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Abstract— Autonomous piecewise linear systems in the Lur’e
form may exhibit periodic steady-state oscillations. For many
practical systems belonging to this class the period and the
shape of the oscillation is difficult to be predicted a priori.
In this paper the complementarity approach is used to tackle
the issue. The complementarity formalism is used to represent
the closed-loop system and a phase condition acting as an
anchor equation for the periodic solution. By discretizing the
dynamics a mixed complementarity problem is formulated. The
corresponding solution provides an accurate prediction of the
steady-state oscillation and its period. Numerical results show
the effectiveness of the proposed technique for the computation
of stable and sliding periodic solutions. The analysis of the
steady-state solution of a Colpitts oscillator is considered as an
illustration.

I. INTRODUCTION

A piecewise linear (PWL) system in Lur’e form, as the
one shown in Fig. 1, can be represented as the feedback
interconnection of a linear time-invariant dynamical system
Σ with a piecewise linear static relation R which relates the
system output, y and the opposite of the system input, λ.
This class of dynamical systems has attracted a considerable
interest in the literature, because they may exhibit several
interesting behaviors. For instance, such systems tend to peri-
odically oscillate also without external excitation. This means
that the period related to the periodic solution is difficult to
be a priori predicted. In the literature various mathematical
methods, basically classified as time-domain or frequency-
domain have been proposed to compute the steady-state
periodic solution and its period. Time-domain approaches
are based mainly on the so-called shooting method which
determines the initial condition and the period for the peri-
odic solution by solving a sequence of nonlinear initial value
problems with the Newton-Raphson method, [1], [2], [3].
The main drawback of this method is the evaluation of the
sensitivity matrix, which is often computationally expensive
and becomes even more complicated for nonsmooth sys-
tems, [4], [5]. In frequency-domain, harmonic balance is
the classical technique used for determining the steady-state
behaviour of nonlinear autonomous systems that exhibit a
single periodic attractor, [6]. The describing function (i.e.
harmonic balance with a single harmonic) provides simple
results about the existence of a periodic oscillation and
its parameters (the amplitude and the period), but it is
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not able to accurately predict them particularly when the
system under consideration does not satisfy the assumption
of filtering out the higher-order harmonics, [7]. In [8] a
mixed time-frequency-domain approach is used to analyze
a nonlinear oscillator by linearizing the system along the
solution predicted by the harmonic balance technique and
then by computing the Floquet’s multipliers by using the
time-domain numerical algorithm.

The recent literature has shown that the complementar-
ity framework can be useful for investigating PWL sys-
tems, [9], [10]. In [11], [12] and [13], the complementarity
framework is used for the computation of periodic solutions
in autonomous Lur’e systems. In those papers it has been
shown how the linear or mixed linear complementarity rep-
resentation of the feedback characteristic allows to represent
the discretized closed-loop system as a linear complementar-
ity system. Then the solution of the corresponding comple-
mentarity problem allows to obtain the periodic solution of
the discretized system. The main drawback of the previous
approaches is that the period must be known a priori or, at
least, a certain estimation of the period must be computed
by using, for instance, the describing function technique.
Instead in this paper the period is considered as a further
unknown and it is computed together with the periodic
solution by constructing a suitable mixed complementarity
problem (MCP).

The paper is organized as follows. In Section II some
preliminaries about the solution concept for autonomous
PWL systems and the complementarity theory are presented.
In Section III we show how to formulate a MCP in order
to compute a periodic solution together with the period.
In Section IV three interesting applications are considered:
a saturation Lur’e system, a relay feedback system which
exhibits a periodic solution with sliding, and a practical
electronic oscillator. The numerical results demonstrate the
effectiveness of the proposed approach. The paper is con-
cluded in Section V.

