a time-stepping scheme and some
iterative solvers can be however an alternative to perform real-time mechanical simulations of
multibody systems.

Outline of the paper The purpose of this paper is to present a comparison between several
algorithms in view of real-time simulations based on the Non Smooth Contact Dynamic (NSCD)
framework (Moreau [30, 31, 32] and Jean [19]). In Sec. 2 we give a brief overview of the related
works in the Computer Graphics, Virtual Reality and Computational Mechanics communities.
We expose, in Sec. 3, the equations and the basic equations within the NSCD formalism. In
Sec. 4, the numerical scheme for the time integration is presented. Various formulations of the
time-discretized multibody dynamics are provided in Sec. 5 in order to prepare the introduction
of different numerical solvers in Sec. 6. Finally, the results on different kind of simulations are
resumed in Sec. 8 and Sec. 9 concludes the paper.

2 Related Works
2.1 Computer Graphics and Virtual reality community
Computer graphics community In the computer graphics community, simulations have to
reach at least one goal: a perfect visual feedback. Usually, the question of the real-time con-
straints is pushed into the background. Among the first attempt to simulate the mechanics of
rigid bodies with contact, we can cite the work of Hahn [17] and Moore and Wilhems [29].
They used analytical methods to compute forces in colliding rigid body systems. To prevent
violation between bodies during a resting contact, Hahn [17] modeled the contact as a series of
collisions. Moore and Wilhems [29] used a penalty method (compliant contacts) to prevent the
penetration using the admitted overlapping between the bodies in contact.
Baraff [6] was the first to propose a method to calculate dynamically the contact forces (cons-
traints-based method). First of all, he dealt with two-dimensional non-penetrating and non-
colliding polygonal objects and used an analytical method to solve the contact problem. It
will be formulated as a linear complementarity problem (LCP) and resolved using fast pivoting
methods Baraff [7] without the use of numerical optimization software currently used to solve
linear programming (LP) or quadratic programming problem (QP) and with a separate treat-
ment of contact and collisions in an event-driven integrator.
Mirtich and Canny [27] proposed an impulse-based approach to deal with rigid bodies simula-
tions. They checked for the moment of contact and did not deal with concurrent impacts, which
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can lead to slow time of simulation when virtual systems are compact assemblies. Moreover
the resting contact is treated by using a collision threshold and by applying a micro-collision
model to the relative velocity between bodies in contact.
A position-based approach is proposed by Milenkovic [25] to simulate piles of polygonal and
spherical objects using a potential energy depending only on the position of the bodies. His
approach deals with non-rotating bodies and does not take into account the velocity. With
Schmidl [26], they adjusted the predicted position of bodies using optimization-based methods.
Stacking of bodies (less than one hundred) does not always display a realistic behavior. Im-
provements based on a “freezing” technique [41] allow to deal with packing of 1 000 cubes.
However the mechanical properties are lost and the simulation does not respect the real-time
constraint. Guendelman et al [16] considered new algorithms to simulate large assemblies of
convex and non convex rigid bodies. They dealt with shock propagation method (and not si-
multaneous) to treat contact. With their time integration scheme they update twice the velocity
related to a separation of contact and collision resolution in the equation of motion. The re-
sults are visually accurate but the graduation of restitution to improve the accuracy of their
propagation model can be discussed.

Virtual Reality community In the context of Virtual Reality, the visual feedback is one of the
goal to reach, but one need also to ensure a good modeling of forces and motions for instance,
for an haptic feedback. The hard constraint is to ensure these properties in real-time contrary to
the usual cases in Computer Graphics.
Schömer and co-workers [38, 9] proposed a constraint-based approach where equations of mo-
tion are described by a non-linear complementarity problem (NCP) solved using a Lemke algo-
rithm. The efficiency of the method on large systems is not brought up. More recently Hasegawa
et al [18] consider the shape of the surface intersection instead of the overlap. Although these
approaches are fast, they need small time steps to secure the stability of the numerical scheme
and even smaller to capture all binary collisions in large collections of rigid bodies.

2.2 Computational Mechanics
We leave the works on the quasi-static contact mechanics between deformable bodies out.

Indeed, such approaches are not well suited for the dynamics with contact, friction and im-
pact. In the computational mechanics community, we found the two dualities between compli-
ant/unilateral model and event-driven/time-stepping scheme. In the context of granular mate-
rials, where large collections of bodies are encountered, Cundall [11] was the first to propose
a numerical tools based on a Euler scheme and where contacts are governed by a compliant
model. With a definitely different approach, Moreau [30] and Jean [20, 19] present a treatment
of rigid bodies with unilateral contact, Coulomb’s dry friction and impact in the framework of
the nonsmooth mechanics and convex analysis. This framework yields a time-stepping scheme
(without explicit event-handling) where velocity and impulses are the primary variables. The
scheme is a very efficient numerical tool on a great number of applications that are well-known
for theirs difficulties. Among them, we can cite recent works on masonry structures [2, 4],
granular materials with polygonal et polyhedral shapes [40]. Although in all previous works the
real-time constraint not is fulfilled (and it is not the purpose), the numerical efficiency is crit-
ical justifying studies and improvements proposed by Renouf et al [36]. Still in a nonsmooth
framework, Pfeiffer and Glocker [33] or Stewart and Trinkle [42] designed an event-driven
algorithm as time integration scheme and proposed a general formulation of the dynamics at

3



M. Renouf, V. Acary and G. Dumont

the acceleration-force level. In [1], a similar work is done where the numerical tools of the
Moreau’s school are used.

