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Abstract. Numerous works in computational mechanics are dedicated to multi-body systems.
This leads to the use of various methods to simulate the static or dynamic evolution of complex
systems. The case of dense multi-contact assemblies is one of the more complex one: the prob-
lem have often a large number of unknown and have a infinity of solution due to the definition of
the matrix of the system. Moreover this problem become harder when friction or more complex
laws are introduced in the system. Thus we need fast and robust solvers to perform mechanical
studies. These performances can be increased when the special problem structure is considered
(sparse matrices, block structured problem).
Our work is based on the Non Smooth Contact Dynamic framework introduced by Moreau.

The method uses a time-stepping integrator without explicit event-handling procedure and an
unilateral contact impact formulation associated to Coulomb’s friction. In this paper we use
and compare different iterative algorithms such as Gauss-Seidel, projected conjugate gradient
and direct ones as Lemke and Quadratic programming solvers. The efficiency of the methods is
compared in terms of complexity, convergence criterion and of CPU time.
To illustrate the results, we focus on granular assemblies. 3D frictional contact simulations

are performed with ConF&TiS and the Numerics library of the siconos project.
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1 INTRODUCTION
Numerous works in computational mechanics are dedicated to the simulation of multi-body

systems [1] with application fields in soil mechanics [2], civil engineering [3] and also in com-
puter graphics [4]. This multiplicity of applications and specific constraints lead to use a large
panel of methods to simulate the static or dynamic evolution of complex systems. The case of
dense multi-contact assemblies is one of the more complex one. The problem have often a large
number of unknown and have a infinity of solutions due to the definition of the matrix of the
problem. If for frictionless system, theoritical result can be exhibit when friction is take into
account the problem become harder and leads some authors to use friction approximation [5].
Granular material are a specific case of large dense multi-body system. To the mathematical

complexity we must add the physical one due to a behaviour which can be liquid [6] or solid [2].
When local contact impulses are used as primal unknown, the matrix issue from the formulation
of the frictional contact problem presents a block structure (with or without approximation of
the friction cone). In the general case a standard block splittingmethod is used [7], call also Non
Smooth Block Gauss-Seidel algorithm. The numerical efficiency is critical (robust but slowly
converence) justifying studies and improvements [8]. More complex algorithm as Projected
Conjugate Gradient one [9] are faster for two-dimensional problem but does not allow in the
case of three-dimensional frictional contact problem to obtain a large CPU time gain. Direct
method such as Lemke method can also be used but need special pivot research [10]. Quadratic
programming solver are also an alternative but present result similar than Lemke algorithm. In
the multi-contact case, pivot method appear to be slower than iterative ones, especially for a
large number of unknown [4]. But for small system, direct methods are often more efficient
and faster than iterative ones for some kind of problem. Nevertheless for three-dimensional
frictional contact problem approximation of the friction cone must be used.
The aim of this paper is to present a combination of algorithms according to the block struc-

ture of three-dimensional frictional contact problem rigid multi-body systeme. We focus on the
case of granular material simulations. This combination is performed using different algorithms
(direct or iterative) with a global standard block splitting method. After a presentation of the
framework used for our three-dimensional frictional contact problem in section 2, we present
in details the block structure formulation in section 3 for formulation based or not based on an
approximation of the friction cone. The section 4 gives an overview of the different algorithms.
Results are presented in section 5 and section 6 concludes the paper.

2 FORMULATION OF THE FRICTIONAL CONTACT PROBLEMS
In computational mechanics, when we look for approaches well suited for the rigid body

dynamics with contact, friction and impact, we found the duality between compliant/unilateral
model and event-driven/time-stepping scheme. In the context of granular materials, where large
collections of bodies are encountered, Cundall [11] was the first to propose a numerical tools
based on a Euler scheme and where contacts are governed by a compliant model. With a def-
initely different approach, Moreau [12] and Jean [7] present a treatment of rigid bodies with
unilateral contact, Coulomb’s dry friction and impact in the framework of the non-smooth me-
chanics and convex analysis. This framework yields a time-stepping scheme (without explicit
event-handling) where velocity and impulses are the primary variables. Still in a non-smooth
framework, Pfeiffer and Glocker [1] or Stewart and Trinkle [13] designed an event-driven al-
gorithm as time integration scheme and proposed a general formulation of the dynamics at the
acceleration-force level. The resolution is performed using direct method [5], quadratic pro-
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graming solver [14] or MCP solver [15]. But this kind of integration scheme are out of the
scope of this paper a well as Mixed Complementary Problem. The approach used to simu-
late our multi-body system is based on the Non Smooth Contact Dynamic (NSCD) framework
evoked previously. The scheme is a very efficient numerical tool on a great number of appli-
cations that are well-known for theirs difficulties [3, 2]. We present here the headlines of the
method and refer to [12, 7] for detailed explanations.

