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Abstract

The contribution deals with timestepping schemes for nonsmooth dynamical systems. Traditionally, these schemes are locally
of integration order one, both in non-impulsive and impulsive periods. This is inefficient for applications with infinitely many
events but large non-impulsive phases like circuit breakers, valve trains or slider-crank mechanisms. To improve the behaviour
during non-impulsive episodes, we start activities twofold. First, we include the classic schemes in time discontinuous Galerkin
methods. Second, we split non-impulsive and impulsive force propagation. The correct mathematical setting is established with
mollifier functions, Clenshaw–Curtis quadrature rules and an appropriate impact representation. The result is a Petrov–Galerkin
distributional differential inclusion. It defines two Runge–Kutta collocation families and enables higher integration order during
non-impulsive transition phases. As the framework contains the classic Moreau–Jean timestepping schemes for constant ansatz and
test functions on velocity level, it can be considered as a consistent enhancement. An experimental convergence analysis with the
bouncing ball example illustrates the capabilities.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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Notation

The following notation is used throughout the paper. Let I  denote a real time interval. A function f : I →  R
n is

said to be of class Cp(I; R
n) if it is continuously differentiable up to the order p. The set of functions f  : I →  R

n that
are absolutely continuous on I  is denoted by W1,1(I; R

n). The set of functions f : I →  R
n that are locally Lebesgue

integrable on I  is referred to as L1
loc(I; R

n). The set of functions f  : I →  R
n of bounded variations (BV) is represented

by BV(I; R
n). For f  ∈  BV(I; R

n), the right-limit function is given by f+(t) =  lim
s→t,s>tf (s), and respectively the left-

limit function by f−(t) =  lim
s→t,s<tf  (s). The jump of f  at t is symbolized by [[f(t)]] = f+(t) −  f−(t). The set of functions

f : I →  R
n of locally bounded variations (LBV) is expressed as LBV(I; R

n). In all cases, we skip the image space if
there is no ambiguity and we extend the domain if necessary.
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The set of measures on the interval I  is represented by M(I). We associate with any function f  ∈  LBV(I) a
differential measure df  ∈  M(I) [18]. The notation dt  defines the Lebesgue measure on R. The space of all real-
valued, C∞-functions with compact support in I is denoted by D(I). The set of linear functionals that maps D(I) onto
the set of real numbers defines the dual space D∗(I), which is called the space of distributions. For a distribution
d ∈  D∗(I), it is conventional to write

d  : D(I) →  R,  ϕ �→  〈d,  ϕ〉  (1)

where 〈  · , · 〉 is the primal-dual pairing and 〈d, ·  〉 is the linear functional which defines d. For f ∈ L1
loc(I; R

n)
(respectively a measure μ  ∈  M(I)), a corresponding distribution Tf (respectively Tμ) is associated such that

〈Tf ,  ϕ〉  =
∫
I

fϕdt

(
respectively 〈Tμ,  ϕ〉 =

∫
I

ϕμ

)
.  (2)

One abuses notation by identifying Tf with f, i.e. 〈f, ϕ〉  = 〈Tf, ϕ〉  (respectively Tμ with μ, 〈μ, ϕ〉  = 〈Tμ, ϕ〉). The
distributional derivative of a distribution d will be symbolized by Dd  and is usually defined by

〈Dd,  ϕ〉  :=  −〈d, ϕ̇〉, ∀ϕ  ∈  D(I).  (3)

We denote by 0 = : t0 < t1 < · ·  · < tk < · · · < tN : = T  a finite partition (or a subdivision) of the time interval [0, T] (T  > 0).
The integer N  stands for the number of time intervals in the subdivision. The N  sub-intervals Ii : = (ti−1, ti) are of length
�ti and define the time-steps. The time step-size partition is referred to as I :=  {I1,  . .  . ,  IN}. The set of piecewise
continuously differentiable functions on this subdivision is given by Cp(I; R

n). The value of a real function x(t) at the
time tk is approximated by xk.

1.  Point  of  departure

This article treats higher order timestepping schemes based on time discontinuous Galerkin methods in the context
of nonsmooth dynamics. We give a short introduction of nonsmooth dynamical systems in mechanics, of classical time
integration schemes and of present strategies to achieve higher integration order during non-impulsive episodes.

1.1.  Nonsmooth  dynamical  systems

The bouncing  ball  (cf. Fig. 1) is a typical nonsmooth  dynamical  system  in the field of mechanics [29,10,6,24,16,2,26].
Informally, we can envisage the physical evolution as follows. During a finite time interval ∅ /=  I  :=  (0,  T  ) ⊂  R, a
ball with mass m  falls from an initial position q0, given an initial velocity v0 and some external momentum  flow  fdt. It
hits the ground and lifts off again or stays calm depending on the resulting interaction di  being partly elastic or plastic.
If the impact events accumulate in finite-time, the first case is called a Zeno  phenomenon  if bouncing and free flight
alternate infinitely often in I.

fdt

q

m

di

fdt

t
0 T

Fig. 1. Bouncing ball example.
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The most important realisation is the occurrence of a velocity  jump  due to the impact. The function describing the
state of position and velocity contains non-impulsive and impulsive propagation episodes. Using a description based
on classical function derivatives, one has to distinguish these two ranges and gets the following structure:

q(0) :=  q0 ∈  R, (4)

v(0) :=  v0 ∈  R,  (5)

q̇ =  v a.e., (6)

v̇ =  m−1f  +  m−1r  a.e.,  (7)

v+j =  v−j +  m−1pj. (8)

Eq. (7) describes non-impulsive motion almost everywhere (a.e.) with the contact force r, whereas (8) defines impacts
for countable time instances tj. With appropriate mathematical objects, i.e. measures, it is possible to enter the modern
theory of nonsmooth dynamical systems [25,19,17,4]. Problem 1.1 defines a consistent generalisation of the bouncing
ball example, not distinguishing between non-impulsive and impulsive motion.

Problem 1.1  ((Measure  differential  inclusion)). Solve the initial value problem

dq  =  vdt,  (9)

dv =  m−1f  dt  +  m−1di  (10)

in terms of measures together with the initial conditions (4) and (5).

Problem 1.1 is based on the following assumptions which let us rediscover (4)–(8).

