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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Objectives

Objectives of this lecture

Workshop/school ... a lecture between a course and a research talk.

I Formulation of nonsmooth dynamical systems

I Basics on Mathematical properties

I Formulation of unilateral contact, Coulomb’s friction and impacts.

I Flavor of enhanced nonsmooth laws

I Principles and Design of Event–capturing (Time–stepping) schemes.

I Newmark-type schemes for flexible multibody systems and FEM applications.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Objectives

Strengths and advantages of the nonsmooth approach

Nonsmooth approach is crucial for an efficient and robust simulation

I Compliant contacts imply stiff problems. Nonsmooth approach removes
numerical stiffness.
Ü Remove (not needed) artificial stiffness and damping at contact.
Ü Time integrators can use large time-steps and are robust

I Small number of parameters at contacts
Ü Facilitate the parameter identification

I Deal with large number of nonsmooth events and contacts
(accumulation of impacts, clearances or granular material)
Ü Time integrators do not stop on events
Ü Deal with large systems using optimization techniques

I Quality of solutions:
• Threshold effect and inequality are strictly modeled.

Ü Users can have digital diagnostics on discrete status of variables
(contact/no contact, sliding/sticking, on/off).
• Possibility to play with the trade-off accuracy/performance for high-level and
optimization design.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Objectives

Multi-body systems

Siconos simulation of circuits breakers with clearances in joints
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Objectives

Multi-body systems

Siconos simulation of watch escapement mechanism.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Objectives

Multi-body systems

Siconos simulation of granular flows for mines applications.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Constrained smooth multibody dynamics

Lagrange’s Equations

Constrained Smooth Lagrangian Dynamics
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Constrained smooth multibody dynamics

Lagrange’s Equations

Smooth multibody dynamics

Definition (Equations of motion)M(q(t))
dv(t)

dt
+ F (t, q, v) = 0,

v(t) = q̇(t)
(1)

where

I F (t, q, v) = N(q, v) + Fint(t, q, v)− Fext(t)

Definition (Boundary conditions)

I Initial Value Problem (IVP):

t0 ∈ R, q(t0) = q0 ∈ Rn, v(t0) = v0 ∈ Rn, (2)

I Boundary Value Problem (BVP):

(t0,T ) ∈ R× R, Γ(q(t0), v(t0), q(T ), v(T )) = 0 (3)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Constrained smooth multibody dynamics

Perfect bilateral constraints

Perfect bilateral constraints, joints, liaisons and spatial boundary conditions

Bilateral constraints

I Finite set of m bilateral constraints on the generalized coordinates :

h(q, t) =
[
hj (q, t) = 0, j ∈ {1 . . .m}

]T
. (4)

where hj are sufficiently smooth with regular gradients, ∇q(hj ).

I Configuration manifold, M(t)

M(t) = {q(t) ∈ Rn, h(q, t) = 0} ⊂ Rn, (5)

Tangent and normal space

I Tangent space to the manifold M at q

TM(q) = {ξ | ∇h(q)T ξ = 0} (6)

I Normal space as the orthogonal to the tangent space

NM(q) = {η | ηT ξ = 0, ∀ξ ∈ TM} (7)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Constrained smooth multibody dynamics

Perfect bilateral constraints

Bilateral constraints as inclusion

Definition (Perfect bilateral holonomic constraints on the smooth
dynamics) 

q̇ = v

M(q)
dv

dt
+ F (q, v) = r

−r ∈ NM(q)

(8)

where r is the generalized force or generalized reaction due to the constraints.

Remark

I The formulation as an inclusion is very useful in practice

I The constraints are said to be perfect due to the normality condition.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Constrained smooth multibody dynamics

Perfect bilateral constraints

Bilateral constraints as inclusion

Lagrange multipliers
When the manifold is defined by smooth constraints

M = {q(t) ∈ Rn, h(q, t) = 0}

with some constraints qualification, the multipliers µ ∈ Rm can be introduced and we
get

r = ∇qh(q, t)µ.

The equations of motion are
q̇ = v

M(q)
dv

dt
+ F (q, v) = ∇qh(q, t)µ

h(q, t) = 0, µ

(8)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Constrained smooth multibody dynamics

Perfect unilateral constraints

Perfect unilateral constraints

Unilateral constraints

I Finite set of ν unilateral constraints on the generalized coordinates :

g(q, t) = [gα(q, t) > 0, α ∈ {1 . . . ν}]T . (9)

I Admissible set C(t)

C(t) = {q ∈ Rn, gα(q, t) > 0, α ∈ {1 . . . ν}} . (10)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Constrained smooth multibody dynamics

Perfect unilateral constraints

Unilateral constraints as an inclusion

C(t) a closed convex set

NC(t)(q(t)) =
{
s ∈ Rn | s>(y − q(t)) 6 0 for all y ∈ C(t)

}
(11)

x + INC (x)
Cx y
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Constrained smooth multibody dynamics

Perfect unilateral constraints

Unilateral constraints as an inclusion

C(t) a closed convex set

NC(t)(q(t)) =
{
s ∈ Rn | s>(y − q(t)) 6 0 for all y ∈ C(t)

}
(11)

Definition (Perfect unilateral constraints on the smooth dynamics)

q̇ = v

M(q)
dv

dt
+ F (t, q, v) = r

−r ∈ NC(t)(q(t))

(12)

where r it the generalized force or generalized reaction due to the constraints.

Remark

I The unilateral constraints are said to be perfect due to the normality condition.

I Notion of normal cones can be extended to more general sets. see (Clarke, 1975,
1983 ; Mordukhovich, 1994)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Constrained smooth multibody dynamics

Perfect unilateral constraints

Unilateral constraints as an inclusion

Normal cone to C(t) finitely represented
Under qualification conditions, we have

NC(t)(q(t)) =

{
y ∈ Rn, y = −

∑
α

λα∇gα(q, t), λα > 0, λαgα(q, t) = 0

}
(11)

Equations of motion

q̇ = v

M(q)
dv

dt
+ F (t, q, v) = ∇g(q, t)λ

0 6 g(q, t) ⊥ λ > 0

(12)

Notation (Complementarity)

0 6 x ⊥ y > 0⇐⇒ x > 0, y > 0, x>y = 0 (13)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Constrained smooth multibody dynamics

Differential inclusion

Smooth dynamics as a DI

Differential Inclusion

−
[
M(q)

dv

dt
+ F (t, q, v)

]
∈ NC(t)(q(t)), (14)

with
q̇ = v .

