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Numerical methods for nonsmooth mechanical systems

Objectives

Objectives of the lecture

> Principles and Design of Event—tracking (Event—Driven) schemes. Pros and cons.

> Principles and Design of Event—capturing (Time—stepping) schemes. Pros and
cons.

» Comparison between Event—tracking and Event—capturing schemes
> Newmark-type schemes for flexible multibody systems and FEM applications.

> Toward higher order schemes and adaptive time—step strategies
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Event-tracking schemes
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Numerical methods for nonsmooth mechanical systems
Event-tracking schemes

The smooth dynamics and the impact equations

Nonsmooth Lagrangian Dynamics

Definition (Nonsmooth Lagrangian Dynamics)

M(q)dv + F(t,q,vT)dt = di
1)
vt = ('7-%—
where di is the reaction measure and dt is the Lebesgue measure.
Decomposition of measure

dv= ~dt+ (vt —v7)dv+ dvs @)
di= fdt+ pdvt  dis

u]
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Numerical methods for nonsmooth mechanical systems

Event-tracking schemes

The smooth dynamics and the impact equations

Impact equations and Smooth Lagrangian dynamics

Substituting the decomposition of measures into the nonsmooth Lagrangian
Dynamics, one obtains

Definition (Impact equations)

M(a)(v* — v™)dv = pdv, (3)

or

M(q(t:))(v* (t;) — v (t:)) = pis (4)
Definition (Smooth Dynamics between impacts)

M(q)vdt + F(t,q, v)dt = fdt (5)
or

M(g)yt + F(t,q,v") = ft [dt—ae] (6)
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Numerical methods for nonsmooth mechanical systems
Event-tracking schemes

L The smooth dynamics and the impact equations

The smooth dynamics and the impact equations

The impact equations

The impact equations can be written at the time, t; of discontinuities:

M(q(t))(vF () — v (&) = pi, (7

This equation will be solved at the time of impact together with an impact law. That
is for an Newton impact law

M(q(t:))(vt(t:) — v~ (t:)) = pi,

Uy () = HT (q(t))v* (1)
Uy (t)) = HT (q(t:))v— (i) (8)
pi = H(q(t))Pu,i

0 < Ui (t:)+eUy (t) L Py;i=0
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Numerical methods for nonsmooth mechanical systems
Event-tracking schemes

The smooth dynamics and the impact equations

The smooth dynamics and the impact equations

The impact equations reduced on the local unknowns
One obtains the following LCP at time t; of discontinuities of v:

{Uﬁ(t:’) = H(q(t;))(M(q(t;))) " H(a(t;)) Pu,i + Uy (t)
0< U,\T(t,') —+ eUN_(t;) 1 PN7,' >0

if the matrix M(q(t;)) is assumed to be invertible.
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Numerical methods for nonsmooth mechanical systems
Event-tracking schemes

The smooth dynamics and the impact equations

The smooth dynamics and the impact equations

The smooth dynamics

The following smooth system are then to be solved (dt — a.e.)

g =g(q(t))

£+ = H(a)F* (1)

M(q(t))v*(t) + F(t,q,vT) = fT(t)
0<gLlFf(t)=0

(10)
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Numerical methods for nonsmooth mechanical systems
Event-tracking schemes
L Reformulations of the unilateral constraints on Different kinematics levels

Reformulations of the unilateral constraints on Different kinematics levels

Differentiation of the constraints w.r.t time
The constraints g = g(q(t)) can de differentiate with respect to time as follows in the

Lagrangian setting:

&(q(t)) = Uy (1) = Vg T (a(t))v* (1)
(11)
£(q(th)) = Uy (8) = Tn(t) = VT (a(e)v " (1) + % (Ve (a(t))v (1)

Comments. Index reduction techniques.

Solving the smooth dynamics requires that the complementarity condition

0< g L FT(t) > 0 must be written now at different kinematic level, i.e. in terms of
right velocity Uy and in terms of accelerations T}
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Numerical methods for nonsmooth mechanical systems
Event-tracking schemes
L Reformulations of the unilateral constraints on Different kinematics levels

Reformulations of the unilateral constraints on Different kinematics levels

At the velocity level
Assuming that Uy is right-continuous by definition of the right limit of a B.V.
function, the complementarity condition implies, in terms of velocity, the following
relation,
0 ifg>0
-Fted o ifg=0,Uf >0 . (12)
]—o00,0] ifg=0Ul=0