• q ∈  W1,1(I) is the absolutely  continuous  position with the measure dq  =  q̇dt  and the weak  time derivative q̇, i.e. the
classical derivative almost everywhere according to Rademacher’s theorem.
• v  ∈  LBV(I) is the velocity of locally  bounded  variation. Omitting the Cantor part of the singular measure, one can

split its associated measure dv ∈  M(I)

dv :=  γdt  +
∑
j

[[vj]]δtj =  γdt  +
∑
j

(v+j −  v−j )δtj (11)

in a locally integrable (non-impulsive) and atomic (impulsive) part with

accelerations γ  ∈  L1
loc(I),  (12)

countable velocity jumps v±j ∈  R  and Dirac measures δtj .  (13)

•  0 <  m−1 :=  m−1(q) ∈  C0(R) is the inverse mass.
• f  :=  f  (t,  q,  v) ∈ L1

loc(I  ×  R  ×  R; R) is an external force.
• i ∈  LBV(I) is the interaction (impulse) of locally bounded variation. Omitting the Cantor part of the singular measure,

one can split its associated measure

di  :=  rdt  +
∑
j

pjδtj (14)

being part of

contact relations (q,  v,  r,  t) ∈  NC,  (15)

countable impact relations (qj,  vj,  pj,  tj) ∈  NI . (16)

The inclusions (15) and (16) are formal ways to state contact relations or other nonsmooth laws. We can write the
contact force r  :=  r(t,  q,  v) ∈  L1

loc(I  ×  R  ×  R; R) as a locally integrable function. In practice, this might not always
be obvious. If the contact relation is single-valued, the contact force is a (compliant) function of position q, velocity
v and time t. However, if the contact relation is set-valued, one has to solve nonlinear/nonsmooth relations to gain r.
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Fig. 2. Force laws for bilateral and unilateral contacts as well as planar Coulomb friction.

Illustrations of implicit definitions of set–valued contact laws which fit into (15) and (16) are given in Remark 1.2. For
more details, we refer to [10,2].

Remark 1.2  ((Set–valued  contact  laws)). Set-valued contact relations may be bilateral, unilateral or may describe
a dry friction behaviour (cf. Fig. 2). With a sufficiently smooth local gap function gB(q,  t) ∈  R, a bilateral contact
(or a bilateral constraint, or a perfect ideal joint) gB(q, t) = 0 enforces physically a joint. The global contact force
r = W(q, t)λB is just a transformation of the local contact force λB with W(q, t) = ∇ qgB(q, t). Altogether, the set NC
in (15) can be defined as

NC(q,  v, r,  t) =

⎧⎪⎪⎨⎪⎪⎩
gB(q,  t) =  0,  λB ∈  R,

r =  W(q,  t)λB,

ġB(q,  v,  t) =  WT (q,  t)v  +  ∂tgB(q,  t) =  0

⎫⎪⎪⎬⎪⎪⎭ . (17)

Similarly, a unilateral contact with local gap function gU (q,  t) ∈  R  is represented by Signorini-Fichera-conditions

0 ≤  gU ⊥  λU ≥  0.  (18)

The symbol ⊥  implies complementarity, i.e. gUλU = 0. The set NC in (15) can be defined as

NC(q,  v, r,  t) =

⎧⎪⎪⎨⎪⎪⎩
0 ≤  gU (q,  t) ⊥  λU ≥  0,

r =  W(q,  t)λU,

ġ+U (q,  v,  t) =  WT (q,  t)v+ +  ∂tgU (q,  t) ≥  0

⎫⎪⎪⎬⎪⎪⎭ .  (19)

The last equation in the definition of NC in (19) implies that the velocity has to jump if WT (q,  t)v− +  ∂tgU (q,  t) <  0.
This results in the introduction of an impact law. For instance, the Newton impact law with a coefficient of restitution
εN ∈  [0, 1] yields the following definition of the set NI

NI (qj, tj, pj,  vj) =

⎧⎪⎪⎨⎪⎪⎩
0 ≤  g+U (qj, tj) +  εNg

−
U (qj, tj) ⊥  	U ≥  0,

pj =  W(qj,  tj)	U,

ġ±U (qj, vj,  tj) =  WT (qj, tj)v
±
j +  ∂tgU (qj, tj) ≥  0

⎫⎪⎪⎬⎪⎪⎭ . (20)

For establishing Coulomb’s law of dry friction, local contact forces are split in a component λN normal to the contact
tangent plane and in a tangential component λT in the tangent plane. In non-degenerate cases, Coulomb’s friction law
is given as follows:

ġT =  0 ⇒  ‖λT ‖  ≤  μ|λN |,

ġT /=  0 ⇒  λT =  − ġT

‖ġT ‖μ|λN |
(21)

where μ  > 0 is the coefficient of friction and ġT (q,  v,  t) is the local tangent velocity. The set NC can similarly be defined
as in (19).
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Interactions may be the root of impulsive behaviour. When a unilateral contact relation closes at time tj, it has to
be evaluated as impact relation to ensure the validity of the constraints after impact time. At this moment, all closed
set-valued contact relations are influenced. Hence, also the bilateral and frictional relations have to be considered as
impact relations.

Problem 1.1 is a measure  differential  inclusion  (MDI). It uses a weak description of time derivatives in terms of
measures. As in the modern theory of partial differential equations (PDE), Problem 1.1 can directly be interpreted
in the sense of distributions. We will see that this concept is even more general and that it offers the connection to
Galerkin schemes known from the numerical treatment of PDEs. To this end, one achieves the following problem.

Problem 1.3  ((Distribution  differential  inclusion)). Solve

〈q̇,  ϕq〉  =  〈v,  ϕq〉,  ∀ϕq ∈  D(I),  (22)

〈Dv, ϕv〉  =  〈m−1f,  ϕv〉  +  〈m−1di,  ϕv〉,  ∀ϕv ∈  D(I) (23)

together with the initial conditions (4) and (5).

We need some explanations, which also deepen the relation between (4)–(8), Problem 1.1 and Problem 1.3. The measure
Eq. (9) is defined by∫

q̇ϕqdt =
∫
vϕqdt  (24)

being valid for all ϕq such that the integrals make sense. In particular, Eq. (24) holds for all ϕq ∈  D(I). Hence, q̇  (and
respectively v) can be identified with its distribution Tq̇ (resp. Tv) or with the linear functional 〈q̇,  ·  〉  = ∫

q̇  · dt  (resp.
〈v, ·  〉  = ∫

v  · dt). One interprets the constructors q̇  and v  as elements of D∗(I) and writes (22) instead of (24).
Whereas for q  there exists a weak time derivative q̇, the derivative Dv  of v  exists at least in a distributional sense.

If v  were absolutely continuous, the distributional derivative definition (3) would exactly characterise the integration
by parts formula∫

v̇ϕvdt :=  −
∫
vϕ̇vdt, ∀ϕv ∈  D(I).  (25)

Thereby, we have to take our interpretation of absolutely continuous functions as elements of D∗(I) into consideration.
Whereas a distributional derivative always exists, additional smoothness properties have to be checked afterwards.
Then, a distributional derivative might be e.g. a weak derivative for absolutely continuous functions interpreted as
elements of D∗(I) or even a classical derivative of differentiable functions interpreted as elements of D∗(I). In fact, the
distributional derivative Dv  of v, which is assumed to be a LBV function, is the differential measure dv  and accordingly
it has specific ’smoothness’ properties, which are obviously not as strong as those of q̇. To enforce the notation of
derivatives, we continue using the more general description Dv  instead of dv. Finally in Problem 1.3, the involved
distributions are on the one hand constructed by locally integrable functions L1

loc(I) and on the other hand by measures
M(I) in the way which we already described in the Notation (see (2)).