2.3 Motivations
Most of the algorithms proposed by the Computer Graphics community are based on an

event-driven approach. In this context, the constrained based approach of Baraff [7] and the im-
pulse based approach of Mirtich [27] are widespread and have proved their efficiencies. Major
drawbacks of these approaches remain the treatment of accumulation of events (Zeno-behavior)
and a large number of bodies in closed contact. A first attempt to unify this has been done in [16]
but the collision case with impulse and the contact case with forces are separated. Nevertheless,
the real-time constraint has not been taken into account.
As an alternative to the previous drawbacks, we have chosen to adapt tools of computational

mechanics for the real-time simulation of multibody systems. As underlined in the introduction,
our work is based on the NSCD framework. The time-stepping scheme is not handicapped by
the change of contact status during the simulation. One of the important point is to have a unified
treatment of collisions as well as potential, sticking or sliding contacts. It is not necessary to
determine the interval of time for which the change of status occurs. Thus each time-step
depends only on the geometry, the boundary conditions and the possible nonlinear behavior of
the smooth dynamics. Consequently, the time step can be constant and large enough to ensure
fast computations. The theoretical results on the convergence of such schemes proposed by [28,
24] is also a strong point for this time-integration scheme. Moreover the general character of
such a formulation allows to use a large panel of numerical methods for the time-discretized
problem.
Our computational mechanical software platform is embedded in OpenMASK, a virtual re-

ality open-source middle-ware (http://www.OpenMASK.org) and simulations have been
performed on an Opteron 242 with a 2 GHz processor.

3 Multicontact Rigid Body systems
3.1 Parametrization
Let q = (q1, ..., qN) be ∈ RN the generalized coordinates vector of a collection of nb rigid

bodies, with N = 6 nb. For the sake of simplicity, we assume that the eventually bilateral
liaisons imposed to the system have been taken into account by reducing the size of q. The
unilateral constraints of non penetration are expressed by the following set of inequalities:

fα(t,q) ≥ 0, α ∈ {1, ..., nc}. (1)

Each function fα depends both on the configuration parameter q and the time t. This double
dependency involves a geometric constraint between bodies, which can not overlap one each
other (q dependency) and some external obstacles moving in time (time dependency). When
the equality occurs (fα = 0) it corresponds to the existence of a closed contact in the system
(the gap between bodies is reduced to zero). The result of the interaction of the antagonist body
Ba on the candidate one Bc can be described by a simple force rα acting at a contact point Iα. At
this same point, we can define a local frame Fα composed of three vectors: a normal one, nα,
pointing from Ba to Bc and two tangential ones sα and tα, which define the tangential space.
By convention sα × tα = nα. We denote gα the gap between bodies along the normal direction.
This value is negative when the bodies overlap. The local forces rα ∈ R3, expressed in the local
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frame are related to the global oneRα ∈ RN by a linear relation:

Rα = Hα(q) rα, (2)

where Hα(q) : RN → RN×3 is a mapping, which contains the local information about con-
tactors. Each component Rα can be understood as the contribution of contact α to the global
forces and can be decomposed into nb − 2 null vectors (∈ R6) and two vectors Rα,c and Rα,a

corresponding respectively to the torque of the candidate body and the antagonist one. The
construction of the global contact forces vector is denoted formally by

R =
∑

α

Rα. (3)

In the same way, the velocity of the bodies can be expressed in the local frame Fα. We define
the relative velocity uα at the contact point Iα between Ba and Bc by the relation,

uα = H
∗
α(q) q̇, (4)

where H∗ is the transpose of H. The relative velocity uα is decomposed in a normal part
represented by uα,n and a tangential one uα,T = (uα,s, uα,t). Note that the derivative of gap
function t → gα(t) is equal to uα.nα. For the sequel, we define the mapping H(q) : RN →
RN×3 nc as the aggregation of the matrices Hα.