Remark

I The right hand side is neither bounded (and then nor compact).

I The inclusion and the constraints concern the second order time derivative of q.

Ü Standard Analysis of DI does no longer apply.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Academic examples.

Academic examples

The bouncing Ball and the linear impacting oscillator

0

q

m

f

(a) Bouncing ball example

0

m

q

(b) Linear Oscillator example

Figure: Academic test examples with analytical solutions
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Academic examples.

NonSmooth Multibody Systems (NSMBS)
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Figure: Analytical solution. Bouncing ball example
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Academic examples.

NonSmooth Multibody Systems (NSMBS)
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Exact Solution. Linear Oscillator Example
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Figure: Analytical solution. Linear Oscillator
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

The nonsmooth Lagrangian Dynamics

Nonsmooth Lagrangian Dynamics
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

The nonsmooth Lagrangian Dynamics

Nonsmooth Lagrangian Dynamics

Fundamental assumptions.

I The velocity v = q̇ is of Bounded Variations (B.V)
Ü The equation are written in terms of a right continuous B.V. (R.C.B.V.)
function, v+ such that

v+ = q̇+ (15)

I q is related to this velocity by

q(t) = q(t0) +

∫ t

t0

v+(t) dt (16)

I The acceleration, ( q̈ in the usual sense) is hence a differential measure dv
associated with v such that

dv(]a, b]) =

∫
]a,b]

dv = v+(b)− v+(a) (17)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

The nonsmooth Lagrangian Dynamics

Nonsmooth Lagrangian Dynamics

Definition (Nonsmooth Lagrangian Dynamics)
M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

(18)

where di is the reaction measure and dt is the Lebesgue measure.

Remarks

I The nonsmooth Dynamics contains the impact equations and the smooth
evolution in a single equation.

I The formulation allows one to take into account very complex behaviors,
especially, finite accumulation (Zeno-state).

I This formulation is sound from a mathematical Analysis point of view.

References
(Schatzman, 1973, 1978 ; Moreau, 1983, 1988)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

The nonsmooth Lagrangian Dynamics

Measures Decomposition

Nonsmooth Lagrangian Dynamics

Measures Decomposition (for dummies){
dv = γ dt+ (v+ − v−) dν+ dvs
di = f dt+ p dν+ dis

(19)

where

I γ = q̈ is the acceleration defined in the usual sense.

I f is the Lebesgue measurable force,

I v+ − v− is the difference between the right continuous and the left continuous
functions associated with the B.V. function v = q̇,

I dν is a purely atomic measure concentrated at the time ti of discontinuities of v ,
i.e. where (v+ − v−) 6= 0,i.e. dν =

∑
i δti

I p is the purely atomic impact percussions such that pdν =
∑

i piδti
I dvS and diS are singular measures with the respect to dt + dη.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

The nonsmooth Lagrangian Dynamics

Measures Decomposition

Impact equations and Smooth Lagrangian dynamics

Substituting the decomposition of measures into the nonsmooth Lagrangian
Dynamics, one obtains

Definition (Impact equations)

M(q)(v+ − v−)dν = pdν, (20)

or
M(q(ti ))(v+(ti )− v−(ti )) = pi , (21)

Definition (Smooth Dynamics between impacts)

M(q)γdt + F (t, q, v)dt = fdt (22)

or

M(q)γ+ + F (t, q, v+) = f + [dt − a.e.] (23)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Definition (Moreau (1983, 1988))
A key stone of this formulation is the inclusion in terms of velocity. Indeed, the
inclusion (??) is “replaced” by the following inclusion

M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

−di ∈ NTC (q)(v+)

(24)

Comments
This formulation provides a common framework for the nonsmooth dynamics
containing inelastic impacts without decomposition.
Ü Foundation for the time–stepping approaches.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Comments

I The inclusion concerns measures. Therefore, it is necessary to define what is the
inclusion of a measure into a cone.

I The inclusion in terms of velocity v+ rather than of the coordinates q.

Interpretation

I Inclusion of measure, −di ∈ K
I Case di = r ′dt = fdt.

−f ∈ K (25)

I Case di = piδi .
−pi ∈ K (26)

I Inclusion in terms of the velocity. Viability Lemma
If q(t0) ∈ C(t0), then

v+ ∈ TC (q), t > t0 ⇒ q(t) ∈ C(t), t > t0

Ü The unilateral constraints on q are satisfied. The equivalence needs at least an
impact inelastic rule.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

The Moreau’s sweeping process

The Moreau’s sweeping process of second order

The Newton-Moreau impact rule

− di ∈ NTC (q(t))(v+(t) + ev−(t)) (27)

where e is a coefficient of restitution.

Velocity level formulation. Index reduction

0 6 y ⊥ λ > 0
m

−λ ∈ NR+ (y)
⇑

−λ ∈ NTR+ (y)(ẏ)

m
if y 6 0 then 0 6 ẏ ⊥ λ > 0

(28)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

The Moreau’s sweeping process

The Moreau’s sweeping process of second order

Summary for perfect schleronomic constraints

M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

di = H(q)dλ

U+ = H(q)T v+

if gα(q) 6 0, then 0 6 U+
α ⊥ dλα > 0

(29)

where H(q) is the transpose of the Jacobian matrix of the constraints,

H(q) = ∇qg(q)

.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Contact models

Local frame at contact

Local coordinates system at contact

Lagrangian approach of constraints is not sufficient.
The elegant Lagrangian approach of unilateral constraints and their associated
multipliers is not sufficient for describing more complex behavior of the contact :

I The Lagrange multipliers have no physical dimensions

I The constraints can be multiplied by a positive constant.