In this sense, L1
loc(I) and M(I) can be identified with subspaces of D∗(I). Actually, elements of these subspaces

map functions to R  which are not elements of D(I). The test functions ϕq and ϕv do not have to be elements of D(I)
or even of C∞; only the occurring linear functionals have to be consistently defined for a suitable smoothness of ϕq

and ϕv. For the position, the test functions ϕq do not need to be continuous because each element of L1
loc(I) naturally

defines a measure as a density function with respect to the Lebesgue measure. Finite evaluations of the primal-dual
pairings are not a problem in practice for position test functions. For the velocity, at least function evaluations of ϕv
are necessary such that elements of M(I) can be consistently applied:∑

j

[[vj]]ϕv(tj) =
∑
j

m−1
j pjϕv(tj).  (26)

Hence, the test functions for the velocity ϕv must be continuous at the impact times.
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1.2.  Integration  methods

Timestepping schemes next to event-driven schemes are well-known possibilities to integrate nonsmooth dynamical
systems [2].

1.2.1. Classical  timestepping  schemes
Classical timestepping schemes, also called event-capturing schemes, discretize the equations of motion in Problem

1.1 including the constraints (15), (16) with integration order one and without resorting to an accurate event
detection procedure. As the time step-size is never adapted, a large number of constraint transitions can be han-
dled with increased computational efficiency when the influence of particular events is not as important as the
mean.

Algorithm 1.4.  Classic Moreau–Jean timestepping scheme [20,13]
input  time interval partition I, inverse mass m−1, external forces f, impact set NI , initial position q0, initial velocity

v0, parameter θ

i  ←  1 initialize  loop  variable
while i  ≤  N

• solve

⎧⎪⎪⎨⎪⎪⎩
qi =  qi−1 +  �ti[(1 −  θ)vi−1 +  θvi]

vi =  vi−1 +  �ti[(1 −  θ)m−1
i−1fi−1 +  θm−1

i fi] +  m−1
i �ii

with (qi,  vi,  �ii,  ti) ∈ NI

⎫⎪⎪⎬⎪⎪⎭
• i ←  i + 1

Algorithm 1.4 is a representative timestepping scheme. It defines numerical approximations qi≈  q(ti), vi ≈  v(ti),
m−1
i ≈  m−1(qi), fi ≈  f  (ti,  qi, vi), �ii≈  di([ti−1, ti)) and does not distinguish between contacts and impacts

(cf. Remark 2.4) being evaluated on velocity level. A question of ongoing research is the solution  of  the
nonlinear expressions  forming the kernel of the algorithm. Note that another class of classical timestep-
ping schemes exists which will not be discussed here. Details on these developments can be found in
[22,23,21]

1.2.2.  Event-driven  schemes
Event-driven schemes, also known as event-tracking schemes, resolve the exact constraint transition times of Problem

1.1. Between the events, the motion of the system is computed by a classical integration method for differential  algebraic
equations (DAE). This is very accurate but the detection of events can be time consuming and is not possible for Zeno
phenomena: the schemes become inconsistent. Moreover, event-driven schemes require the definition of small threshold
parameters which depend strongly on the problem formulation. In practise, these thresholds are very difficult to tune
in a robust way. Though if an underlying mathematical model exhibits only sparse events (large density of events
or even finite accumulations of events are forbidden), event-driven schemes are most of the time our methods of
choice.

1.2.3. Higher  order  timestepping  approaches
We can find two different approaches for achieving consistent higher order timestepping schemes in the literature,

which can also deal with finite accumulation of impacts, or large density of impacts with respect to the time-scale of
study: augmented timestepping schemes and mixed timestepping schemes.

Augmented timestepping  schemes  [27,12]. Augmented timestepping schemes are extensions of classical timestep-
ping schemes, e.g. of Moreau–Jean type [20,13]. If there is no velocity jump during an integration step, one uses
classical augmentation  strategies [7,11]:
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•  Extrapolation  techniques emanating from the basic classical timestepping scheme increase the integration
order.
• Time  step-size  adaptation  according to Richardson or using embedding methods permit automatic time step-size

changes.

Often, the order extrapolation leads to instabilities with closed unilateral constraints because of chattering  in the classical
Aitken-Neville scheme or because of missing splitting  between non-impulsive and impulsive force propagation. Further,
order extrapolation cannot conceptually be scheduled in parallel. These items have led to the utilisation of methods with
fixed integration order even in the non-impulsive phases. However, the main problem is to find a consistent treatment
of impulsive episodes. This is usually done by heuristics: one uses the classical timestepping scheme and one has to
decide about time step-size adaptation.

Mixed timestepping  schemes  [1,8]. Mixed timestepping schemes combine DAE methods for non-impulsive episodes
with classical timestepping schemes for impulsive phases without resolving the exact constraint transition times. They
benefit from the classical theory in non-impulsive segments exactly as augmented timestepping schemes. They are also
seriously affected by appropriate time step-size adaptation  for impulsive episodes.

Step-size adaptation. Both augmented and mixed procedures suffer mainly from lacking appropriate time step-size
adaptation strategies in impulsive periods. Usually, one starts from the classical approach based on control theory
[7,11] and uses additional heuristics  respecting the idea behind timestepping schemes:

• Anticipating gap-estimations [12,8] or retrospective time step bisection [27], [1, for mixed timestepping] ensure
sufficiently exact  detection  of possible velocity jumps.
• Time  step-size  switching  �timpulsive =  O(�tp+1

smooth) couples non-impulsive and impulsive regions using the integra-
tion order p  of the non-impulsive propagation [27], [1, for mixed timestepping].
• Error estimation is based on not  adapted  [12] or adapted  [1, for classical timestepping] Richardson  strategies  with

some additional heuristics, i.e.
– exclusion  of  the  possibly  jumping  velocities  in the error estimation [12], [1, for classical timestepping],
– discussion of appropriate  norms  [1, for classical timestepping],
– preferable interval-by-interval separation  of possible velocity jumps [12,1],
– dependence on penetration  for closed contacts [1, for classical timestepping].

Mainly because of missing smoothness, it is very difficult to derive an appropriate time step-size adaptation respecting
the tolerance demands. All mentioned items, i.e. event  prediction, norm  selection, error  estimation  and time  step-size
selection, have not been solved satisfactory for impulsive transitions yet. We will have to struggle with exactly the same
setting when we prepare timestepping schemes based on time discontinuous Galerkin methods to industrial problems
regarding efficiency.