II. PWL LUR’E SYSTEMS AND PERIODIC SOLUTIONS

The Lur’e system in Fig. 1, for the analysis considered in
this paper, can be represented in the following state space
form

ẋ = Ax+B(−λ) + g (1a)

y = Cx+D(−λ) + h (1b)

(y,λ) ∈ R (1c)

where (A,B,C,D) is a minimal state space realization with
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m, g ∈
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Fig. 1. Block diagram of a Lur’e system.

Rn×1 and h ∈ Rm×1 all being constant, R is a static PWL
relation that includes also set-valued characteristics, and the
time derivative is meant almost everywhere.

Definition 1: A solution of the system (1) is any ab-
solutely continuous function x(t) : [t0,+∞) $→ Rn that
satisfies (1) for almost every t ≥ t0, given an initial condition
x(t0).
We assume that, for every initial condition x(t0), (1) has at
least one solution.

Definition 2: A solution x of the system (1) is periodic

if there exists T such that x(t+ T ) = x(t) for any t ∈ R.

The PWL feedback relation R is represented by using
the mixed complementarity problem formulation. A MCP is
defined as follows, [14].

Problem 1: Given a function f : Rr → Rr and lower and
upper bounds l, u ∈ Rr ∪ {−∞,+∞}r,

find z ∈ R
r, w ∈ R

r
+, v ∈ R

r
+ (2a)

s.t. f(z) = w − v (2b)

l ≤ z ≤ u, (z − l)⊤w = 0, (u− z)⊤v = 0. (2c)

When f(z) is affine, Problem 1 defines a mixed linear
complementarity problem (MLCP), that can be defined as
follows.

Problem 2: Given a vector q ∈ Rr, a real matrix M ∈
Rr×r and lower and upper bounds l, u ∈ Rr∪{−∞,+∞}r,

find z ∈ R
r, w ∈ R

r
+, v ∈ R

r
+ (3a)

s. t. Mz + q = w − v (3b)

l ≤ z ≤ u, (z − l)⊤w = 0, (u− z)⊤v = 0. (3c)

A linear complementarity problem can be formulated as
Problem 2 by setting the lower bound equal to zero and
the upper bound equal to infinity: in this case z and w are
the usual complementarity variables.

Problem 2 can be used to represent the class of relation
(y,λ) considered in this paper, where y is the input of the
relation and λ is the output. For instance, by choosing z = λ
and q = −y, Problem 2 can be rewritten in the following
form.

Problem 3: Given a vector y ∈ Rm, a real matrix
M ∈ Rm×m and lower and upper bounds lλ, uλ ∈ Rm ∪
{−∞,+∞}m,

find λ ∈ R
m, wλ ∈ R

m
+ , vλ ∈ R

m
+ (4a)

s. t. Mλ− y = wλ − vλ (4b)

lλ ≤ λ ≤ uλ, (λ− lλ)
⊤wλ = 0, (uλ − λ)⊤vλ = 0.

(4c)

A wide class of PWL characteristics can be represented in
the mixed linear complementarity framework, [13], such as
the unitary single-input single-output saturation characteristic
that can be represented by using Problem 3 with M = 1,
lλ = −1 and uλ = 1. See [15] for a more exhaustive
analysis about PWL representations in the complementarity
framework.

Let x(t) be a nonconstant periodic solution of (1) with the
unknown period T . Since the phase of a periodic solution
belonging to an autonomous systems is not fixed, any time
translation of the periodic solution gives another ‘different’
periodic solution. In other words, if the closed-loop system
admits a periodic solution, it admits an infinite number of
periodic solutions each one differing from the others by
a translation in time. In order to fix the initial phase of
the periodic solution, one more equation is required. In the
literature it has been proposed to add an anchor equation that
allows to block the profile of the periodic solution. Such
a normalization is frequently called phase condition. The
most known anchor equation is the orthogonality condition
that is successfully used in the continuation method for the
bifurcation analysis, [16] and it is also applied to the shooting
method, [17]. For our approach it seems to be more natural
the phase condition proposed in [18]:

ẋj(t̄) = c⊤j (Ax(t̄)−Bλ(t̄) + g) = 0, (5)

where xj is a generic j-th component of the state at a
chosen time instant t̄ ∈ [0, T ] and c⊤j ∈ R1×n is a zero
vector whose j-th element is 1. Note that the index j can be
chosen arbitrarily in the case of sufficiently smooth solutions.
Indeed, in the case of periodic solutions x(t) ∈ C1, the time
derivative of each state variable must be zero at least at one
time instant t̄ ∈ [0, T ]. If x(t) ∈ C0 as in the case of the
sliding motion, we have to pay attention to the fact that the
time derivative can jump. We should assume that there exists
a small time interval in which ẋj = 0. This paper will not
take into account solutions with jumps in the state.

The dynamic model and the anchor equation can be
normalized with respect to the unknown period by using
the time scaling t = T τ , where τ is a dimensionless time
variable. Then the system (1) can be written as

x′ = TAx+ TB(−λ) + Tg (6a)

y = Cx+D(−λ) + h (6b)

(y,λ) ∈ R (6c)

where x′ is the derivative with respect to τ . A periodic
solution of (1) with period T will correspond to a periodic
solution of (6) with period equal to 1. For the system (6) the
phase condition can be written as

xj
′(τ̄) = Tc⊤j (Ax(τ̄)−Bλ(τ̄) + g) = 0 (7)

for some τ̄ ∈ [0, 1].

III. MCP FOR THE COMPUTATION OF A PERIODIC

SOLUTION AND ITS PERIOD

The MCP formulation for the computation of periodic
solutions in Lur’e systems requires some preliminary no-
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tations. In the following we assume that col( · ) indicates a
vector obtained by stacking in a unique column the column
vectors in its argument, IN denotes the N×N identity matrix
and 1N , ∞N are the N -dimensional vectors of ones and of
infinity, respectively. The symbol ⊗ indicates the Kronecker
product.

By discretizing (6) with the (θ, γ)-technique, [19] and
a sampling period 1/N , N being an integer, we get the
following discrete-time system:

(

In −
T

N
θA

)

xk −

(

In +
T

N
(1− θ)A

)

xk−1 =

− γ
T

N
Bλk −

T

N
(1− γ)Bλk−1 +

T

N
g (8a)

yk = Cxk −Dλk + h (8b)

(yk,λk) ∈ R (8c)

with k = 1, . . . , N , θ ∈ [0, 1] and γ ∈ [0, 1]. By opportunely
rearranging (8b) for all samples k = 1, . . . , N , by using the
periodicity constraint x0 = xN and λ0 = λN and by adding
the discretized version of the phase constraint (7), we obtain
a MCP which can be represented in the form of Problem 1
with

z = col(λ, x, T ) (9a)

f(z) = col(fλ(z), fx(z), fT (z)) (9b)

l = col(lλ, lx, lT ) = col(lλ · 1N ,−∞N ·n,−∞) (9c)

u = col(uλ, ux, uT ) = col(uλ · 1N ,+∞N ·n,+∞)
(9d)

with x̄ = col(x1, x2, . . . , xN ), λ̄ = col(λ1, λ2, . . . , λN )
and ȳ = col(y1, y2, . . . , yN ) and where

fλ(z) = −Cx+ (D +M)λ− h (10a)

fx(z) =

(

In −
T

N
θA

)

xk −

(

In +
T

N
(1− θ)A

)

xk−1+

+ γ
T

N
Bλk +

T

N
(1− γ)Bλk−1 −

T

N
g, k = 1, . . . , N

(10b)

fT (z) = c⊤j (xk̂ − xk̂−1) for a chosen k̂ and a chosen j
(10c)

with

M = IN ⊗M, C = IN ⊗ C (11a)

D = IN ⊗D, h = 1N ⊗ h. (11b)

Note that the choice of the unbounded limits on the variables
x and T implies that fx(z) and fT (z) are equal to zero.