3.2 Equation of Dynamics
When some smooth motion describes the evolution of the system, the dynamical equation is

Mq̈ = F(t,q, q̇) +
∑

α

Rα, (5)

where M is the inertia matrix and F(t,q, q̇) the internal and external forces. In multicontact
systems, shocks are expected. The velocity may have jumps and the acceleration can not be
defined as the usual second derivative of q. Consequently equation (5) must be reformulated in
terms of a measure differential equation,

Mdq̇ = F(t,q, q̇)dt + dR, (6)

where dt is the Lebesgue measure on R, dq̇ is a differential measure representing the accelera-
tion measure and dR is a non-negative real measure, which can be decomposed by a standard
measure decomposition:

dR = FR dt + JR. (7)

The continuous function FR is the usual contact force when the motion is sufficiently smooth
and the measure JR is the singular part of the measure. This singular part may be composed of
a set of Dirac measures which represent jumps in the velocity function due to impacts.

3.3 Frictional contact laws
To describe the motion of our system, some informations are still missing. Additional in-

formations about contact forces must be added to determine the value of each component Rα.
These quantities are essential to complete equation (6) and to describe the motion of our system.
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3.3.1 The Signorini Condition

The impenetrability of contact evoked previously means that the body candidates for contact
must avoid crossing the boundaries of antagonist bodies. We consider also that the contacting
bodies are not attracting each other i.e. the normal component of the reaction force is always
positive or equal to zero when the contact vanishes. This contact behavior leads to the well-
known Signorini Condition:

g ≥ 0 rn ≥ 0 g.rn = 0. (8)
The complementarity condition can also be expressed in terms of the following inclusion:

−rn ∈ NR+
(g) = ∂ΨR+

(g), (9)

where NK(.) = ∂ΨK(.) is the normal cone to a convex set K, ∂f is the sub-differential of a
function f and ΨK is the indicatrix function of K. All of this notions are defined in the sense
of Convex Analysis [37].
Following the work of Moreau [30], we propose to use a velocity-based formulation, which

is well-suited for the numerical purpose:

−rn ∈ ∂ΨTR+
(g)(un), (10)

where TK(.) is the tangent cone to K. This inclusion in terms of velocity may be reformulated
as the following so-called velocity Signorini condition:

if g ≤ 0 then un ≥ 0, rn ≥ 0, un.rn = 0. (11)

The fact that ∂ΨTR+
(g)(un) ⊂ NR+

(g) and ġ = un yields to the Viability Lemma proved
in [32] which ensures that (11) implies that the Signorini condition (8) are respected.

3.3.2 The Coulomb’s friction law

The dry frictional law is the Coulomb’s one for which the basic features are: the friction
force lies in the Coulomb’s cone (||rt|| ≤ µrn, µ friction coefficient), and if the sliding relative
velocity is not equal to zero, its direction is opposed to the friction force and its modulus is
given by ||rt|| = µrn. We can summarize the previous explanations by the following relation:

{

if ||ut|| = 0, ||rt|| ≤ µrn

if ||ut|| ≠ 0, ||rt|| = µrn, ut = −κrt, κ ≥ 0
. (12)

The Coulomb’s friction law can be also expressed as the inclusion:

−ut ∈ NC(µrn)(rt), (13)

where the convex set C(µrn) is the section of the friction cone. Usually, for an isotropic friction
law, the section is a disk of radius µrn ,

C(µrn) = {λt, σC(λt) = µrn − ∥λt∥ ≥ 0} . (14)

For some numerical reasons [38, 26] or for a particular frictional behavior, the friction cone
may be defined by a pyramid and the section C(µrn) is then a polytope. We will see in the
next section the consequence of this facetization of the friction cone on the type of numerical
problem that we can state.
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3.3.3 A generalized Newton impact law

For rigid bodies, the velocity Signorini condition is equivalent to a perfectly plastic impact
law. If a ball falls on a horizontal plan, it does not bounce off. To model bounces, an impact law
is needed. We choose the Moreau impact law, which is an extension of the classical Newton
impact law (u+

n = −enu−
n ) to multicontact systems (e.g. [31]):

−rn ∈ ∂ΨTR+
(g)(u

+
n + enu−

n ), (15)

which is equivalent to

if g ≤ 0 then u+
n + enu−

n ≥ 0, rn ≥ 0, (u+
n + enu−

n ).rn = 0. (16)

In spite of the fact that this shock law can not represent all shock phenomena, particularly, con-
current multiple impacts, see [3], it provides us with very satisfactory results for sphere packing
and virtual masonry where the propagation of impacts is not the crucial behavior.