2.  Time  discontinuous  Galerkin  methods

To consistently improve the behaviour during smooth episodes, we embed the classical timestepping schemes in
time discontinuous  Galerkin  (TDG)  methods. Our article follows [15], which is considered to be the first contribution.
Also [14,9,5,3] have motivated our approach.

We start from Problem 1.3 and would like to define proper test  functions  and a finite dimensional basis for the
discrete solution. We assume:

• test functions might have jumps across the intervals,
• test functions are continuous inside the intervals.

The first assumption leads to the expression of discontinuous Galerkin methods. The second claim states that there is
not an instantaneous influence of the analytic nonsmooth dynamics on the numerical solution in-between an interval:
the exact time of discontinuity is not resolved.
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ttiti−1

ϕi
v

ti +ti−1 +

Fig. 3. Characteristic mollifier.

2.1.  Evaluations  with  discontinuous  test  functions

It is not clear how to reinterpret (26) if we are using discontinuous test functions and their discontinuities coincide
with those of the function of bounded variations v. Depending on the usage of appropriate mollifiers, i.e. smooth
cutoff functions, we define the distributional derivative of a functional v  ∈  C1(I) applied to discontinuous functions
ϕv ∈  C1(I) [3]. Let ε  > 0 and i an arbitrary index. E.g. with

χi−ε : R  →  R,  t �→  χi−ε (t) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(t  −  ti−1)/ε  for ti−1 ≤  t <  ti−1 +  ε

1 for ti−1 +  ε ≤ t  <  ti

1 +  (ti −  t)/ε  for ti ≤  t <  ti +  ε

0 elsewhere

, (27)

we gain an absolutely continuous characteristic mollifier (cf. Fig. 3)

ϕi−vε : R  →  R,  t  �→  ϕi−vε (t) :=  ϕv(t)χ
i−
ε (t) (28)

of ϕv with support in (ti−1, ti + ε). The integration by parts formula yields∫
D−vϕi−vε dt  : =  −

∫ ti−1+ε

ti−1

vϕ̇i−vε dt −
∫ ti

ti−1+ε
vϕ̇i−vε dt  −

∫ ti+ε

ti

vϕ̇i−vε dt

= [[vi]]ϕi−vε (ti) +
∫ ti

ti−1

v̇ϕi−vε dt  +
∫ ti+ε

ti

v̇ϕi−vε dt
(29)

because of the continuity of ϕi−vε in ti−1 + ε  and ti. In the limit ε  →  0, we use χi−ε (ti) =  1 and the theorem of Lebesgue
to achieve

lim
ε→0

∫
D−vϕi−vε dt =  [[vi]]ϕv(t

−
i ) +

∫ ti

ti−1

v̇ϕvdt.  (30)

Hence, we define with a partition  of  unity  ansatz

〈D−v,  ϕv〉 :=
∑
i

[[vi]]ϕv(t
−
i ) +

∑
i

∫ ti

ti−1

v̇ϕvdt. (31)

This expression focuses on discontinuities at the right border ti of Ii. Alternatively incorporating the left border ti−1 of
Ii with a similar mollifier χi+ε ,

〈D+v,  ϕv〉 :=
∑
i

[[vi−1]]ϕv(t
+
i−1) +

∑
i

∫ ti

ti−1

v̇ϕvdt  (32)

is also a consistent definition. The discontinuity evaluations also could have been totally omitted, which is physically
not satisfactory. Further, both the left and the right border of Ii could have been considered. This would result in two
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term recursions, i.e. multi-step  methods, because of the three intervals Ii−1, Ii and Ii+1 play a role in. The choice of the
mollifier is crucial and might change both physics and numerical behaviour.

We use the expression di± instead of di  for the interaction measure.

2.2.  Timestepping  schemes  based  on  time  discontinuous  Galerkin  methods

We demonstrate the numerical approximation of Problem 1.1 with time discontinuous Galerkin methods and discuss
its properties.

2.2.1.  Definition  of  the  Galerkin  approximation
Let Φhq,  Φhv ⊂  C0(I) be finite dimensional subspaces for test functions with respective bases BΦhq :=  {ϕhqk }k and

BΦhv :=  {ϕhvk }k. Let further Ψhq̇ , Ψhv ⊂  LBV(I) be conforming subspaces for the choice of q̇- and v-ansatz  functions.

The corresponding bases are given by BΨhq̇ :=  {ψhq̇k }k and BΨhv :=  {ψhvk }k. Then,

qh : I  →  R,  t  �→  qh(t) :=  q0 +
∑
k

∫ t

t0

ψhq̇kds  q̇hk , (33)

vh : I  →  R,  t �→  vh(t) :=
∑
k

ψhvk (t)v
h
k (34)

is a representation of the numerical solution. The weights {q̇hk }k and {vhk }k are specified later. Inserting these expressions
into Problem 1.3 yields the discrete problem.

Problem  2.1  ((Petrov–Galerkin  distribution  differential  inclusion)). Solve∑
k

〈ψhq̇k , ϕhql〉q̇hk =
∑
k

〈ψhvk ,  ϕhql〉vhk ,  ∀ϕhql ∈  Φhq,  (35)

∑
k

〈D±ψhvk ,  ϕhvl〉vhk =  〈m−1f,  ϕhvl〉  +  〈m−1di±, ϕhvl〉,  ∀ϕhvl ∈  Φhv (36)

together with the discrete initial conditions

qh(0) :=  q0 ∈  R,  (37)

vh(0) :=  v0 ∈  R.  (38)

It is clear that m−1, f, and di± are evaluated using qh and vh. Contact and impact laws are evaluated to compute di±.

2.2.2. Comparison  with  the  classical  Moreau–Jean  timestepping  scheme
Problem 2.1 is a general description which does not give appropriate time discretization schemes in all cases. The

quality of the schemes is highly depending on the ansatz and test function subspaces. What are primary drivers for
their selection?

• Problem 1.1 depends on an initial value and describes a time-evolutionary solution. Also Problem 2.1 should state
an evolution  process  not depending on future information at each point in time.
• Experience has shown that for the description of nonsmooth dynamical systems, one-step  methods  are more

appropriate than multi-step methods due to the lack of regularities of the right hand side [2].
• For efficient evaluation of the primal-dual pairings, easy  test  and  ansatz  functions  should be used. They have to

represent the smoothness of the analytical problem depending on e.g. external forces but also on constraints.
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ttiti−1 ti+1 ti+2

D+ time-step
vh

ttiti−1 ti+1 ti+2

D− time-step

vh

Fig. 4. Velocity jump interpretation for D+ and D−.

One possibility to achieve these goals is the selection of piecewise  polynomials. Choosing piecewise constant
spaces Φhq=Φhv=Ψhq̇=Ψhv :=P0(I), characteristic functions generate canonical bases BΦhq=BΦhv=BΨhq̇=BΨhv :={χi}i.
Focusing on the time interval Ii ∈  I, we gain well-known classical timestepping schemes as a special case of Prob-
lem 2.1. We distinguish the alternative evaluations, i.e. D± and di±.