2.1 Discretization of equation of motion
Formalism of the method lays on a special formulation of the equation of motion. When we

deal with multi-contact systems, shocks must be expected during the evolution of the system.
This shocks lead to velocity discontinuities and cannot allow to define the acceleration as the
usual second time derivative of the configuration parameter (denote q). Consequently equation
of motion must be formulated in terms of a measure differential equation,

Mdq̇ = F(t,q, q̇)dt + dR, (1)

where dt is the Lebesgue measure on R, dq̇ is a differential measure representing the accelera-
tion measure and dR is a non-negative real measure. In the equation (1),M represents the mass
matrix and F(t,q, q̇) the external forces (internal forces vanish in rigid body systems).
The contact problem is solved over the time discretization interval ]ti, ti+1] in the sense de-

fined previously. In this way, the equation (1) is integrated on each time interval and approxi-
mated using a θ method, an implicit first-order scheme, using the configuration parameter and
its first derivative [7]. Its stability condition implies that θ must remain between 1/2 and 1.
Successive approximations of equation (1) lead to the following system

{
q̇i+1 = q̇free

i + (M−1)Ri+1

qi+1 = qi + hθq̇i+1 + h(1 − θ)q̇i
(2)

with
q̇free

i = q̇i + M
−1h(θFi+1 + (1 − θ)Fi).

where q̇free denotes the free velocity (velocity computed without contact forces). Index i (resp.
i+1) refers to time ti (resp. ti+1). Global quantities such as the sum of contact forcesR and the
body velocity q̇ are related to local variables via two linear mappings denoteH and its transpose
H∗. Thus the local forces vector r, expressed in the local frame, are related toR by the relation

R = H(q), r, (3)
where α is the index over the contact set. In the same way, the velocity of the bodies q̇ is related
to the contact relative velocities vector v by the relation,

v = H
∗(q), q̇, (4)

Using the equations (3) and (4), the discretization of the equation of motion and the contact law
can be summarised in the following system:

{
Wri+1 − vi+1 = −vfree

lawα[vα,i+1, rα,i+1] = .true., α = 1, . . . , nc
(5)

where W (= H∗M−1H) is the Delassus operator. The right-hand-side of the first equation in
(5) represents the free relative velocity similar to q̇free. The second equation in (5) denotes
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the contact law which must be satisfied by each component of the couple (v, r)α. The contact
law used in the context of this paper is a classical Signorini condition coupled with Coulomb’s
friction. An extension of the Newton impact law to multi-contact assemblies [12] is coupled to
the friction law.

3 DELASSUS OPERATOR FORMULATION
With the NSCD framework, the Delassus operator presents a block structure. When we

related this theoritical structure to the physical structure of granular material, each block on
the diagonal of the operator contains the local information of each contact, and the blocks out
the diagonal represent the connectivity between contact. We present in this section the explicit
formulation of the Delassus operator used in the problem (5). This explicit formulation is
dressed for a one contact case in a non approximated problem and an approximated one.

3.1 Without approximation
The linear mapping H introduced in section 2 can be decomposed in a normal part HN and

a tangential one HT and expressed as H =
[

HT HN

]
. Using the definition ofW we obtain

W =

[
WTT WTN

WNT WNN

]
=

[
H∗

T M−1HT H∗

T M−1HN

H∗

nM−1HT H∗

NM−1HN

]

AsM is diagonal (in the rigid body context), the matrix is easily invertible. Here the contact
index is omitted to keep a pleasant reading.