3.3.4 Summary

In the following the frictionless or frictional contact law given by (12) and (15) for each
couple (uα, rα) will be denoted by the following formula:

lawα[uα, rα] = .true. (17)

4 Numerical scheme for the time integration
4.1 Discretization of the dynamics
One of the most interesting features of the time-stepping integration scheme is included in

the fact it does not have to handle explicitly the contact events, contrary to the usual event-driven
scheme. When we proceed to a time discretization on intervals ]ti, ti+1] of length h, our contact
problem is solved over the interval in terms of measures of this interval and not in a point wise
way. To achieve this property, the equation (6) is integrated on each subdivision, which leads to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

M(q̇i+1 − q̇i) =

∫ ti+1

ti

F(t,q, q̇)dt + Ri+1

qi+1 = qi +

∫ ti+1

ti

q̇(t)dt
, (18)

where the variable q̇i+1 stands for the approximation of the right limit of the velocity at the
time ti+1, i.e. q̇(t+i+1), and qi+1 ≈ q(ti+1). For the contact measure dR, we approximate the
measure of the time interval ]ti, ti+1] by dR denoted by

dR(]ti, ti+1]) =

∫

[ti,ti+1)

dR
∆
= Ri+1, (19)

To approximate the two integrals of the system (18), we use a θ-method, which is a first-order
scheme using only the configuration parameter and its first derivative. The stability condition
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of the scheme implies that θ to remains between 1/2 and 1. This approximation leads to the
following formula,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫ ti+1

i

F(t,q, q̇)ds = hθF(ti+1,qi+1, q̇i+1) + h(1 − θ)F(ti,qi, q̇i)

qi+1 = qi + hθq̇i+1 + h(1 − θ)q̇i

(20)

For the simplicity sake, we will consider in the sequel that internal and external forces are
given by a function of time F (t). In the more general case, a linearizing procedure (Newton
scheme) allows us to obtain the same set of discretized equations [19].
The first equation in (18) can be rewritten as

q̇i+1 = q̇i,free + (M−1)Ri+1 (21)

with
q̇i,free = q̇i + M

−1h(θFi+1 + (1 − θ)Fi).

The θ-method is an implicit scheme, identical to the Backward Euler’s one when θ = 1.

4.2 Discretization of the contact law
To complete the discrete form of the dynamical equation, a discretization of the frictional

contact law must be performed. We use the formulation proposed by [19], which gives for the
velocity Signorini condition with restitution (15):

−rn,i+1 ∈ ∂ΨTR+
(g̃i+1)(un,i+1 + enun,i), (22)

where g̃i+1 = gi + hun,i is a prediction of the gap. For the Coulomb’s friction law (12), the
discretization is as follows:

−ut,i+1 ∈ NC(µrn,i+1)(rt,i+1). (23)

4.3 Problem formulation
Using the equations (3) and (4), the discretization of the equation of motion and of the contact

law can be summarized in the following system :
⎧

⎨

⎩

Wri+1 − ui+1 = −ufree

lawα[uα,i+1, rα,i+1] = .true., α = 1, . . . , nc

(24)

whereW (= H∗M−1H) is the Delassus operator, which models the local behavior of the solids
at the contact points. The right-hand-side of the first equation in (24) represents the free relative
velocity calculated by taking into account the internal and external forces F(t), only. The
second equation in (24) requires that the frictional contact law lawα must be satisfied by each
component of the couple (u, r)α.
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5 Various formulations of the 3D frictional contact problem
5.1 Linear Complementarity Problem (LCP) formulation
The LCP is a widespread in Mathematical Programming theory. A usual definition of this

problem can be formulated as follows:

Problem 1 (Linear Complementarity Problem (LCP)). Given M ∈ Rn×n and q ∈ Rn, find
a vector z ∈ Rn such that

0 ≤ z ⊥ Mz + q ≥ 0 (25)

The inequalities have to be understood componentwise and the relation x ⊥ y means xTy =
0.

5.1.1 The frictionless case

For the frictionless contact problem, the relation between (24) and (25) is direct: M is equal
to the Delassus operator W and q to ufree, and the vector z is the vector of reaction and im-
pulses ri+1.

5.1.2 The frictional case

Contrary to the 2D frictional contact problem, the 3D case can not be casted directly into an
LCP, mainly due to the non linear feature of the section of the friction cone, C(µrn). To over-
come this difficulty, some approximations have been proposed which consist in a facetization of
C(µrn). The following presentation is partly inspired from [15] where a very clear and concise
presentation can be found.

Outer approximation by a polytope. Following the work of [21, 22], the friction diskC(µrn)
can approximated by :

Couter(µrn) =
ν

⋂

i=1

Ci(µrn) with Ci(µrn) =
{

λtσi(λt) = µrn − cT
i λt ≥ 0

}

(26)

The functions σi(λt) are the friction saturations with respect to the cone Ci(µrn) generated by
an outward unit vector ci (e.g. Fig. 1a)). We now assume that the contact law (13) is of the form

−ut ∈ NCouter(µrn)(rt) (27)
From [37], the normal cone to Couter(µrn) is given by :

NCouter(µrn)(rt) = Σν
i=1NCi(µrn)(rt) (28)

and the inclusion can be stated in terms of the following complementarity problem :

−ut ∈ Σν
i=1 − κi∂σi(λt), 0 ≤ σi(λt) ⊥ κi ≥ 0 (29)