D+ and di−.

Problem  2.2  ((Implicit  Moreau–Jean  timestepping  scheme)). For i ∈ N, solve

qi −  qi−1 =  vi�ti,  (39)

vi −  vi−1 =
∫ ti

ti−1

m−1f  dt  +  〈m−1di−, χi〉  (40)

together with the discrete initial conditions (37), (38).

Again, m−1, f and di− are evaluated using qh and vh. It is noteworthy that there has been some freedom.

• Due to the scheme in Problem 2.1, it is not stated how to select the weights {q̇hk }k and {vhk }k. We have chosen q̇hk and
vhk to coincide with the values of the numerical solution at the right end of the kth interval (cf. Fig. 4 left panel). The
constant velocity in Ii is defined by vi =  vh(t−i+1) and the velocity jump, due to D+, occurs at the left  side of Ii where
the impact, due to di−, never occurs. The position propagation qi is derived from q̇i by the fundamental theorem of
calculus.
• The right hand side in (40) is not discretized. We have to choose appropriate quadrature rules which do not depend

on discontinuities in the velocity, i.e. select an appropriate limit vh±l if necessary, and avoid the resolution of impacts:∫ ti

ti−1

m−1f  dt  ≈  (ti −  ti−1)
∑
l

βflm
−1(qhl )f  (tl, qhl ,  vh±l ),  (41)

〈m−1di−,  χi〉 ≈
∑
l

m−1(qhl )�il (42)

with (qhl ,  vhl ,  �il, tl) ∈ NI on velocity level. The classical Moreau–Jean timestepping scheme (θ  = 1) can be achieved
with βf1 :=  1, t1 : = ti, qh1 =  qi, vh1 =  vi and (qi, vi,  �ii, ti) ∈  NI on velocity level (cf. Algorithm 1.4).

D− and  di−

Problem  2.3  ((Explicit  Moreau–Jean  timestepping  scheme)). For i  ∈  N, solve

qi −  qi−1 =  vi−1�ti,  (43)

vi −  vi−1 =
∫ ti

ti−1

m−1f  dt  +  〈m−1di−, χi〉  (44)

together with the discrete initial conditions (37), (38).
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•  We have chosen q̇hk and vhk to coincide with the values of the numerical solutions at the left end of the kth interval
(cf. Fig. 4 right panel). The constant velocity in Ii is defined by vi−1 =  vh(t+i ) and the velocity jump, due to D−,
occurs at the right  side together with the impact, due to di−.
• The classical Moreau–Jean timestepping scheme with θ  = 0 can be achieved with βf1 :=  1, t1 : = ti−1, qh1 =  qi−1,
vh1 =  vi−1 and (qi,  vi,  �ii, ti) ∈  NI on velocity level (cf. Algorithm 1.4).

D+/D− and  di+. With di+, all impact evaluations take place in the semi-open interval [ti−1, ti). The evaluation of the
impact laws at the right border of Ii is not maintained by the time discontinuous Galerkin scheme. Repeated tests have
shown that this yields poor timestepping schemes [2]. We do not consider this case in the following.

Remark 2.4.  Both Problem 2.2 and Problem 2.3 do not distinguish between contacts and impacts. The interaction
measure di− summarises both possibilities and is discretized directly. Hence, there is no splitting

�il =  (ti −  ti−1)βrl r(q
h
l ) +  pl (45)

in non-impulsive and impulsive interactions and the direct application of higher order schemes would not be successful.

3.  Higher  order  timestepping

For the development of higher order timestepping schemes based on time discontinuous Galerkin methods, we
start from Problem 2.1. The procedure is similar to the embedding of the Moreau–Jean timestepping scheme in
Section 2.2.2.

3.1.  Selection  of  bases  functions

The following questions arise when defining non-impulsive discrete position and velocity solutions inside an interval
Ii. How can integrals with respect to arbitrary functions, e.g. 〈m−1f,  ϕhvl〉  or 〈m−1di,  ϕhvl〉, be calculated efficiently?

Is it possible to represent also the integrals with respect to polynomials of degree 2Mi, e.g. 〈ψhq̇k ,  ϕhql〉 or 〈ψhvk ,  ϕhql〉,
exactly by the same formula? This demand occurs when discretizing Ii with Mi + 1 points and nodal ansatz functions.
The left and right border of Ii play a special role according to Section 2. How can they be included as integra-
tion points? It turns out that the optimal quadrature rules of Gauß, Radau  and Lobatto  cannot positively respond
to all our requirements. Including the borders of Ii as integration points never allows exactness for polynomials of
degree 2Mi. On the other side, Clenshaw–Curtis  quadrature formulas have positive weights, can be evaluated fast
and stable by Fast Fourier Transformation algorithms and are competitive for general integrands as well [28]. We
choose the latter methods and mention that it is not a drawback that they are exact only for polynomials up to
degree Mi. They evaluate the integrand at the Chebychev  points  {til}l for Mi /=  0. For Mi = 0, no rule exists but both
ti0 =  ti−1 and ti0 =  ti are popular choices. The weights with respect to Ii and with respect to its lower sub-intervals
satisfy

βil :=  βfil
=  βril

= 1

�ti

∫
Ii

lildt ,  βil (t
∗) := 1

�ti

∫ t∗

ti−1

lildt (46)

with the classical pruned Lagrange polynomials

lil : I →  R,  lil (t) :=

⎧⎪⎨⎪⎩
∏
j /=  l

t −  tij

til −  tij
, for t ∈  Ii

0,  for t  /∈  Ii

.  (47)

We use these pruned Lagrange polynomials to define piecewise polynomial nodal bases for test functions
Φhq =  Φhv :=  Pα(I) and for ansatz functions Ψhq̇ =  Ψhv :=  Pα(I). This is a consistent approach, which actually yields a
classical Galerkin scheme. Multi-index notation α : = (M1, . .  ., MN) allows for varying polynomial degrees for different
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elements of I if needed. Altogether, this results in respective (N  +
∑

Mi)-dimensional bases BΦhq , BΦhv , BΨhq̇ and BΨhv .

Their elements satisfy

ϕhqk =  ϕhvk =  ψhq̇k =  ψhvk =  lil with k  =
i−1∑
j=1

(Mj +  1) +  l.  (48)

In the following, we can study easy evaluable one-step evolution processes just by focusing on one interval Ii and by
using the related index notation.