For a mechanical description of the behaviour of the contact interface, a (set-valued)
force laws needs to be introduced together with a coordinate systems at contact.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Contact models

Local frame at contact

P

Body O’

t
s
n

Body O”

Body O

n

P
t s

P′

Definition of a contact frame
Assume that we have defined
I P and P′ proximal points between O

and O′

I n an outward unit normal vector along
P′P

I t and s two unit tangent vectors

I g(q) a gap function, i.e., the signed
distance P′P

Remark
This definition is not trivial for a
nonsmooth or nonconvex surfaces.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Contact models

Local frame at contact

Local coordinates system at contact

Relative local velocity
The relative local velocity U is defined by

U = VP − VP′ (30)

and is decomposed in the frame (P′, n, t, s) as

U = UNn + UT, UN ∈ R,UT ∈ R2 (31)

Link with the gap function
The derivative with respect to time of the gap function t → g(q(t)) is the normal
relative velocity UN

ġ( · ) = UN( · ) = ∇gT (q)v( · ) (32)

Local reaction force at contact
The relative local velocity R acts from O′ to O and is also decomposed as

R = RNn + RT, RN ∈ R,RT ∈ R2 (33)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Contact models

Local frame at contact

Local coordinates system at contact

Relations with global/generalized coordinates
Is is assumed that there exists a relation between the local relative velocity U and the
velocity of bodies v such that

U = HT (q)v (34)

By duality (expressed in terms of power) we get

r = H(q)R (35)

Unilateral contact in terms of local variables

if g(q) 6 0, then 0 6 UN ⊥ RN > 0 (36)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Contact models

Signorini condition and Coulomb’s friction.

Coulomb’s friction

R

C

~s
P

RN

−UT

RT

~t

~n

Figure: Coulomb’s friction. The sliding case.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Contact models

Signorini condition and Coulomb’s friction.

Coulomb’s friction

Definition (Coulomb’s friction)
Coulomb’s friction says the following. If g(q) = 0 then: If UT = 0 then R ∈ C (sticking)

If UT 6= 0 then ‖UT‖RT = −‖Rt‖UT (sliding)
(37)

where C = {R, ‖RT|‖ 6 µ|RN| } is the Coulomb friction cone

The nonsmooth dynamics framework for the analysis and simulation of multi-body systems. Vincent Acary , TRIPOP project-team. INRIA Rhône–Alpes, Grenoble.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Contact models

Signorini condition and Coulomb’s friction.

Coulomb’s friction

Definition (Coulomb’s friction as an inclusion into a disk)
Let us introduce the following inclusion (Moreau, 1988) using the indicator function
ψD( · ):

−UT ∈ IND(µRN)(RT) (38)

where D(µRN) = {RT, ‖RT(t)‖ 6 µ|RN| } is the Coulomb friction disk

Definition (Coulomb’s friction as a variational inequality (VI))
Then (38) appears to be equivalent to RT ∈ D(µRN)

〈UT, z − RT〉 > 0 for all z ∈ D(µRN)
(39)

and to
RT = projD(µRN)[RT − ρUT], for all ρ > 0 (40)
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Contact models

Signorini condition and Coulomb’s friction.

Definition (Coulomb’s Friction as a Second–Order Cone Complementarity
Problem)
Let us introduce the modified velocity Û defined by

Û =

[
UN + µ‖UT‖

UT.

]
(41)

This notation provides us with a synthetic form of the Coulomb friction as

−Û ∈ INC(R), (42)

or
C∗ 3 Û ⊥ R ∈ C. (43)

where C∗ = {v ∈ Rn | rT v > 0, ∀r ∈ C} is the dual cone.
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– 30/89



The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Contact models

Signorini condition and Coulomb’s friction.

Coulomb’s friction

−ÛN

−Û

C

C◦

−UT

RN

R

~n

P

RT

~s

−ÛT

−Û
−ÛN

~t

Figure: Coulomb’s friction and the modified velocity Û. The sliding case.
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The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Contact models

Signorini condition and Coulomb’s friction.

Coulomb’s friction with impacts

It is for instance proposed in (Moreau, 1988) to extend (38) (??) to densities, i.e. to
impulses with a tangential restitution

−PN ∈ ∂ψ∗R− (
1

1 + ρ
U+

N (t) +
ρ

1 + ρ
U−N (t))

−PT ∈ ∂ψ∗D(
1

1 + τ
U+

T (t) +
τ

1 + τ
U−T (t)).

(44)

with ρ and τ are constants with values in the interval [0, 1] or
−PN ∈ ∂ψ∗R− (U+

N (t) + eNU
−
N (t))

−PT ∈ ∂ψ∗D(U+
T (t) + eTU

−
T (t))

(45)

where eN ∈ [0, 1) and eT ∈ (−1, 1).
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Contact models

Signorini condition and Coulomb’s friction.

Other contact models
Many other contact models can be constructed starting from the unilateral and
Coulomb’s friction laws:

I Rolling friction and spinning friction

I Rate and state laws (varying coefficient of friction)

I Cohesive Zone Model (damage and plasticity at interface)
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Contact models

Signorini condition and Coulomb’s friction.

Cohesive zone model with damage, contact and friction.160 3 Mechanical Systems with Unilateral Constraints and Friction
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Contact models

Signorini condition and Coulomb’s friction.

Cohesive zone model with damage, contact and friction.
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Time-stepping schemes

Event–Capturing (Time-stepping) schemes
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Time-stepping schemes

Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

For sake of simplicity, the linear time invariant case is only considered.{
Mdv + (Kq + Cv+) dt = Fext dt + di .

v+ = q̇+
(46)

Integrating both sides of this equation over a time step ]tk , tk+1] of length h,

∫
]tk ,tk+1]

Mdv +

∫ tk+1

tk

Cv+ + Kq dt =

∫ tk+1

tk

Fext dt +

∫
]tk ,tk+1]

di ,

q(tk+1) = q(tk ) +

∫ tk+1

tk

v+ dt .

(47)

By definition of the differential measure dv ,∫
]tk ,tk+1]

M dv = M

∫
]tk ,tk+1]

dv = M (v+(tk+1)− v+(tk )) . (48)

Note that the right velocities are involved in this formulation.
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Time-stepping schemes

Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

The equation of the nonsmooth motion can be written under an integral form as:
M (v+(tk+1)− v+(tk )) =

∫ tk+1

tk

−Cv+ − Kq + Fext dt +

∫
]tk ,tk+1]

di ,

q(tk+1) = q(tk ) +

∫ tk+1

tk

v+ dt .

(49)

The following notations will be used:

I qk ≈ q(tk ) and qk+1 ≈ q(tk+1),

I vk ≈ v+(tk ) and vk+1 ≈ v+(tk+1),

Impulse as primary unknown

The impulse

∫
]tk ,tk+1]

di of the reaction on the time interval ]tk , tk+1] emerges as a

natural unknown. we denote

pk+1 ≈
∫

]tk ,tk+1]
di
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Time-stepping schemes

Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

Interpretation
The measure di may be decomposed as follows :

di = f dt + pdν

where

I f dt is the abs. continuous part of the measure di , and

I pdν the atomic part.