Since σi(λt) is linear with respect to λt, we obtain the following LCP :

−ut ∈ Σν
i=1 − κici, 0 ≤ σi(λt) ⊥ κi ≥ 0 (30)

Grouping the equations (24), (22) and (30), the one step nonsmooth problem that we have to
solve reduces to a LCP.
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Inner approximation by a polytope. The principle of an inner approximation is exposed for
different purposes in [5] and [42]. The idea is to approach the friction disk by a interior polygon
with ν edges. (e.g. Fig.1b)):

Cinner(µrn) = {λt = Dβ, β ≥ 0, µrn ≥ eT β} (31)

where e = [1, . . . , 1]T ∈ Rν , the columns of the matrix D are the directions vector dj which
represent the vertices of the polygon. For the sake of simplicity, we assume that for every i there
is j such that di = −dj . Following the same process as in the previous case and rearranging
the equations, we obtain the following LCP :

⎧

⎪

⎨

⎪

⎩

rt = Dβ

0 ≤ β ⊥ λe + DT vt ≥ 0

0 ≤ λ ⊥ λ ⊥ µrn − eT β ≥ 0

(32)

C

C 2

C
4

(b)(a)

r

r

t1

t2

r

rt2

t1

C2

1

C6

C1

C4

C3

c4

C5

c5

Figure 1: Approximation of the base of the Coulomb cone by an outer approximation (a) and by an interior 2ν-gon
(b)

Thus using a projection operator with can express the frictional contact problem as a LCP(q̃,M̃)
with M̃ ∈ Rm×m, q̃ ∈ Rm andm = n(2+ ν). Through this formulation allows one to deal with
frictional problems, it increases drastically the number of unknowns.

5.2 Mixed Complementarity problem (MCP)
When only box constraints are encountered, we obtain the so-called Mixed Complementarity

problem given by :

Problem 2 (Mixed Complementarity Problem (MCP)). Given a mapping F : Rn ,→ Rn,
bounds bl,bu ∈ Rn ∪ |−∞, +∞|, find a vector z ∈ Rn and vectors v,w ∈ Rn such that

⎧

⎨

⎩

F (z) = w − v

0 ≤ (z − bl) ⊥≤ w ≥ 0

0 ≤ v ⊥ (bu − z) ≥ 0

(33)

6 Iterative numerical solution methods
As Glocker mentioned in [15], a good solver has to deal correctly with two difficulties apart

from the real-time constraint. The first one is the redundancy and the linear dependency of the
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constraints which is usual in large systems of rigid bodies. This problem can be also viewed
as the lack of definite positiveness of the Delassus operator. The second difficulty is that the
structure of the discretized problem may change drastically at each time-step. Fortunately, the
second difficulty is correctly grasped by the inherent structure of the presented time-stepping.
In order to solve the various problems formulated in the previous section, two choices are

available: direct (pivoting) or iterative (splitting) methods [10]. The advantages of the first ones
(the results are expected in a finite number of operations) give to such methods the preponder-
ance for problems of small size, where they are probably as good as any other kind of methods.
Such types of methods are however very sensitive to the well-posedness of the formulation (def-
inite positiveness, independence of the constraints). For larger systems theirs efficiencies can be
turned off for two reasons: Data Storage and round-off errors. The first point is strongly related
to the computer architecture and the second one can lead to incorrect pivots. Nevertheless, to
do a comparison with a direct pivoting method, we have chosen the Lemke’s algorithm [10].
Iterative algorithms can be seen as an alternative to pivoting methods when the size of problem
increases. Contrary to previous schemes, they are not finite but the we can expect that iterates
converges quickly to a solution. The fact that we have a ”not so bad” first guess for the itera-
tive solver keeping the values of the previous step is also an advantage. But one of the biggest
advantage of iterative schemes lies in the fact that we can approach very quickly a rough esti-
mate of the solution, instead of waiting for the complete termination of a direct algorithm. This
point is crucial for the real-time applications where a rough approximation in time is better than
nothing.

6.1 A General splitting scheme
Many iterative methods for solving system (24), reformulated as the LCP(q,M) (25), can be

described by a matrix splitting (see [10] for a detailed version). The principle is to decompose
the matrixM as the sum of two matrices B andCwhich define the splitting. Thus the LCP(q,M)
is transformed into a fixed-point problem. For an arbitrary vector z we consider the LCP(qz ,B)
with

qz = q + Cz.

If the vector z is obtained as a solution of the LCP(qz ,B), it is also a solution of the LCP(q,M) [10].
The three steps of the iterative method to solve the LCP(q,M) are the following:

General splitting scheme:

Step 0: Initialization with z0 non negative.
Step 1: Iteration loop zk+1 solution of the LCP(qk,B) with qk = q + Czk.
Step 2: If error criteria is satisfied, zk+1 is solution else increment k and return to Step 1.