3.2 Delassus operator for an inner approximation
3.2.1 Definition

To use direct resolution methods such as Lemke or Quadratic Programming solvers [16, 17]
to solve the frictional contact problem, an approximation of the friction cone must be used.
For this kind of approximation, contrary to the first one, some existence of solutions can be
exhibit [13].

n

s t

d d
d

dd
d

3 2

1

65
4

r

rr

Figure 1: Inner approximation

Different kind of approximations can be performed : regular or not, inner or outer. We will
describe here the global form of the matrix using an regular inner approximation as represented
on figure 1. First we define the approximated friction cone as
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F̂C = {rNn + Dβ | rN ≥ 0, β ≥ 0, e∗β ≤ µrN}

with

D =
[

d1 ... dν

]
.

Each vector di, ∀i ∈ {1, ..., ν} (see Fig.1) and the dimension of vector β are related to the
approximation by the ν-gon.

3.2.2 One contact case

Using the previous definition of the approximation of the friction cone and the definition
of W, we can build the matrix W̃ and the right hand side ṽfree of the approximated frictional
contact as follow

W̃ =

⎡

⎣
D∗WTT D D∗WTN e

WNT D WNN 0
−e∗ µ 0

⎤

⎦ and ṽfree =

⎡

⎣
D∗vfree,T

vfree,N

0

⎤

⎦ .

Note that this kind of approximation leads to increase the dimension of the problem and
generate some problem with strong impact in special applications such as haptic control [4].

3.3 Multi-contact strategy
When multi-contact assemblies are considered, the size of W can increase. In the context

of granular material, the case of this paper, numerical optimisation have been performed to
preserve the CPU time during computation [18]. When we use approximation of the friction
cone, the size increase with the accuracy of the approximation. Moreover with pivot method
the matrix must be considered in its all dimension .
The idea here is to keep the structure found in [7] and extend it to combination with LCP or QP
solver. Thus when we considered an approximate problem, the approximation is performed at
the local level on the local Delassus operator and not on its all structure. Then we considered
only small problem where pivot or direct can be efficient and we can take advantage of this
kind of method. Moreover the construction of each W̃ can be performed one times only to
preserve CPU time. The only the right hand side of problem (5) must be updated to take into
account the evolution of the system. This method is different from the theoretical results and
the methodology presented in [19].

4 ALGORITHM PANEL
4.1 Block Splitting method
To solve problem (5) we use a general block splitting method on matrixW or W̃. The idea is

to solve the local frictional contact problem using an algorithm such as Newton algorithm [20],
Lemke [10] and to use a block splitting method to solve contact by contact each local problem.
Method such as CPG algorithm [9] or NCP solver [21] will be not considered here.
Using the notation of system (5), the global splitting scheme is equal to

vk+1
α − Wααr

k+1
α = vα,free +

∑
β<α Wαβr

k+1

β +
∑

β>α Wαβr
k
β

= bk (6)
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where the index k refers to the splitting method iterations. The time index is omitted to make
pleasant reading. Using the global scheme to propagate the information, we must now define
what kind of algorithm used to the local problem.

4.2 Lexicographic Lemke
Pivoting methods are often used to solve LCP(q,W) [], but the good results obtain with such

method depend strongly of the properties of the matrixW. In multi-contact assemblies (of rigid
bodies), the matrix W is almost always a positive semi-definite (PSD) matrix and so leads to
degenerate problem. In this case classical pivoting methods cannot be used and we must have
resorts to some adaptation in pivoting algorithms to avoid cycling during the pivoting process.
To face this problem with the Lemke method, a solution is to base the choice of the pivot and
the minimum ratio on a lexicographic ordering [10, 22]. Thus the choice of the pivot variable is
unique and allows to obtain a solution when the problem is degenerated.

4.3 Quadratic Programming Solver
The interests of Quadratic Programming Solver leads on a trivial reformulation of the contact

problem as an optimisation problem. Moreover, minimisation algorithm used ensure a strong
stability and are reliable for semi-definite positive matrices. For frictional simulation, Non
Symmetric Quadratic Programming solver must be used. The formulation of the frictional
contact problem leads to a non symmetric matrix. To face this problem we use an QP solver
based on the generalised Fletcher’s method [23]. These improvements ensure an algorithm
termination extending to the case of round-off error

4.4 Dedicated Local Newton Method
The non smooth frictional contact problem can also be solved by a Newton method [20].

Resolution of system (5) can be reduce to looking for the zero of a function F(v, r) define as