Two particular cases:

I Impact at t∗ ∈]tk , tk+1] : If f = 0 and pdν = pδtk+1 then

pk+1 = p

I Continuous force over ]tk , tk+1] : If di = fdt and p = 0 then

pk+1 =

∫ tk+1

tk

f (t) dt
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Time-stepping schemes

Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

Remark

I A pointwise evaluation of a (Dirac) measure is a non sense. It practice using the
value

fk+1 ≈ f (tk+1)

yield severe numerical inconsistencies, since

lim
h→0

fk+1 = +∞

I Since discontinuities of the derivative v are to be expected if some shocks are
occurring, i.e. di has some Dirac atoms within the interval ]tk , tk+1], it is not
relevant to use high order approximations integration schemes for di . It may be
shown on some examples that, on the contrary, such high order schemes may
generate artefact numerical oscillations.
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Time-stepping schemes

Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

Discretization of smooth terms, for instance θ-method
θ-method is used for the term supposed to be sufficiently smooth,∫ tk+1

tk

Cv + Kq dt ≈ h [θ(Cvk+1 + Kqk+1) + (1− θ)(Cvk + Kqk )]∫ tk+1

tk

Fext(t) dt ≈ h [θ(Fext)k+1 + (1− θ)(Fext)k ]

The displacement, assumed to be absolutely continuous is approximated by:

qk+1 = qk + h [θvk+1 + (1− θ)vk ] .
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Time-stepping schemes

Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

Finally, introducing the expression of qk+1 in the first equation of (48), one obtains:[
M + hθC + h2θ2K

]
(vk+1 − vk ) = −hCvk − hKqk − h2θKvk

+h [θ(Fext)k+1) + (1− θ)(Fext)k ] + pk+1 , (50)

which can be written :

vk+1 = vfree + M̂−1pk+1 (51)

where,

I the matrix M̂ =
[
M + hθC + h2θ2K

]
is usually called the iteration matrix and,

I The vector

vfree = vk + M̂−1
[
− hCvk − hKqk − h2θKvk

+h [θ(Fext)k+1) + (1− θ)(Fext)k ]
]

is the so-called “free” velocity, i.e. the velocity of the system when reaction
forces are null.
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Time-stepping schemes

Time Discretization of the kinematics relations

Time Discretization of the kinematics relations

According to the implicit mind, the discretization of kinematic laws is proposed as
follows.
For a constraint α,

Uαk+1 = HαT (qk ) vk+1 ,

pαk+1 = Hα(qk ) Pαk+1 , pk+1 =
∑
α

pαk+1 ,

where

Pαk+1 ≈
∫

]tk ,tk+1]
dλα.

For the unilateral constraints, it is proposed

gαk+1 = gαk + h
[
θUαk+1 + (1− θ)Uαk

]
.
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Time-stepping schemes

Discretization of the unilateral constraints

Discretization of the unilateral constraints

Recall that the unilateral constraint is expressed in terms of velocity as

−di ∈ NTC (q)(v+) (52)

or in local coordinates as

−dλα ∈ NTIR+
(g(q))(Uα,+) (53)

The time discretization is performed by

−Pαk+1 ∈ NTIR+ (gα(q̃k+1))(Uαk+1) (54)

where q̃k+1 is a forecast of the position for the activation of the constraints, for
instance,

q̃k+1 = qk +
h

2
vk

In the complementarity formalism, we obtain

if gα(q̃k+1) 6 0, then 0 6 Uαk+1 ⊥ Pαk+1 > 0
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Time-stepping schemes

Summary

Summary of the time discretized equations

One step linear problem

{
vk+1 = vfree + M̂−1pk+1

qk+1 = qk + h [θvk+1 + (1− θ)vk ]

Relations

{
Uαk+1 = HαT (qk ) vk+1

pαk+1 = Hα(qk ) Pαk+1

Nonsmooth Law

{
if gα(q̃k+1) 6 0, then

0 6 Uαk+1 ⊥ Pαk+1 > 0

One step LCP

Uk+1 = HT (qk )vfree + HT (qk )M̂−1H(qk ) Pk+1

if gαp 6 0, then 0 6 Uαk+1 ⊥ Pαk+1 > 0
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Time-stepping schemes

Moreau–Jean’s time–stepping

Moreau–Jean’s Time stepping scheme (Jean and Moreau, 1987 ; Moreau,
1988 ; Jean, 1999)



M(qk+θ)(vk+1 − vk )− hF̃k+θ = H(qk+θ)Pk+1, (55a)

qk+1 = qk + hvk+θ, (55b)

Uk+1 = HT (qk+θ) vk+1 (55c)

−Pk+1 ∈ INTIRm
+

(ỹk+γ )(Uk+1 + eUk ), (55d)

ỹk+γ = yk + hγUk , γ ∈ [0, 1]. (55e)

with θ ∈ [0, 1], γ > 0 and xk+α = (1− α)xk+1 + αxk and ỹk+γ is a prediction of the
constraints.

Properties

I Convergence results for one constraints

I Convergence results for multiple constraints problems with acute kinetic angles

I No theoretical proof of order
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Time-stepping schemes

Schatzman–Paoli’s scheme

Schatzman–Paoli’s Time stepping scheme



M(qk + 1)(qk+1 − 2qk + qk−1)− h2F (tk+θ, qk+θ, vk+θ) = pk+1, (56a)

vk+1 =
qk+1 − qk−1

2h
, (56b)

−pk+1 ∈ NK

(
qk+1 + eqk−1

1 + e

)
, (56c)

where NK defined the normal cone to K .
For K = {q ∈ IRn, y = g(q) > 0}

0 6 g

(
qk+1 + eqk−1

1 + e

)
⊥ ∇g

(
qk+1 + eqk−1

1 + e

)
Pk+1 > 0 (57)

Properties

I Convergence results for one constraints

I Convergence results for multiple constraints problems with acute kinetic angles

I No theoretical proof of order
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Time-stepping schemes

Empirical order

Academic examples

The bouncing Ball and the linear impacting oscillator

0

q

m

f

(a) Bouncing ball example

0

m

q

(b) Linear Oscillator example

Figure: Academic test examples with analytical solutions
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Time-stepping schemes

Empirical order

Academic examples
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Time-stepping schemes