Note that the quality of the solution is governed by the error criteria. A large number of
iterations leads (a fortiori) to a good solution to the detriment of the CPU time. So a good com-
promise must be found between acceptable solutions and CPU time, especially in the context
of real-time simulations.When the problem (25) is only a unilateral problem, as a splitting ofM
we can take

B = L + ω−1
D

where L and D are respectively the strictly lower triangular and diagonal part of M and where
ω ∈ (0, 2) is an arbitrary relaxation parameter. In this case we obtain a Projected Successive
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Over Relaxation scheme (PSOR) where the iterate zk+1 is given by

zk+1
i = max(0, zk

i − ωM−1
ii (qi +

∑

j<i

Mijz
k
i + 1 +

∑

j≥i

Mijz
k
i )), i = 1, ...n. (34)

The word Projected refers to the projection on the non negative orthant related to the unilateral
constraint. When ω = 1 the PSOR method is equal to the projected or Non Smooth Gauss
Seidel algorithm. Thus the input of the algorithm are the same that for system (25).

6.2 Block Non Smooth Gauss-Seidel (NSGS) for frictional problems
We present in this section a specification of the general splitting method dedicated to the

frictional-contact problem, the so-called Block Non Smooth Gauss-Seidel algorithm (NSGS)
exposed in [19]. This solver has been proved to be very robust and efficient on a large collection
of heterogeneous problems, see [4, 2, 19, 31, 32, 36, 40, 39]. This specification is based on two
remarks. This first one is that the Delassus operator is usually Block structured in multibody
dynamics. Therefore, we choose a splitting taking advantage of this fact. The matrix D is
composed to the block on the diagonal of M and the matrix L to the lower triangular block
matrix. This algorithm can be stated using the notation of system (24) as

⎧

⎨

⎩

uk+1
α − Wααr

k+1
α = uα,free +

∑

β<α Wαβr
k+1
β +

∑

β>α Wαβr
k
β

lawα(uk+1
α , rk+1

α ) = .true.
(35)

where Wαβ represents a block of the Delassus operator, and the index k refers to the algorithm
iterations. The time index is omitted to make pleasant reading.
The subproblem lawα(uk+1

α , rk+1
α ) = .true. must be solved by sequentially solving a finite

number. The second remark for the specification OH the general splitting method is that the
subproblem corresponds to the problem of frictionless/frictional contact for a single contactor
α. In the frictionless case, the sub-LCP can be solved analytically. In the frictional case,
the local resolution consists in finding the couple (uk+1

α , rk+1
α ), which satisfies the relations

of system (35). We denote bk+1
α the right-hand side of the first equation in (35). In 3D the

Delassus Operator W is a concatenation of n2
c matrices ∈ R3×3 where the number of non null

block matrices Wα,β is related to the number of adjacent contacts to the contact α. The local
frictional contact problem is described by the following scheme:

Explicit local resolution for the subproblem:

Step 1: If bk+1
α,n < 0 then there is no contact and we stop with rα = 0

Step 2: The contact is active and we compute rα = (Wα,α)−1bk+1
α

Step 3: If ∥rα,T∥ ≤ µrα,n, the contact is sticking (the tangential component is inside the
friction cone) and we stop with no correction on the local impulse.

Step 4: The tangential component is outside the friction cone. We proceed to a correction
of the local impulse as rα,T = prα,T with p = µrα,n/∥rα,T∥

For spherical bodies the block Wα,α is diagonal and so easily invertible. Thus the local
resolution can be written explicitly. In the case of contact, we proceed to a prediction of the
tangential component of the local impulse. If the tangential component remains in the section
of the cone (e.g. Fig. 2a) we keep the value of rα,T and the status of contact is sticking. In the
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contrary case (e.g. Fig. 2b) we proceed to a correction of rα,T , which corresponds to a radial
projection of rα,T on the section of the cone. So the status is sliding.

nµC(  r )

P
T

r

r

r

n

t

s

P
T Step4

Step3

Figure 2: Friction cone and correction of the tangential component of the local impulse.

Note that for more general shapes Wα,α is no longer diagonal. The algorithm requires the
inversion of all block diagonal matrices before the iterative process. This inversion is very
important for the stability of the solution. The block diagonal matrix contains the relation
between normal and tangential components. If we use a diagonalisation of it as performed
in [39], we observe erratic behavior. With the inverse of the full matrix, the stability is ensured.