Depending on the relation (y,λ), constant solutions of (1)
are also possible. For instance, when g and h are zero
and (0, 0) ∈ (y,λ), the origin is also a solution (an
equilibrium) of the Lur’e system. We are interested in the
solution that corresponds to a nonconstant one, i.e. a solution
that corresponds to a periodic solution. Since the phase
constraint (7) does not exclude the trivial solution (and
more in general constant solutions), one must add a further

constraint which excludes the zero solution. To this aim the
following condition can be used

x⊤

(•,̂i)x(•,̂i) > 0 (12)

for some chosen î, where x(•,̂i) ∈ RN×1 is the vector

obtained by collecting all samples of the î-th component
of the state space. It is necessary to represent (12) in a
suitable complementarity form. A possible complementarity
representation of (12) is the following:

find ρ ∈ R, wρ ∈ R+, vρ ∈ R+ (13a)

s. t. x⊤

(•,̂i)x(•,̂i) − ϵ = wρ − vρ (13b)

lρ ≤ ρ ≤ uρ, (ρ− lρ)wρ = 0, (uρ − ρ)vρ = 0, (13c)

where ϵ is a small positive parameter, lρ = 0 and uρ = +∞
that implies vρ = 0. Indeed the nonnegativity of the variable
wρ in (13b) implies that x⊤

(•,̂i)
x(•,̂i) must be different from

zero.

The approach presented above for the elimination of the
trivial solution can be simply extended for the elimination
of a nonzero constant solution.

Now, we are able to formulate the MCP that allows to
compute the nontrivial periodic solution and its period.

Problem 4: Given the matrices A,B,C,D, g, h of the
model (1), the matrix M of the feedback relation represen-
tation (4), the discretization technique parameters (θ, γ) and
the number of discrete samples N

find λ ∈ R
N ·m, x ∈ RN ·n, T, ρ ∈ R

wλ, vλ ∈ R
N ·m
+ , wx, vx ∈ R

N ·n
+ ,

wT , vT , wρ, vρ ∈ R+

s. t. − Cx+ (D +M)λ− h = wλ − vλ (14a)
(

In −
T

N
θA

)

xk −

(

In +
T

N
(1− θ)A

)

xk−1+

+ γ
T

N
Bλk +

T

N
(1− γ)Bλk−1 −

T

N
g = wx − vx,

k = 1, . . . , N (14b)

c⊤j (xk̂ − xk̂−1) = wT − vT for a chosen k̂

and a chosen j (14c)

x⊤

(•,̂i)
x(•,̂i) − ϵ = wρ − vρ for a chosen î (14d)

lλ ≤ λ ≤ uλ, (λ− lλ)
⊤wλ = 0, (uλ − λ)⊤vλ = 0

(14e)

lx ≤ x ≤ ux, (x− lx)
⊤wx = 0, (ux − x)⊤vx = 0

(14f)

lT ≤ T ≤ uT , (T − lT )wT = 0, (uT − T )vT = 0
(14g)

lρ ≤ ρ ≤ uρ, (ρ− lρ)wρ = 0, (uρ − ρ)vρ = 0 (14h)

with x0 = xN , λ0 = λN , C, D, M , h given by (11), lower
bounds lλ, lx, lT given by (9c), lρ = 0 and upper bounds
uλ, ux, uT given by (9d), uρ = +∞.

4682



IV. NUMERICAL RESULTS

The effectiveness of the proposed technique for the com-
putation of period and waveform of oscillations is shown by
considering different examples: a saturation feedback system,
a relay feedback system with sliding motion and the Colpitts
electronic oscillator. The solution of Problem 4 for a given
N is compared with that obtained with a large value of N,
say Nmax, which is chosen for a reasonable computational
effort, e.g. time elapsed less than 1 hour. According to
the numerical simulation schemes presented in [19], we
show numerical results obtained by varying the values of
θ and γ. Problem 4 is solved by using the efficient PATH
solver [14], that is a generalization of the Newton method
for nonsmooth problems, so it requires an initial condition,

say [λ
0
, x0, T 0, ρ0]. The default starting point in the PATH

solver is a zero vector. In order to help the solver in avoiding
the trivial solution, we choose as initial condition a vector
different from the trivial one and, in particular, we decided
to choose as a guess value T 0, the one computed by means
of the describing function.