3.2.  Definition  of  the  general  scheme

Stages  are the values of position, velocity or acceleration approximations which coincide with the peaks of the nodal
bases relative to a sub-interval Ii:

qhi−1,0 =  qhi−1,  qhi−1,1 =  qh(ti1 ),  .  . . ,  qhi−1,Mi−1 =  qh(tiMi−1 ),  qhi−1,Mi
=  qhi ,  (49)

q̇hi−1,0 =  q̇h+i−1,  q̇hi−1,1 =  q̇h(ti1 ),  .  . . ,  q̇hi−1,Mi−1 =  q̇h(tiMi−1 ),  q̇hi−1,Mi
=  q̇h−i ,  (50)

vhi−1,0 =  vh+i−1,  vhi−1,1 =  vh(ti1 ),  . . . , vhi−1,Mi−1 =  vh(tiMi−1 ),  vhi−1,Mi
=  vh−i , (51)

v̇hi−1,0 = v̇h+i−1, v̇hi−1,1 = v̇h(ti1 ),  . . . , v̇hi−1,Mi−1 = v̇h(tiMi−1 ), v̇hi−1,Mi
= v̇h−i .  (52)

We insert the subspace specializations for one interval Ii, i.e. functions like in (48), in Problem 2.1 and we use di−
because of stability reasons. On the one hand di+ evaluates impacts in the semi-open interval [ti−1, ti) according to
Section 2.2.2. On the other hand, Section 3.2.3 shows that ti−1 will be the only reasonable candidate in this case. This
is an explicit evaluation not ensuring the validity of the constraint after impact time; it is known to have bad properties
for classical timestepping schemes [2].

Finally, we get the discrete initial  conditions  (37), (38). The position equation of Problem 2.1 yields equations∑
k

∫
Ii

lik lildt q̇hi−1,k =
∑
k

∫
Ii

lik lildtv
h
i−1,k (53)

for l  ∈  {0, .  .  ., Mi}. We have to distinguish if the velocity jump should occur at the left or right interval border (cf. Fig. 4).
With (41), (42) and (45), we obtain the following formulations from the velocity equation of Problem 2.1.

3.2.1. Velocity  representation:  D+

Search vhi−1,Mi
=  vh−i knowing vh−i−1 with equations

[vhi−1,0 −  vh−i−1]lil (t
+
i−1) +

∑
k

∫
Ii

l̇ik lildtv
h
i−1,k =  �ti

∑
k

βikm
−1
ik

[f±ik +  rik ]lil (t
±
ik

) +
∑
k

m−1
k pklil (t

−
ik

) (54)

for l ∈  {0, . . ., Mi}.

3.2.2.  Velocity  representation:  D−
Search vh+i knowing vhi−1,0 =  vh+i−1 with equations

[vh+i −  vhi−1,Mi
]lil (t

−
i ) +

∑
k

∫
Ii

l̇ik lildtv
h
i−1,k =  �ti

∑
k

βikm
−1
ik

[f±ik +  rik ]lil (t
±
ik

) +
∑
k

m−1
k pklil (t

−
ik

) (55)

for l ∈  {0, . . ., Mi}.



Author's personal copy

192 T. Schindler, V. Acary / Mathematics and Computers in Simulation 95 (2013) 180–199

3.2.3.  Impact  representation
How should we choose the quadrature formula for the impacts in (54) and (55)? We assume that the discrete velocity

behaviour inside an interval is continuously represented by the stage propagation. Hence, impacts are only allowed at
the interval borders:∑

k

m−1
k pklil (t

−
ik

) =  m−1
i pilil (t

−
i ) (56)

with

(qhi , vh±i ,  pi,  ti) ∈ NI . (57)

on velocity level. For D+, we use vh−i , and for D−, we use vh+i (cf. Fig. 4). The discretization pi equals the right limit
of the interaction impulse at ti.

3.2.4. Weighting  integral  representation:  reduced  evaluation  [15]
The order of the local  error  is governed by the evaluation of (41), (42) and (45) with quadrature rules. Without

changing the order, we approximate the weighting integrals in (53), (54) and (55)∑
k

∫
Ii

lik lildt  q̇hi−1,k
C−C≈ �ti

∑
k

βik q̇
h
i−1,klil (t

±
ik

) =  �tiβil q̇
h
i−1,l,  (58)

∑
k

∫
Ii

lik lildtv
h
i−1,k

C−C≈  �ti
∑
k

βikv
h
i−1,klil (t

±
ik

) =  �tiβilv
h
i−1,l,  (59)

∑
k

∫
Ii

l̇ik lildtv
h
i−1,k

C−C≈ �ti
∑
k

βik v̇
h
i−1,klil (t

±
ik

) =  �tiβil v̇
h
i−1,l (60)

by the same quadrature rule according to Clenshaw–Curtis (C–C) [28]. Thereby, we evaluate lil at the interior limit t±ik
of the sub-interval borders.

3.2.5.  Runge–Kutta  representation
Substitution of (58) and (59) into (53) yields the collocation  of Mi + 1 velocity stages

q̇hi−1,l =  vhi−1,l. (61)

We will search position  stages {qhi−1,l}l knowing qhi−1,0 with the fundamental theorem of calculus (cf. (67), (68), (72),
(73)). The velocity expressions (54) and (55) are simplified to respective Mi + 1 equations by evaluating the nodal bases
and by inserting (60):

D+ : [vhi−1,0 −  vh−i−1]lil (t
+
i−1)

D− : [vh+i −  vhi−1,Mi
]lil (t

−
i )

}
=  �tiβil

{
m−1
il

[f±il +  ril ] − v̇hi−1,l

}
+  m−1

i pilil (t
−
i ).  (62)

For constant  ansatz  functions  and appropriate definition of the integration point, e.g. either ti or ti−1, Eq. (62) reduces to
the implicit or explicit Moreau–Jean timestepping scheme. For at  least  linear  ansatz  functions, condition (62) expresses
velocity jumps

D+ : vhi−1,0 =  vh−i−1 +  �tiβi0

{
m−1
i0

[f+i0 +  ri0 ] − v̇hi−1,0

}
, (63)

D− : vh+i =  vhi−1,Mi
+  �tiβiMi

{
m−1
iMi

[f−iMi +  riMi ] − v̇hi−1,Mi

}
+  m−1

i pi (64)

and respective Mi stage relationships for accelerations in Table 1. The values v̇hi−1,0 or v̇hi−1,Mi
are needed for the

evaluation of (63) or (64) and are still missing. Fortunately, these are values of the acceleration, which is a polynomial
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Table 1
Stage relationship for accelerations.