6.3 Conjugate Projected Gradient
It is also possible to reformulate the system (24) as an optimization problem using the contact

impulses r as the primal variable. When the Coulomb law is used the problem is no more an
optimization problem but an ”quasi”-optimization one due to the relation between the friction
threshold and the normal component of the contact force. So problem (24) can be expressed as

r ∈ argmin
r̃∈C(µrn)

1

2
r̃.Wr̃ − b.r̃. (36)

To solve (36) we used a conjugate projected gradient algorithm introduced by [34]. The
authors proposed a more general and synthetic formulation than usual algorithms. Their im-
provement in regards of general conjugate gradient scheme is to conjugate the previous descent
direction with the current gradient after projecting them on the set of active constraints. Exten-
sion for the three-dimensional case have been proposed [35] but was handicapped by the non
polyhedral feature of the constraint set. We present here the outline of the algorithm and refer
to [34, 35] for a fully detailed version.
If we denote gk = b − Wrk the residue and pk the descent direction, the Conjugate Projected
Gradient algorithm (CPG) can be described by the following scheme:

The projection performed during the correction of step 2 is the projection on the Coulomb
cone as the one performed on Fig. 2. The gradient projections of step 4 are respectively per-
formed on the tangent cone TC and on the subspace (of active constraints) to whichwk belongs,
after projection of uk, noted A(wk).

7 Mixed iterative/pivoting Method : The PATH solver
The PATH solver [12, 13] is an implementation of the damped Newton method which makes

use of the mixed complementarity formulation (MCP). The solver needs the definition of the
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Conjugate Projected Gradient algorithm:

Step 0: Initialization : with a initial non negative vector r0 we compute g0 and p0 = g0

Step 1: Prediction of the local impulse : rk+ 1
2 = rk + αk+1pk with αk+1 = uk.pk

pk.Wpk

Step 2: Iterate correction : rk+1 = projC(r
k+ 1

2 )
Step 3: Residue computation : uk+1 = b − Wrk+1. If error criteria is satisfied stop.
Step 4: Gradient projection : wk+1 = proj(uk+1; TC(rk+1)) and zk+1 = proj(pk; A(wk+1))

Step 4: Gradient conjugaison : pk+1 = wk+1 + βk+1zk+1 with βk+1 = wk+1.Wpk

pk.Wpk

mapping F , assumed to be sufficiently smooth to define the Jacobian Jac(F ) of the mapping in
the classical sense.

8 Simulation results
8.1 Conservative scheme
As said in Sec. 4, the θ-method is a scheme identical to the Euler’s one when θ = 1. In

this case the scheme is dissipative and the total energy balance decreases during the simulation.
On the contrary when θ = 1

2 , the time integrator scheme is conservative and the loss of energy
depends only of the contact/impact description: This is an important point in virtual reality. To
illustrate this phenomena, we have simulated an elastic bouncing column composed of eight
spheres. The friction is set to 0 to avoid friction effects. The normal restitution coefficient is
equal to 1.

0 1 2 3 4 5
time (s)

-10

0

10

20

Ke

Lemke
PATH
NSGS
CPG

0 1 2 3 4 5
1643.4

1643.6

1643.8

Te

∆

Figure 3: Elastic Bouncing column : the parameter of the θ-method is equal to 1

2
and the restitution coefficient is

equal to 1.

We compute two quantities: ∆Ke which represents the variation of kinetic energy during on
time step and Te which is the total energy in the system (potential plus kinetic). The simulation
was performed using the solvers exposed previously and the evolutions of ∆Ke and Te are
plotted on Fig. 3. The first positive point is that the total energy is constant during the simulation
for the Lemke’s , PATH and NSGS method. Moreover the variations of∆Ke obtained with the
previous solvers are rigorously identical. Indeed a different behavior is obtained with the CPG
algorithm. The variation of ∆Ke does not match the previous curves and Te is not constant
on the time interval but constant on four subintervals. This observation can be explained by
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error criteria used with the CPG method. In addition to convergence test performed at the step
3 of the algorithm, a test is performed before the computation of α (step 1). In our version
of the algorithm, when the product pk.Wpk vanishes, we stop the algorithm and use the latest
value obtained during iteration to continue computation. This modification leads to obtain some
solution which do not respect exactly the energy balance. Nevertheless the lost energy quantity
is quite small with regard to the total energy value. In spite of the phenomena, we can say that
it is an acceptable solution.

8.2 The pyramidal cone weakness
To face three-dimensional frictional contact problems, usually the Coulomb friction cone is

approached by a pyramidal one. We illustrate some weaknesses of this approach on the follow-
ing example. Let’s consider a spherical ball lying on a horizontal plan. Gravity is considered
and we denote g its norm. We apply to the ball a cycling external force defined as

Fc(t) =

⎧

⎨

⎩

µmg(cos π
3 ex + sin π

3 ey) ∀t ∈ [15k, 5 + 15k[
−µmg ex ∀t ∈ [5 + 15k, 10 + 15k[
µmg(cos π

3 ex + − sin π
3 ey) ∀t ∈ [10 + 15k, 15(k + 1)[

, k ∈ N. (37)