A rigorous proof of this assertion can be found in (Glocker, 2001).
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Numerical methods for nonsmooth mechanical systems
Event-tracking schemes

Reformulations of the unilateral constraints on Different kinematics levels

Equivalent formulations

Reformulations of the unilateral constraints on Different kinematics levels

> Inclusion into N+ (UY)

0
—-Fte {
> Inclusion into Nt

N+ (UY)
+
]R+(g)(UN )

> In a complementarity formalism

ifg>0
ifg=0

+ +
—FT € NT]R+(g)(UN)

ifg=0 O0<UJTLFt>0
ifg>0 Ft=0
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Numerical methods for nonsmooth mechanical systems
Event-tracking schemes

Reformulations of the unilateral constraints on Different kinematics levels

Reformulations of the unilateral constraints on Different kinematics levels

At the acceleration level
In the same way, the complementarity condition can be written at the acceleration
level as follows.

0 ifg>0
_Fte 0 ifg=0,U >0 (15)
0 ifg=0,Uf =0, >0

]—0,0] ifg=0,Uf=0,Ty=0

A rigorous proof of this assertion can be found in (Glocker, 2001).
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Numerical methods for nonsmooth mechanical systems

Event-tracking schemes
Reformulations of the unilateral constraints on Different kinematics levels

Reformulations of the unilateral constraints on Different kinematics levels

Equivalent formulations

N +
> Inclusion into a cone N+ ()

0 ifg>0
—-Fteqd 0 ifg=0,Uy >0 (15)
Ng+(Y)
- "
> Inclusion into NTT]RJr(g)(Uﬁ)(r")
_Ft +
FT e NTTIm(g)(Um(F,,) (16)
> In the complementarity formalism,
ifg=0,Uf=0 0TIy LFr>0 (17)

otherwise Ff=0

- 11/127
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Event-tracking schemes
L

Reformulations of the unilateral constraints on Different kinematics levels

Reformulations of the unilateral constraints on Different kinematics levels

Trivial inclusions

Nk (g(9)) D N7 (g(a)(Uy) D NTTm(g(q))(Um(rﬁr)

(18)
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|—Event-tracking schemes
- Reformulations of the smooth dynamics at acceleration level.
:
Reformulations of the smooth dynamics at acceleration level.

The smooth dynamics as an inclusion

M(q(£))y*(t) + F(t,q,v") = £7(t)

M= VIglg" + L(VIg(q)v*

¥ =Vaqg(q(t))F+

(19)
—Fre TT]R+ (g)(Ur\Jlr)(rn)
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Numerical methods for nonsmooth mechanical systems
Event-tracking schemes

L Reformulations of the smooth dynamics at acceleration level

Reformulations of the smooth dynamics at acceleration level.

The smooth dynamics as a LCP
When the condition, g = 0, U,T = 0 is satisfied, we obtain the following LCP

M(q())y*(t) + F(t, q,v") = Vag(a(t))F (1)
My = Vg (@7 + £(Veg T (9))v* (20)
o<y LFt>0

which can be reduced on variable I} and F*, if M(q(t)) is invertible,

Ty = Veg (@M~ H(q(t))(—F(t,q,v")) + L (Vg (q))v+
+Vqg(q)M~1V4g(q(t))F (1) (21)

oKy LFr>0
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Event-tracking schemes

L The case of a single contact.

The case of a single contact.

Two modes for the nonsmooth dynamics
1. The constraint is not active. F* =0
M(a)y" +F(-,q,v) =0 (22)

In this case, we associate to this step an integer, status, = 0.

2. The constraint is active. Bilateral constraint I}l =0,

eI A [ R e M

In this case, we associate to this step an integer, status, = 1.
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Numerical methods for nonsmooth mechanical systems
Event-tracking schemes
L The case of a single contact.

The case of a single contact.

[Case 1] status, = 0.
Integrate the system (22) on the time interval [ty, txy1]
-25pt-
Case 1.1 gx4+1 > 0.
statusiiq < 0

The constraint is still not active

Case 1.2 gyq1 =0, Uy k41 <O An impact occurs

Solve the impact equation (9) with U™ <= Uy «4+1 <0
UN,k+1 «— Ut.
Two cases are then possible:
Case 1.2.1 Uy > 0.
t statusi1 < 0.
Case 1.2.2 Uy =0.
Solve the LCP (20) to obtain the new status.
Three cases are then possible:
Case 1.2.2.1 Ty k41 > 0, Fpq1 =0
statusy 1 < 0.
Case 1.2.2.2 Ty g41 = 0, Fxpq > 0
Case 1.22.3 Ty k41 =0, Fpp = 0
We need to know the value of -F?\Ir.