Empirical order

Academic examples
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Time-stepping schemes

Empirical order

Measuring error and convergence

Convergence in the sense of filled-in graph (Moreau (1978))

gr?(f ) = {(t, x) ∈ [0,T ]× IRn, 0 6 t 6 T and x ∈ [f (t−), f (t+)])}. (58)

Such graphs are closed bounded subsets of [0,T ]× IRn, hence, we can use the
Hausdorff distance between two such sets with a suitable metric:

d((t, x), (s, y)) = max{|t − s|, ‖x − y‖}. (59)

Defining the excess of separation between two graphs by

e(gr?(f ), gr?(g)) = sup
(t,x)∈gr?(f )

inf
(s,y)∈gr?(g)

d((t, x), (s, y)), (60)

the Hausdorff distance between two filled-in graphs h? is defined by

h?(gr?(f ), gr?(g)) = max{e(gr?(f ), gr?(g)), e(gr?(g), gr?(f ))}. (61)
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Time-stepping schemes

Empirical order

Measuring error and convergence

An equivalent grid-function norm to the function norm in L1

‖e‖1 = h
N∑
i=0

|fi − f (ti )| (62)

In the same way, the p − norm can be defined by

‖e‖p =

(
h

N∑
i=0

|fi − f (ti )|p
)1/p

(63)

The computation of this two last norm is easier to implement for piecewise continuous
analytical function than the Hausdorff distance.

Global order of convergence.

Definition
A one-step time–integration scheme is of order q for a given norm ‖ · ‖ if there exists a
constant C such that

‖e‖ = Chq +O(hq+1) (64)
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Time-stepping schemes

Empirical order

Empirical order of convergence. Moreau–Jean’s time–stepping scheme
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Empirical order of convergence. Schatzman–Paoli’s time–stepping scheme
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Newmark-type schemes for flexible multibody systems

Newmark-type schemes for flexible multibody systems and FEM
applications.
Joint work with

I O. Brüls, Q.Z. Chen and G. Virlez (Université de Liège, Belgium)

I A. Cardona (Cimec, Santa Fe, Argentina.)
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Newmark-type schemes for flexible multibody systems

Mechanical systems with contact, impact and friction
Simulation of flexible multibody systems.
Simulation of the ExoMars Rover (INRIA/Trasys Space/ESA)
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Newmark-type schemes for flexible multibody systems

Mechanical systems with contact, impact and friction
Simulation of flexible multibody systems.
Simulation of wind turbines (DYNAWIND project)
Joint work with O. Brüls, Q.Z. Chen and G. Virlez (Université de Liège)
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Newmark-type schemes for flexible multibody systems

NonSmooth Multibody Systems

Scleronomous holonomic perfect unilateral constraints and joints

g

λ

I Nonsmooth equations of motion

q̇+ = v+ (65a)

M(q) dv − gT
q di = f(q, v, t)dt (65b)

gU (q) = 0 (65c)

0 6 gU (q) ⊥ diU > 0 (65d)

where
I gq = ∇g(q).
I U index set of indices of the unilateral constraints,
I U the set of bilateral constraints,
I C = U ∪ U

I Newton Impact law gUq v+(t) = −e gUq v−(t)
e is the coefficient of restitution.
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Newmark-type schemes for flexible multibody systems

The Moreau’s sweeping process of second order

Definition (Moreau (1983, 1988))
A key stone of this formulation is the inclusion in terms of velocity.

q̇ = v (66a)

M(q) dv − gT
q di = f(q, v, t)dt (66b)

gUq v = 0 (66c)

if g j (q) 6 0 then 0 6 g j
q v + e g j

q v− ⊥ di j > 0, ∀ j ∈ U (66d)

Comments
This formulation provides a common framework for the nonsmooth dynamics
containing inelastic impacts without decomposition.
Ü Foundation for the Moreau–Jean time–stepping approach.
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Newmark-type schemes for flexible multibody systems

Moreau–Jean time stepping scheme (Jean and Moreau, 1987 ; Moreau,
1988 ; Jean, 1999)

Principle

Pn+1 ≈ di((tn, tn+1]) =

∫
(tn,tn+1]

di (67)

qn+1 = qn + hvn+θ, (68a)

M(qn+θ)(vn+1 − vn)− hfn+θ = gq(qn+θ)Pn+1, (68b)

if ḡ j
n 6 0, 0 6 g j

q,n+1 vn+1 + e g j
q,n vn ⊥ P j

n+1 > 0 (68c)

(68d)

with

I θ ∈ [0, 1]

I xn+θ = (1− θ)xn+1 + θxn

I fn+θ = f (tn+θ, qn+θ, vn+θ)

I ḡn is a prediction of the constraints, e.g. ḡn = gn + h/2g j
q,n vn
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Objectives & Motivations

Limitations of the Moreau–Jean scheme

I Moreau–Jean time–stepping : strong numerical damping for θ � 1/2.
Ü Improve numerical damping with a controlled damping of high frequencies.

I Constraint treated at the velocity level : penetration at the position level.
Ü solve the constraints at position level.

I Rough activation of constraints at the velocity level

Means

I Splitting between impulsive and non impulsive terms and use of α–scheme. (Chen
et al., 2013)

I Gear–Gupta–Leimkuhler (GGL) enforcement of the unilateral constraint at the
position level (Acary, 2013).

I Nonsmooth Newton method viewed as an active set method.
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A first naive approach
Direct Application of the HHT scheme to Linear Time
“Invariant”Dynamics with contact



Mv̇(t) + Kq(t) + Cv(t) = f (t) + r(t), a.e

q̇(t) = v(t)

r(t) = G(q)λ(t)

g(t) = g(q(t)), ġ(t) = GT (q(t))v(t),

0 6 g(t) ⊥ λ(t) > 0,

(69)

results in {
Mq̈k+1 = −(Kqk+1 + Cvk+1) + Fk+1 + rk+1

rk+1 = Gk+1λk+1
(70)



Mak+1 = Mq̈k+1+α

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

0 6 gk+1 ⊥ λk+1 > 0,

(71)
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A first naive approach

Direct Application of the HHT scheme to Linear Time
“Invariant”Dynamics with contact
The scheme is not consistent for mainly two reasons:

I If an impact occur between rigid bodies, or if a restitution law is needed which is
mandatory between semidiscrete structure, the impact law is not taken into
account by the discrete constraint at position level