The norm of Fc(t) is chosen to active the sliding motion of the ball and to coincide the initial
and the final point of a cycle coincide. Thus during simulations, the trajectory of the ball must
match with an equilateral triangle. Figure 4a) represents the trajectories obtained with NSGS
without approximation (w.a.) and with a C2 approximation and Figure 4b) depicts the trajecto-
ries obtained with the Lemke’s algorithm with the Ci approximations (i ∈ {2, 3, 4, 6, 8}).
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Figure 4: Ball trajectory under cycling loading using NSGS (a) and Lemke (b) algorithms

The computation without this approximation matches with the analytical solution. On the
contrary computations using approximation (with Lemke as well as NSGS) can lead to unreal-
istic behavior. To approach the solution we must use a high order approximation introducing a
higher number of unknowns. So a first advantage is given to the dedicated methods, such as the
NSGS and CPG, which can deal with no approximation of the friction cone and preserve the
size of the system.

8.3 Compact assemblies
The Computer Graphics community has proposed some approaches to simulate large stack-

ing and piles of rigid bodies (e.g. [16, 41]) but without respect of the real-time constraint. With-
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out this hard constraint, the three dimensional simulations of Saussine et al [39] seems however
to be more powerful.
With the respect of the real-time constraint, the number of simulated bodies is not so large and
our aim is clearly to perform real-time simulation of dynamical multibody systems. To illustrate
our first results we have chosen two samples of dense assemblies: sphere settling (e.g. Fig 5a))
and virtual masonry (e.g. Fig 5b)).

Final state

(a) (b)

Figure 5:

Sphere settling We define the following parameters: the time-step value h, gmax as the maxi-
mal inter penetration between contactors in the sample. The rule is to find h such as we preserve
a smaller value of gmax to ensure the quality of the simulation and the real-time constraint. We
denote Sp the ratio between the simulated-time and the elapsed CPU time. The real-time con-
straint will be preserved if Sp ≥ 1. We performed settling in a box with a frictional contact
interaction law and using different numbers of spheres : 80, 160 and 320. Simulation results
are shown in the Tab. 1.

nb nc h Sp gmax(%)
80 271 0.02 1.24 0.3
80 267 0.04 2.28 1.2
160 587 0.02 0.95 0.5
160 584 0.04 1.50 1.8
320 1218 0.02 0.50 0.6
320 1275 0.04 0.75 2.2

Table 1: Results of simulation of sphere settlings

The simulations of samples composed of 80 and 160 spheres respect the real-time constraint
and keep a good quality (less than 2% of violation). For the bigger one (320 spheres), it is
difficult to preserve both the time constraint and the quality of solution. Netherless the value
of the speed-up (0.75) is not so small and some numerical optimization should enable to obtain
the respect of the time-constraint. Note that for the frictionless packing, the real-time constraint
is reached for the larger sample: the time needed by the solver is smaller due to the smaller
number of unknowns.
The difficulty in this kind of simulation is the large variation in the contact number. It increases
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quickly to reach a stabilized value (e.g. Fig. 6b)). The large number of status modifications does
not help the frictional contact solver to reach a solution. During the settling, the number of iter-
ations Nit reaches the maximal value (∈ [0, 15]) and during a stabilization phase (t ∈ [15, 35])
Nit has erratic variations from the minimal to the maximal value to keep a stabilized evolu-
tion below. The fact that iterative methods can benefit from the solution of the previous time
step to initialize the algorithm is one of the reasons of the quasi-smooth evolution. Moreover
with an iterative method a good approximation of the solution is obtained quickly as show in
Fig. 6a). For a sample with 600 contacts, an approximation of the solution with an error of 10%
is obtained in 10 iterations only.
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Figure 6: a) Evolution of the convergence criterion during the iterative process. b) Parallel between the evolution
of iterations and the number of contacts during a whole simulation process.

Virtual masonry Some difficulties are related to the numerical simulation of masonry struc-
tures. The first one is related to the location of the contact point and their number. When we
consider two blocks in a contact face/face, four dependent contacts at least are considered. This
strategy, which preserves the time taken by the detection algorithm, handicap direct method as
Lemke.
The second one concerns the introduction of friction. When the problem is formulated as an
LCP problem, the matrix of the LCP is no longer symmetric. This appear as a problem for
Lemke as well as the PATH solver. It may be related to the observation of Klarbring on the
class of matrix unsolvable by LCP solver [21].
Iterative solvers appear here to be the more efficient ones to face this kind of sample. Note that
in the local resolution the inverse of the full matrix must be considered to ensure the stability of
the structure.

9 Concluding discussion
In this kind of simulations the matrix of our system is only positive semi-definite due to the

numerous connections between bodies. Direct methods such as Lemke appear inefficient to
solve such a LCP. On the contrary iterative methods seem to be able to overcome this indeter-
minacy and converge towards a solution among the several admissible ones. The clever MCP
formulation of Glocker [15], or the particular treatment of degenerate QP in [14] may bring
interesting solutions.
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