A. A limit cycle in a saturation feedback system

Consider the system (1) with the following matrices

A =

⎡

⎣

0 1 0
0 0 1
0 −3 −4

⎤

⎦ , B =

⎡

⎣

0
0
20

⎤

⎦ , g =

⎡

⎣

0
0
0

⎤

⎦

C =
[

1 0 0
]

, D = 0, h = 0

and the piecewise linear feedback (y,λ) being a unitary
saturation. Since the relation R is a Lipschitz continuous
function of x, the solution is expected to be of class C1.
See [13] for the definition and a graphical representation
of the limit cycle. Figure 2 shows the evolution of the error
obtained using different discretization schemes. In particular,
in Fig. 2(a) the error is defined as the difference between Tref,
that is the value of the period computed by solving Problem 4
with N = Nmax = 8500, and the value of period obtained
with the same discretization scheme, but by varying N from
200 to 1000 samples. The same reasoning is carried out to
obtain the results in Fig. 2(b) where the maximum value of
the component x1 is considered. For θ = 1, γ = 1, we obtain
as expected an order 1 convergence which is represented by
straight lines on the graph. For values of θ = 0.5 and γ
towards 0.5 the accuracy is improved but we do not achieve
order 2 when γ = 0.5. This may be mainly due to the lack
of regularity of the computed solution. This phenomenon is
generally observed when higher order method is used for a
solution with limited smoothness (see [20, §9.1]).

B. A limit cycle with sliding motion

Consider a relay feedback system, in which the dynamical
system is represented by the following matrices

A =

⎡

⎣

−3 1 0
−3 0 1
−1 0 0

⎤

⎦ , B =

⎡

⎣

1
−2
1

⎤

⎦ , g =

⎡

⎣

0
0
0

⎤

⎦

C =
[

1 0 0
]

, D = 0, h = 0.
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−10
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−2

−1

0

log
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(1/N)

lo
g

1
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 |
T

re
f −

 T
i |
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−3

−2

−1

0

log
10

(1/N)

lo
g

1
0
 |
m

a
x(

x)
re

f −
 m

a
x(

x)
i |

 

 

θ=1,γ=1

θ=0.5,γ=1

θ=0.5,γ=0.55

θ=0.5,γ=0.51

θ=0.5,γ=0.505

θ=0.5,γ=0.5001

(b)

Fig. 2. Lur’e system with feedback saturation function. Error in the
steady-state solution computation obtained with different time discretization
schemes and with N ∈ [200, 1000]: (a) error in the period (b) error in the
trajectory.

By using Problem 3 with the parameters M = 0, lλ = −1
and uλ = 1 the relay characteristic can be easily represented.
In [21], it is shown that the state evolution of this system
partially evolves along the switching surface {x ∈ Rn :
Cx = 0}. This type of solution is known as sliding solution.
In this case the solution x(t) is absolutely continuous, so
since the smoothness of the solution is one degree lower with
respect to the previous example, the time-stepping scheme is
chosen by fixing γ = 1 and by varying only θ. Qualitatively
the same comments about the accuracy of the error can be
repeated, see Fig. 3.