Stage D+ D−

l = 0 v̇h
i−1,0 =? v̇h

i−1,0 = m−1
i0

[f+i0 + ri0 ]

l ∈ {1, . . ., Mi− 1} v̇h
i−1,l = m−1

il
[fil + ril ]

l = Mi v̇h
i−1,Mi

= m−1
iMi

[f−iMi + riMi
] + m−1

i
pi

�tiβiMi

v̇h
i−1,Mi

=?

of degree Mi−  1 in Ii. This polynomial can be uniquely represented by the known Mi nodal values in Table 1 as well
as by respective and appropriate pruned Lagrangian bases {l̃±ik }k [15]:

D+ : v̇h(t) =
Mi∑
k=1

l̃+ik (t)v̇
h
i−1,k,  D− : v̇h(t) =

Mi−1∑
k=0

l̃−ik (t)v̇
h
i−1,k. (65)

Now, we evaluate the acceleration polynomials at ti−1 or ti and get v̇hi−1,0 or v̇hi−1,Mi
. Eq. (65) will be also used to derive

stage representations of the velocity with the fundamental theorem of calculus (cf. (70), (71), (74)). With

β̃±il := 1

�ti

∫
Ii

l̃±il dt, β̃±il (t∗) := 1

�ti

∫ t∗

ti−1

l̃±il dt,  (66)

we obtain the following Runge–Kutta interpretation of higher order timestepping schemes based on time discontinuous
Galerkin methods.

Problem 3.1  ((D+ timestepping  scheme)). Let Mi positive and l  ∈  {0, .  .  ., Mi}  for i ∈ N. Solve simultaneously for
the position

qhi−1,l =  qhi−1 +  �ti
∑
k

βik (til )v
h
i−1,k, (67)

qhi =  qhi−1 +  �ti
∑
k

βikv
h
i−1,k (68)

and for the velocity

vhi−1,0 =  vh−i−1 +  �tiβi0

{
m−1
i0

[f+i0 +  ri0 ] −
Mi∑
k=1

l̃+ik (t
+
i−1)m−1

ik
[f−ik +  rik ]

}
− l̃+iMi (t

+
i−1)

βi0

βiMi

m−1
i pi,  (69)

vhi−1,l =  vhi−1,0 +  �ti

Mi∑
k=1

β̃+ik (til )m
−1
ik

[f−ik +  rik ] + β̃+iMi (til )
m−1
i pi

βiMi

, (70)

vh−i =  vhi−1,0 +  �ti

Mi∑
k=1

β̃+ikm
−1
ik

[f−ik +  rik ] + β̃+iMi
m−1
i pi

βiMi

(71)

together with (37), (38) and (qhi−1,k,  vhi−1,k, rik ,  tik ) ∈  NC on acceleration level as well as (qhi , vh−i ,  pi,  ti) ∈  NI on
velocity level.

For D−, the notation is easier as the jump information is not propagated along Ii.

Problem 3.2  ((D− timestepping  scheme)). Let Mi positive and l ∈  {0, .  . ., Mi} for i ∈  N. Solve simultaneously for
the position

qhi−1,l =  qhi−1 +  �ti
∑
k

βik (til )v
h
i−1,k, (72)
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qhi =  qhi−1 +  �ti
∑
k

βikv
h
i−1,k (73)

and for the velocity

vhi−1,l =  vh+i−1 +  �ti

Mi−1∑
k=0

β̃−ik (til )m
−1
ik

[f+ik +  rik ], (74)

vh+i =  vhi−1,Mi
+  �tiβiMi

{
m−1
iMi

[f−iMi +  riMi ] −
Mi−1∑
k=0

l̃−ik (t
−
i )m−1

ik
[f+ik +  rik ]

}
+m−1

i pi

(75)

together with (37), (38) and (qhi−1,k,  vhi−1,k,  rik , tik ) ∈ NC on acceleration level as well as (qhi ,  vh+i ,  pi, ti) ∈  NI on
velocity level.

3.3.  Trapezoidal  rules

For linear velocity discretizations, Problems 3.1 and 3.2 reduce to trapezoidal rules. Algorithm 3.3 is the implicit
trapezoidal rule with an implicit retrospect for the first stage vi−1,0 of the velocity. The method resembles the classical
Moreau–Jean timestepping scheme for θ  = 1/2, i.e. Algorithm 1.4, and the two stage Lobatto schemes, IIIA for position
and IIIC for velocity [11]. Contacts are evaluated on acceleration level leading to a method for ordinary differential
equations (ODE-method), impacts are calculated on velocity level. Algorithm 3.4 is the implicit trapezoidal rule with an
explicit Euler forecast for the second stage vi−1,1 of the velocity. The procedure is similar to the classical Moreau–Jean
timestepping scheme for θ  = 1/2, i.e. Algorithm 1.4, and to the two stage Lobatto schemes, IIIA for position and III
for velocity [11]. Contacts are evaluated on acceleration level leading to an ODE-method, impacts are calculated on
velocity level.

Algorithm  3.3.  D+ linear timestepping scheme: ’contemplating’  trapezoidal  rule
input time interval partition I, inverse mass m−1, external forces f, contact set NC, impact set NI , initial position

q0, initial velocity v−0
i ←  1 initialize  loop  variable
while i ≤  N

• solve

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi−1,0 =  qi−1

qi−1,1 =  qi−1 + �ti
2
{vi−1,0 +  vi−1,1}

qi =  qi−1 + �ti
2
{vi−1,0 +  vi−1,1}

vi−1,0 =  v−i−1 +
�ti

2

{
m−1
i−1[f+i−1 +  r+i−1] −  m−1

i [f−i +  r−i ]
}
−  m−1

i pi

vi−1,1 =  v−i−1 +
�ti

2

{
m−1
i−1[f+i−1 +  r+i−1] +  m−1

i [f−i +  r−i ]
}
+  m−1

i pi

v−i =  v−i−1 +
�ti

2

{
m−1
i−1[f+i−1 +  r+i−1] +  m−1

i [f−i +  r−i ]
}
+  m−1

i pi

(qi−1,0, vi−1,0, r+i−1, ti−1),  (qi−1,1,  vi−1,1,  r−i , ti) ∈ NC, (qi,  v−i ,  pi, ti) ∈  NI

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
• i ←  i + 1
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Algorithm  3.4.  D− linear timestepping scheme: ’forecasting’  trapezoidal  rule
input time interval partition I, inverse mass m−1, external forces f, contact set NC, impact set NI , initial position

q0, initial velocity v+0
i ←  1 initialize  loop  variable
while i  ≤  N

• solve

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi−1,0 =  qi−1

qi−1,1 =  qi−1 + �ti
2
{vi−1,0 +  vi−1,1}

qi =  qi−1 + �ti
2
{vi−1,0 +  vi−1,1}

vi−1,0 =  v+i−1

vi−1,1 =  v+i−1 +  �tim
−1
i−1[f+i−1 +  r+i−1]

v+i =  v+i−1 +
�ti

2

{
m−1
i−1[f+i−1 +  r+i−1] +  m−1

i [f−i +  r−i ]
}
+  m−1

i pi

(qi−1,0,  vi−1,0,  r+i−1,  ti−1),  (qi−1,1, vi−1,1,  r−i ,  ti) ∈ NC,  (qi, v+i ,  pi, ti) ∈ NI

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
• i ←  i + 1

4.  Experimental  convergence  analysis

Because of (61) and Table 1, D+ and D− timestepping schemes are collocating  ODE-methods inside each non-
impulsive interval Ii [7]. Hence, the local error for non-impulsive episodes only depends on the adopted quadrature
rule.