I Even if the constraint is discretized at the velocity level, i.e.

if ḡk+1, then 0 6 ġk+1 + egk ⊥ λk+1 > 0 (72)

the scheme is consistent only for γ = 1 and α = 0 (first order approximation.)
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A first naive approach

Velocity based constraints with standard Newmark scheme (α = 0.0)
Bouncing ball example. m = 1, g = 9.81, x0 = 1.0 v0 = 0.0, e = 0.9

h = 0.001, γ = 1.0, β = γ/2 h = 0.001, γ = 1/2, β = γ/2
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A first naive approach

Position based constraints with standard Newmark scheme (α = 0.0)
Bouncing ball example. m = 1, g = 9.81, v0 = 0.0, e = 0.9, h = 0.001, γ = 1.0,
β = γ/2

x0 = 1.0 x0 = 1.01
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The nonsmooth generalized α scheme

Splitting the dynamics between smooth and nonsmooth part

dw = dv − ˙̃v dt (73)

Index sets of constraints
U index set of indices of the unilateral constraints,
U the set of bilateral constraints,

Smooth (non-impulsive) part
Solutions of the following DAE

˙̃q = ṽ (74a)

M(q) ˙̃v − gT
q (q) λ̃ = f(q, v, t) (74b)

gUq (q) ṽ = 0 (74c)

λ̃
U

= 0 (74d)

with the initial value ṽ(tn) = v(tn), q̃(tn) = q(tn).

The nonsmooth dynamics framework for the analysis and simulation of multi-body systems. Vincent Acary , TRIPOP project-team. INRIA Rhône–Alpes, Grenoble.
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The nonsmooth generalized α scheme

Splitting the dynamics between smooth and nonsmooth part

q̇ = v (75a)

dv = dw + ˙̃v dt (75b)

M(q) ˙̃v − gU,Tq λ̃
U

= f(q, v, t) (75c)

gUq ṽ = 0 (75d)

λ̃
U

= 0 (75e)

M(q)dw − gT
q (di− λ̃ dt) = 0 (75f)

gUq v = 0 (75g)

if g j (q) 6 0 then 0 6 g j
q v + e g j

q v− ⊥ di j > 0, ∀j ∈ U (75h)
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The nonsmooth generalized α scheme

GGL approach to stabilize the constraints at the position level
The equations of motion become

M(q) q̇− gT
q µ = M(q) v (76a)

���XXXq̇ = v → gU (q) = 0 (76b)

0 6 gU (q) ⊥ µU > 0 (76c)

dv = dw + ˙̃v dt (76d)

M(q) ˙̃v − gU,Tq λ̃
U

= f(q, v, t) (76e)

gUq ṽ = 0 (76f)

λ̃
U

= 0 (76g)

M(q)dw − gT
q (di− λ̃ dt) = 0 (76h)

gUq v = 0 (76i)

if g j (q) 6 0 then 0 6 g j
q v + e g j

q v− ⊥ di j > 0, ∀j ∈ U (76j)
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The nonsmooth generalized α scheme

Velocity jumps and position correction
The multipliers Λ(tn; t) and ν(tn; t) are defined as

Λ(tn; t) =

∫
(tn,t]

(di− λ̃(τ)dτ) (77a)

ν(tn; t) =

∫ t

tn

(µ(τ) + Λ(tn; τ)) dτ (77b)

with Λ(tn; tn) = ν(tn; tn) = 0.
The velocity jump and position correction variables

W(tn; t) =

∫
(tn,t]

dw = v(t)− ṽ(t) (78a)

U(tn; t) =

∫ t

tn

(q̇− ṽ)dt = q(t)− q̃(t) (78b)

Ü Low-order approximation of impulsive terms.
Ü Higher–order approximation of non impulsive terms.
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The nonsmooth generalized α scheme

M(qn+1)Un+1 − gT
q,n+1 νn+1 = 0 (79a)

gU (qn+1) = 0 (79b)

0 6 gU (qn+1) ⊥ νUn+1 > 0 (79c)

Wn+1 − vn+1 − ṽn+1 = 0 (79d)

M(qn+1) ˙̃vn+1 − f(qn+1, vn+1, tn+1)− gU,Tq,n+1 λ̃
U
n+1 = 0 (79e)

gUq,n+1 ṽn+1 = 0 (79f)

M(qn+1)Wn+1 − gT
q,n+1Λn+1 = 0 (79g)

gUq,n+1vn+1 = 0 (79h)

if g j (q∗n+1) 6 0 then 0 6 g j
q,n+1 vn+1 + e g j

q,n vn ⊥ Λj
n+1 > 0,∀j ∈ U
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The nonsmooth generalized α scheme

Nonsmooth generalized α-scheme

q̃n+1 = qn + hvn + h2(0.5− β)an + h2βan+1 (80a)

qn+1 = q̃n+1 + Un+1 (80b)

ṽn+1 = vn + h(1− γ)an + hγan+1 (80c)

vn+1 = ṽn+1 + Wn+1 (80d)

(1− αm)an+1 + αman = (1− αf ) ˙̃vn+1 + αf
˙̃vn (80e)

Special cases

I αm = αf = 0 Ü Nonsmooth Newmark

I αm = 0, αf ∈ [0, 1/3] Ü Nonsmooth Hilber-Hughes–Taylor (HHT)

Spectral radius at infinity ρ∞ ∈ [0, 1]

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞

ρ∞ + 1
, β =

1

4
(γ +

1

2
)2. (81)
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Numerical Illustrations

Two ball oscillator with impact.
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Numerical Illustrations12 Q.Z. CHEN ET AL.
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Figure 7. Numerical results for the total energy of the bouncing oscillator.

An analytically-exact solution for this benchmark is detailed in [20]. For comparison, the same
parameters are applied in this test example: Young’s Modulus E =900 Pa, density of the bar
ρ =1 kg/m3, undeformed initial length L =10 m, initial height to the bottom h0 =5 m, and initial
velocity v0 =10 m/s. The restitution coefficient for the impact is set as 0. The gravity acceleration
g is set to 0 so that only one close impact will occur.