C. Colpitts oscillator

Consider the Colpitts oscillator, which is shown in Fig. 4,
where the bipolar junction transistor is represented by using
the Ebers-Moll model. It is known in the literature that with
appropiate values of parameters, this circuit presents a stable
periodic oscillation, [22]. The circuit model can be simply
written by applying the Kirchhoff currents and voltages laws
to the equivalent circuit in Fig. 4:
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−5
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−4
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−3
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log
10
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1
0
 |
T
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f −

 T
i |

(θ,γ=1)
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(a)

−3 −2.9 −2.8 −2.7 −2.6 −2.5 −2.4 −2.3
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g

1
0
 |
m

a
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 m

a
x(
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i |

(θ,γ=1)
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θ=0.6
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Fig. 3. Relay feedback system. Error in the steady-state solution compu-
tation obtained with different time discretization schemes and with N ∈

[200, 1000]: (a) error in the period (b) error in the trajectory.

C1ẋ1 = −
1

RC
x1 −

1

RC
x2 + x3 +

1

RC
VCC − iC (17a)

C2ẋ2 = −
1

RC
x1 −

( 1

RC
+

1

RB
+

1

RE

)

x2 + x3

+
1

RB
λ2 +

1

RC
VCC −

1

RE
VEE (17b)

Lẋ3 = −x1 − x2 + VCC , (17c)

and the transistor collector and base currents are given
respectively by

iC = −
1− αFαR

1− αF
λ1 +

αF

1− αF
iB (18a)

iB =
1

RB
(λ2 − x2). (18b)

By substituting (18) in (17) and by choosing as outputs

y1 = −x1 (19a)

y2 =
1

(1− αF )RB
x2 (19b)

one can write the dynamic system in the form of (1a)-(1b).
The feedback relation (y,λ) can be obtained by applying
the Kirchhoff laws to the equivalent circuit and by using the

VCC

−

+

L

x3

RC

C1

+

−

x1

iC

−

+

w1

λ1

αFw2

−

+

λ2

w2

αRλ1

RE

−VEE

RB

iB

C2

+

−

x2

Fig. 4. Colpitts oscillator: R are resistances; C are capacitors; L is the
inductance; VEE and VCC are constant voltage sources; αR and αF are
transistor parameters; the subscripts B, E and C are used for the transistor
base, emitter and collector nodes, respectively.

ideal diode complementarity models

λiwi = 0,λi ∈ R+, wi ∈ R+ (20)

with i = 1, 2. Indeed, the choice of the output as in (19),
allows to rewrite the relation (y,λ) in the form of Problem 3
with

M =

[

0 1
− 1−αR

1−αF

1
(1−αF )RB

]

(21a)

lλ = col(0, 0), uλ = col(+∞,+∞). (21b)

Consider the following parameters RC = 10 Ω, L = 0.1 H,
C1 = 2 F, C2 = 0.8 F, RE = 20 Ω, RB = 0.5 Ω, αF =
0.99, αR = 0.015, VCC = 10 V and VEE = 20 V. The
collector and emitter voltages computed with the pair (θ =
0.5, γ = 0.5) and N = Nmax = 900 are shown in Fig. 5(a),
while Fig. 5(b) shows the steady-state values of the collector
and base currents. Figure 6 shows that the error decreases
when the number of the samples is increased confirming the
effectiveness of the proposed approach.

V. CONCLUSION

In this paper, a suitable mixed complementarity prob-
lem is formulated in order to compute periodic solutions
in autonomous Lur’e systems. A phase condition is used
and a nonlinear version of the complementarity problem is
formulated in order to compute also the period of the periodic
solution. A method that allows to eliminate the constant
solutions has been also presented. Numerical examples are
considered as case studies: a saturation feedback system, a
relay feedback system with sliding motion and an electronic
oscillator. The simulations, implemented by using different
discretization schemes, show that the error between the real
solution and the one computed by varying the number of
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Fig. 5. Steady-state oscillations computed with (θ = 0.5, γ = 0.5) and
by fixing Nmax = 900: (a) collector voltage (black line) and emitter voltage
(blue line) (b) collector current iC (black line) and base current iB (blue
line).

samples decreases when the number of samples increases.
Future work will investigate the use of the proposed tool for
the computation of limit cycles bifurcation diagrams.
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