Theorem 4.1  ((Order  of  local  error.)). Using  Clenshaw–Curtis  quadrature  rules,  the  order  of  the  local  error  for
Problems 3.1 and  3.2 satisfies

p  =  Mi +  1 (76)

in  sufficiently  smooth  intervals  Ii.

Proof. cf. [7, Theorem 6.40] �

This is very good news: whenever we have a non-impulsive propagation of state and (contact) forces, the local error
is automatically of higher order, i.e. the numerical approximation is improved for a consistent integration scheme in
general. However, we do not know anything about errors due to velocity or interaction jumps. As they are globally
propagated, the global  error  will be affected from them. But how? We analyse exemplary the bouncing ball in three
different situations: free  flight  (Problem 4.2), rest  phase  (Problem 4.3) and a combination  of  free  flight  with  finite
accumulation of  impacts  (Problem 4.4) [1]. We will see that our examples support Theorem 4.1 and indicate an order
drop due to jumping velocities or interactions.

The bouncing ball defines a decoupled  example because there is only one interaction possibility. The analytical
solution of our settings is never exactly represented by the numerical approximations. Algorithm 1.4 with θ  = 1 proposes
piecewise linear position, as well as piecewise constant velocity and interaction discretizations. With Algorithm 3.4,
we have piecewise quadratic positions, piecewise linear velocities and piecewise quadratic interactions. In a Python1

1 http://www.python.org/.
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Fig. 5. Experimental convergence analysis: free flight.

implementation, we paid attention to evaluate the local and global error at least as exact as the timestepping dis-
cretizations. SciPy’s2 barycentric  interpolation  for the velocities, as well as Hermite  interpolation  for positions and
interactions are exact and efficient dense  output  formulas [11]. SciPy’s Gauss–Konrod  quadrature  provides appropriate
error formulas in L1-norm for position, velocity and interactions.

Problem 4.2  ((Bouncing  ball:  free  flight)). Discuss the scalar  initial  value  problem

q(0) :=  1,  v(0) :=  0,  (77)

q̇ =  v, v̇ =  −10 t2 (78)

in terms of measures.

The analytical  solution  is given by

q(t) =  1 − 5

6
t4,  v(t) =  −10

3
t3, i(t) =  0.  (79)

During free  flight, the state is of order two for Algorithm 3.4 and of order one for Algorithm 1.4 with θ  = 1 (cf. Fig. 5).
The interaction is zero and resolved exactly.

Problem  4.3  ((Bouncing  ball:  rest  phase)). Discuss the scalar  initial  value  problem

q(0) :=  0,  v(0) :=  0,  (80)

q̇ =  v, v̇ =  −10 t2 +  r,  (81)

0 ≤  q ⊥  r  ≥  0 (82)

in terms of measures.

The analytical  solution  is given by

q(t) =  0,  v(t) =  0,  i(t) = 10

3
t3.  (83)

During rest  phase, the interaction is of order two for Algorithm 3.4 and of order one for Algorithm 1.4 with θ = 1 (cf.
Fig. 6). The state is zero and resolved exactly.

2 http://www.scipy.org/.



Author's personal copy

T. Schindler, V. Acary / Mathematics and Computers in Simulation 95 (2013) 180–199 197

er
ro

r
in

L
1
-n

o
rm

iMoreau

vMoreau

qMoreau

iD−
vD−
qD−

O (Δt)
O Δt2

Δt

Fig. 6. Experimental convergence analysis: rest phase.

Problem  4.4  ((Bouncing  ball:  combined  analysis)). Given the Newton restitution coefficient εN = 0.5, discuss the
scalar initial  value  problem

q(0) :=  1,  v(0) :=  0,  (84)

q̇ =  v, v̇ = −2,  (85)

v+j =  v−j +  max
{

0, −(1 +  εN )v−j
}

if qj =  0 (86)

in terms of measures.

The analytical  solution  is given by

free  flight  –  0 ≤  t < 1

q(t) =  1 −  t2,  v(t) =  −2t,  i(t) =  0 (87)
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Fig. 7. Experimental convergence analysis: combined analysis.
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Zeno  state  – ∀n  ∈ N0 : 3 − 1
2n−1 ≤  t <  3 − 1

2n

q(t) =  −(t  −  3)2 − 3

2n
(t  −  1) + 1

2n−1 (3 − 1

2n
),  (88)

v(t) =  −2(t  −  3) − 3

2n
,  (89)

i(t) =
n∑
k=0

3

2k
. (90)

For the combined  analysis, the global error of state and interaction is of order one for both Algorithm 3.4 and Algorithm
1.4 with θ  = 1 (cf. Fig. 7).

5.  Conclusion

In this paper, we have shortly summarised the state-of-the-art description of nonsmooth dynamical systems with
either measure or distribution differential inclusions. Two classic integration methods have been identified for this
type of evolution problems: event-driven and timestepping schemes. The intrinsic difficulty of event-driven integration
is its high effort of event detection and inconsistency for Zeno phenomena. The drawback of classic timestepping
schemes is their low integration order; recently, this had been tackled with augmentation and mixing to achieve both
higher order in non-impulsive regions and the representation of infinitely many events. We have proposed a new
strategy offering both a consistent embedding in time  discontinuous  Galerkin  methods, as well as a splitting  of non-
impulsive and impulsive force propagation. The framework has been developed in its full generality with mollifier
functions, Clenshaw–Curtis quadrature rules and appropriate impact representation. Altogether, we have stated two
Runge–Kutta collocation families as resulting timestepping methods. The order of the local error only depends on
the order of the underlying quadrature rule for non-impulsive episodes. Choosing piecewise constant ansatz and test
functions on velocity level, the classic explicit and implicit Moreau–Jean timestepping schemes have been found out
to be special cases of the general method. For the piecewise linear case, the two families relate to a ‘forecasting’ and
to a ‘contemplating’ trapezoidal rule. An experimental convergence analysis discusses the bouncing ball example in
different episodes. We compare the properties of the constant ansatz to the characteristics of the linear ansatz. Whereas
we have always integration order one for the Moreau–Jean timestepping, the new linear scheme offers integration order
two in non-impulsive phases. This observation matches exactly the expectations and should be the starting point for
further investigations. Can we derive any theoretical results about the global order of timestepping schemes? How does
the proposed scheme perform for multi-dimensional systems with coupled multi-collisions, e.g. how can the contact
and impact laws be evaluated separately? How can splitting methods improve timestepping schemes in these cases,
e.g. using general DAE-methods instead of ODE-methods for non-impulsive episodes? What is necessary to define
consistent automatic time step-size adaptations for timestepping schemes? Answers to these questions are important
for even more successful time integration of nonsmooth industrial examples.
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