F(v, r) = 0 ⇔

{
v − vfree − Wr = 0,
r − γ+

n n− proj(γt; C(γ+
n ))t = 0,

(7)

with γ = r − ρu = γnn + γt et γ+
n = proj(γn; R+) et γt ∈ R2. Problem (7) is equivalent to

problem presented in [20] with partial properties of convergence. The principle of the Newton’s
method is to determine the couple X = (ṽ, r̃) which satisfied F(X) = 0. For that, we define
the different iterate (Xp)p as

∂F(Xp)∆X = −F(Xp), (8)

where ∂F(Xp) is one of the Jacobian matrices, element of the Jacobian base of F(Xp). Then
we introduced the iteration indice p to obtain

∇F =

[
I −W

Ap Bp

]
, (9)

where I, Ap et Bp ∈ R3. Using a formulation based on the definition of Newton iterations, we
can introduced (9) in a iterative scheme function of Ap and Bp.
To determine Ap, Bp and solve our problem, we must determine the different components of

F as well as their partial derivative in regards of rn, vn, rt and vt.
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4.5 About granular dedicated solver
When granular assemblies are considered, it is possible to benefit of the geometry of particles

to simplify the problem. When spherical particles are considered, it is not necessary to used
complex solver because the resolution become explicit with or without friction. These dedicated
strategies, well known in the numerical granular community, have been presented in [4] and we
refer to this work for more details. Note that for more complex systems such as masonry or
complex rigid body structure, this kind of explicit resolution cannot be used. Their excessive
use can generate instabilities and leads to non physical behaviour. Thus previous methods
present a large interest in the case of more general multi-body simulations.

5 SIMULATION RESULTS
To start our comparisons, we simulate a sphere packing. Also the geometry of particles is

smooth, the process reaches from a dynamic phase to a static one. Moreover the contact number
increases during the simulation. Thus algorithms must be well-suitable to this change of state.
Figure presents results obtain with a dedicate solver (as reference result), QP solver, Lemke and
Newton algorithm.
For this example the combination with the Newton method appears to be the more efficient.

The QP method is the worse in term of CPU time. Lemke give good result but less efficient than
the Newton method. Note that for this last one the choice in the maximal number of pivot is
very important. Direct method must finish all pivot before giving a solution. On the over case,
the result do not have any physical sense. This value is difficult to determine because any result
of convergence exist for PSD matrices. Nevertheless, reasonable precaution assure to found a
solution.
We also compare the different method on the simulation of a well-known mechanical phe-

nomenon: the brazil nut effect (figure 3). To check the good mechanical result of simulations,
we perform its with the different algorithm presented in section 4, compare the CPU time as
well as the mechanical behaviour.

Time: 20sTime: 10s

Time: 30s Time: 40s

Figure 2: Reproduction of the brazil nut effect
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The sample is composed of 800 spheres of radius equal to 1 and a big sphere of radius 2. All
particles are in a box. Small particle lay on the big one. A periodic displacement is given to the
floor to generate fluctuation in the sample. The motion of the big particle is tracked during the
simulation.

Figure 3: Numerical reproduction of Chateau Gombert experiment

As we mention on Sec. 4, spherical assemblies do not need complex algorithms due to the
specific simplification induces by their geometry. But we want to consider masonry [3] or
assemblies composed of more complex shape [2], this simplification cannot be considered. The
example of masonry simulations as shown on figure 3b are very sensitive. The result must be
the most accurate one to ensure the stability of the structure. Figure 3 represents the numerical
reproduction of the experiment performed at Chateau Gombert [3]. The ground is composed
of two part and one of the part go down. Thus we can observe block detachments in specific
area of the wall. Experiment and simulation give similar results. The block splitting method
combined to the Newton algorithm allow to perform the simulation in 1200s. Lemke and QP
solver are slower than Newton method but results keep a correct physical behaviour.

6 CONCLUSION
A brief overview of combined algorithm have been presented and tested for the simulation

of granular material. In a previous work the author have presented results underlining the ef-
ficiency of iterative method for the simulation of multi-body systems. The conclusions of this
short study appear as the same. Also direct methods appear as efficient on small system, their
integration in a iterative system does not lead to so good results. If result keep a physical sense,
the CPU time of simulation is not reasonable. The Newton method appear as the only one to
be the most well-suitable algorithm for a coupling with an general splitting method. CPU time
as well as mechanical behaviour are preserved. To complete the study, combinations with the
PATH solver [?] and NCP [21] will be performed.
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