The bar is discretized in space by 200 finite elements. Time step size can be chosen based on
the evaluation of the Courant number – a relevant ratio which links the mesh size and the step size
[20]. The step size with this mesh discretization is then chosen as h =2 · 10−3 s. Other algorithmic
parameters are as: ρ∞ = 0.6 for the nonsmooth generalized-α method; θ = 1 for the Moreau–Jean
method; γ = 1 and β = 0.5625 for the fully implicit Newmark method.
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Figure 8. Comparison the numerical results for the bouncing elastic bar: (a) position, (b) pressure.

Figure 8 shows the position and the pressure on the bottom of the bar. Also, the total energy of the
bouncing elastic bar is analyzed, as shown in Figure 9. The numerical results of the position response
and the pressure are compared to the exact solution. As one can tell from the figures, close contact
analysis is stable for all the three methods. Compared to Moreau-Jean and fully implicit Newmark
methods, the nonsmooth generalized-α method has better accuracy for the position response and
the pressure, in particular for the period near/after the take-off. As for the energy performance

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme
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Numerical Illustrations

Bouncing Pendulum

q = [x , y , θ]T

g1(q) = x − l cos θ = 0
g2(q) = y − l sin θ = 0

g3(q) = x −
√

2/2 > 0

Time–step : h = 2e − 3.
Moreau (θ = 1/1.8).
α-schemes (ρ∞ = 0.8)

e = 0.8

Unilateral constraint
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Numerical Illustrations

Bouncing Pendulum
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– 71/89



The nonsmooth dynamics framework for the analysis and simulation of multi-body systems.

Newmark-type schemes for flexible multibody systems

Numerical Illustrations

Impacting elastic bar

v0

L

g3(q) = x1 > 0
e = 0.0
200 finite elements
Time–step : h = 2e − 3.
Moreau (θ = 1/1.8).
α-schemes (ρ∞ = 0.8)
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Numerical Illustrations

Impacting elastic bar

0 0.5 1 1.5 2 2.5
−10

−5

0

5

10

15

20

time (s)

dg
/d

t (
m

/s
)

 

 

Reference
Moreau
Nonsmooth−α GGL

0 0.5 1 1.5 2 2.5
0.284

0.286

0.288

0.29

0.292

0.294

0.296

0.298

0.3

0.302

0.304

time (s)

en
er

gy

 

 
Reference
Moreau
Nonsmooth−α GGL

The nonsmooth dynamics framework for the analysis and simulation of multi-body systems. Vincent Acary , TRIPOP project-team. INRIA Rhône–Alpes, Grenoble.
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Numerical Illustrations

Impacting elastic bar
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Time–continuous energy balance equations

Energy analysis

Time–continuous energy balance equations
Let us start with the “LTI” Dynamics{

M dv + (Kq + Cv) dt = F dt + di

dq = v± dt
(82)

we get for the Energy Balance

d(v>Mv) + (v+ + v−)(Kq + Cv) dt = (v+ + v−)F dt + (v+ + v−) di
(83)

that is

2dE := d(v>Mv) + 2q>Kdq = 2v>F dt − 2v>Cv dt + (v+ + v−)> di
(84)

with

E :=
1

2
v>Mv +

1

2
q>Kq. (85)
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Energy analysis

Time–continuous energy balance equations

If we split the differential measure in di = λ dt +
∑

i piδti , we get

2dE = = 2v>(F + λ) dt − 2v>Cv dt + (v+ + v−)>piδti (86)

By integration over a time interval [t0, t0] such that ti ∈ [t0, t1], we obtain an energy
balance equation as

∆E := E(t1)− E(t0)

=

∫ t1

t0

v>F dt︸ ︷︷ ︸
W ext

−
∫ t1

t0

v>Cv dt︸ ︷︷ ︸
W damping

+

∫ t1

t0

v>λ dt︸ ︷︷ ︸
W con

+
1

2

∑
i

(v+(ti ) + v−(ti ))>pi︸ ︷︷ ︸
W impact

(87)
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Time–continuous energy balance equations

Energy analysis

Work performed by the reaction impulse di

I The term

W con =

∫ t1

t0

v>λ dt (88)

is the work done by the contact forces within the time–step. If we consider
perfect unilateral constraints, we have W con = 0.

I The term

W impact =
1

2

∑
i

(v+(ti ) + v−(ti ))>pi (89)

represents the work done by the contact impulse pi at the time of impact ti .
Since pi = G(ti )Pi and if we consider the Newton impact law, we have

W impact =
1

2

∑
i (v

+(ti ) + v−(ti ))>G(ti )Pi

=
1

2

∑
i (U

+(ti ) + U−(ti ))>Pi

=
1

2

∑
i ((1− e)U−(ti ))>Pi 6 0 for 0 6 e 6 1

(90)

with the local relative velocity defines as U(t) = G>(t)v(t)
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Energy analysis for Moreau–Jean scheme

Energy analysis for Moreau–Jean scheme

Let us define the discrete approximation of the work done by the external forces within
the step by

W ext
k+1 = hv>k+θFk+θ ≈

∫ tk+1

tk

Fv dt, (91)

and the discrete approximation of the work done by the damping term by

W damping
k+1 = −hv>k+θCvk+θ ≈ −

∫ tk+1

tk

vTCv dt. (92)

Lemma
The variation of the total mechanical energy over a time–step [tk , tk+1] performed by
the Moreau–Jean scheme (4) is

∆E −W ext
k+1 −W damping

k+1 = (
1

2
− θ)

[
‖vk+1 − vk‖2

M + ‖(qk+1 − qk )‖2
K

]
+ U>k+θPk+1

(93)
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Energy analysis for Moreau–Jean scheme

Proposition
The Moreau–Jean scheme dissipates energy in the sense that

E(tk+1)− E(tk ) 6 W ext
k+1 + W damping

k+1 , (94)

if
1

2
6 θ 6

1

1 + e
6 1. (95)

where e = max eα, α ∈ I. In particular, for e = 0, we get
1

2
6 θ 6 1 and or e = 1, we

get θ =
1

2
.

The nonsmooth dynamics framework for the analysis and simulation of multi-body systems. Vincent Acary , TRIPOP project-team. INRIA Rhône–Alpes, Grenoble.
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Energy analysis for Moreau–Jean scheme

Variant of the Moreau scheme that always dissipates energy
Let us consider the variant of the Moreau scheme

M(vk+1 − vk ) + hKqk+θ − hFk+θ = pk+1 = GPk+1, (96a)

qk+1 = qk + hvk+1/2, (96b)

Uk+1 = G> vk+1 (96c)

if ḡαk+1 6 0 then 0 6 Uαk+1 + eUαk ⊥ Pαk+1 > 0,

otherwise Pαk+1 = 0.
, α ∈ I (96d)
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Energy analysis for Moreau–Jean scheme

Lemma
The variation of the total mechanical energy performed by the scheme (96) over a
time–step is

∆E − W̄ ext
k+1 −W damping

k+1 = (
1

2
− θ)‖(qk+1 − qk )‖2

K + U>
k+1/2

Pk+1 (97)

If θ > 1/2, then the scheme (96) dissipates energy in the sense that

E(tk+1)− E(tk ) 6 W̄ ext
k+1 + W damping

k+1 . (98)
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Energy analysis for nonsmooth Newmark scheme

Let us define the discrete approximation of the work done by the external forces within
the step by

W ext
k+1 = (qk+1 − qk )>Fk+γ ≈

∫ tk+1

tk

Fv dt (99)

and the discrete approximation of the work done by the damping term by

W damping
k+1 = −(qk+1 − qk )>Cvk+γ ≈ −

∫ tk+1

tk

vTCv dt. (100)

Lemma
The variation of energy over a time–step performed by the scheme is

∆E −W ext
k+1 − W damping

k+1 = (
1

2
− γ)‖(qk+1 − qk )‖2

K + P>k+1Uk+1/2

+
h

2
(2β − γ)

[
(qk+1 − qk )>K(vk+1 − vk ) + ‖(vk+1 − vk )‖2

C

]
−h

2
(2β − γ)

[
(vk+1 − vk )>(Fk+1 − Fk )− (ak+1 − ak )>GPk+1

]
.

(101)
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Energy analysis for Newmark’s scheme

Define an discrete “algorithmic energy” (discrete storage function) of the form

K(q, v , a) = E(q, v) +
h2

4
(2β − γ)a>Ma. (102)

Proposition
The variation of the “algorithmic” energy ∆K over a time–step performed by the
nonsmooth Newmark scheme is

∆K−W ext
k+1 −W damping

k+1 = (
1

2
− γ)

[
‖qk+1 − qk‖2

K +
h

2
(2β − γ)‖(ak+1 − ak )‖2

M

]
+U>

k+1/2
Pk+1.

(103)
Moreover, the nonsmooth Newmark scheme dissipates the “algorithmic” energy K in
the following sense

∆K−W ext
k+1 −W damping

k+1 6 0, (104)

for

2β > γ >
1

2
. (105)
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Energy analysis for HHT scheme

Augmented dynamics
Let us introduce the modified dynamics

Ma(t) + Cv(t) + Kq(t) = F (t) +
α

ν
[Kw(t) + Cx(t)− y(t)] (106)

and the following auxiliary dynamics that filter the previous one

νhẇ(t) + w(t) = νhq̇(t)
νhẋ(t) + x(t) = νhv̇(t)

νhẏ(t) + y(t) = νhḞ (t)
(107)
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Energy analysis for HHT scheme

Discretized Augmented dynamics
The equation (107) are discretized as follows

ν(wk+1 − wk ) +
1

2
(wk+1 + wk ) = ν(qk+1 − qk )

ν(xk+1 − xk ) +
1

2
(xk+1 + xk ) = ν(vk+1 − vk )

ν(yk+1 − yk ) +
1

2
(yk+1 + yk ) = ν(Fk+1 − Fk )

(108)

or rearranging the terms

(
1

2
+ ν)wk+1 + (

1

2
− ν)wk = ν(qk+1 − qk )

(
1

2
+ ν)xk+1 + (

1

2
− ν)xk = ν(vk+1 − vk )

(
1

2
+ ν)yk+1 + (

1

2
− ν)yk = ν(Fk+1 − Fk )

(109)

With the special choice ν =
1

2
, we obtain the HHT scheme collocation that is

Mak+1 + (1− α)[Kqk+1 + Cvk+1] + α[Kqk + Cvk ] = (1− α)Fk+1 + αFk (110)
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Energy analysis for nonsmooth HHT scheme

Define an discrete “algorithmic energy” (discrete storage function) of the form

H(q, v , a,w) = E(q, v) +
h2

4
(2β − γ)a>Ma + 2α(1− γ)w>Kw . (111)

Let us define the approximation of works as follows:

W ext
k+1 = (qk+1 − qk )>

[
(1− α)Fk,γ + αFk−1,γ

]
≈
∫ tk+1

tk

Fv dt (112)

and

W damping
k+1 = −(qk+1 − qk )>C

[
(1− α)vk,γ + αvk−1,γ

]
≈ −

∫ tk+1

tk

vTCv dt. (113)
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Energy analysis for nonsmooth HHT scheme

Proposition
The variation of the “algorithmic” energy ∆H over a time–step performed by the
nonsmooth HHT scheme is

∆H−W ext
k+1 −W damping

k+1 = U>
k+1/2

Pk+1 −
1

2
h2(γ − 1

2
)(2β − γ)‖(ak+1 − ak )‖2

M

−(γ − 1

2
− α)‖qk+1 − qk‖2

K − 2α(1− γ)‖zk+1 − zk‖2
K .

(114)
Moreover, the nonsmooth HHT scheme dissipates the “algorithmic” energy H in the
following sense

∆H−W ext
k+1 −W damping

k+1 6 0, (115)

if

2β > γ >
1

2
and 0 6 α 6 γ − 1

2
6

1

2
. (116)
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Energy analysis for nonsmooth schemes

Conclusions

I For the Moreau–Jean, a simple variant allows us to obtain a scheme which always
dissipates energy.

I For the Newmark and the HHT scheme with retrieve the dissipation properties as
the smooth case. The term associated with impact is added is the balance.

I For the generalized–α, similar analysis can be performed but some issues in the
interpretation of results. New variant of the generalized–α scheme has been
proposed

I Open Problem: We get dissipation inequality for discrete with quadratic storage
function and plausible supply rate. The rest step is to conclude to the stability of
the scheme with this argument. At least, we can bound discrete variable and
conclude to the convergence of the scheme.
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Conclusions

I Last developments: Nonsmooth generalized with stabilization of position, velocity
and acceleration constraints (Bru, 2018)

I Most of the time integrator schemes and discrete solvers can be found in

Siconos. an open-source software for modeling, simulation and control of
nonsmooth dynamical systems

http://github.com/siconos/siconos
Thank you for your attention.
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