The constraint ceases to be active

25p

The relative post-impact velocity vanishes

The constraint is still not active

The constraint has to be activated statusj 1 < 1.
This case is undetermined.
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Numerical methods for nonsmooth mechanical systems
Event-tracking schemes

L The case of a single contact.

The case of a single contact.

[Case 1] statusy, = 0.
Integrate the system (22) on the time interval [ty, ty11]

-25pt-
Case 1.3 Figk_,,l =0,Unky1 =0 we have grazing constraint
Solve the LCP (20) to obtain the new status assuming that U" = U™ = Uy k41 -
Three cases are then possible:
Case 1.3.1 Tnky1 > 0, Fip1 =0 The constraint is still not active
statusyy1 < 0.
Case 1.3.2 Tnky1 =0, Fip1 >0 The constraint has to be activated statusy;; < 1.
Case 1.3.3 Inky1 =0, Fy1 =0 This case is undetermined.
We need to know the value of I
@t 1.4 grk+1 =0,Uy k41 >0 Activation of constraints not detected.
Seek for the first time t. such that g(q(t«)) = 0.
tyy1 < ts.
Perform all of this procedure keeping with statusy, < 0.
Case 1.5 gx41 <0 Activation of constraints not detected.
Seek for the first time t. such that g(q(t«)) = 0.
tpyp1 < ts.

Perform all of this procedure keeping with status, < 0.
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Event-tracking schemes

L The case of a single contact.

The case of a single contact.

[Case 2] statusy =1

Integrate the system (23) on the time interval [ty, ty11]
-25pt-
Case 2.1 gyq1 #0or Uy k1 =0
Something is wrong in the time integration or the drift from the constraints is too

huge.

Case 2.2 g1 =0,Un k41 =0
In this case, we assume that Ut = U~ = Un,k+1 and we compute Iy 1, Frg1
thanks to the LCP (20) assuming that U™ = U~ = Uy x41. Three cases are then
possible

25pt

Case 2.2.1 FN,kH =0,Fy1 >0
The constraint is still active. We set statusyy1 = 1.

Case 2.2.2 Ty yy1 > 0, Fy1 =0
The bilateral constraint is no longer valid. We seek for the time t, such that F* = 0.
We set tyt1 = t. and we perform the integration up to this instant. We perform all of
these procedure at this new time tj;1

Case 2.2.3 FN,,(H = 0, Fk+1 =0
This case is undetermined. We need to know the value of F;.
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Numerical methods for nonsmooth mechanical systems
Event-tracking schemes

L The case of a single contact

The case of a single contact.

Comments

> The Delassus example.
In the one-contact case, a naive approach consists in to suppressing the
constraint if Fix,1 < O after a integration with a bilateral constraints.
=» Work only for the one contact case.

w_n

> The role of the “¢
In practical situation, all of the test are made up to an accuracy threshold. All
statements of the type g = 0 are replaced by |g| < . The role of these epsilons
can be very important and they are quite difficult to size.
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Event-tracking schemes

L The case of a single contact

The case of a single contact.

Comments

> If the ODE solvers is able to perform the root finding of the function g = 0 for
status, = 0 and Ft = 0 for status, = 1
=» the case 1.4, 1.5 and the case 2.2.2 can be suppressed.

> If the drift from the constraints is also controlled into the ODE solver by a error
computation,
=» the case 2.1 can also be suppressed

> Most of the case can be resumed into the following step

> Continue with the same status
> Compute Un,k+1, Pkt1 thanks to the LCP  (9)(impact equations).
> Compute 'y k41, Frt1 thanks to the LCP (20) (Smooth dynamics)

=» Rearranging the cases, we obtain the following algorithm.
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Event-tracking schemes

L The case of a single contact

The case of a single contact. An algorithm

Require: (g, Uy k, statusy)
Ensure: (gxi1, U k1, Status 1)
Time-integration of the system on [tx, tx+1](22) if statusy = 0 or of the system (23)
if status, = 1 up to an event.
if gk+1 > 0 then
statusyi1 = 0 //The constraint is still not active. (case 1.1)
end if
if git1 =0, Uyks1 <O then
//The constraint is active gx11 = 0 and an impact occur Uy k41 < O (case 1.2)
Solve the LCP (9) for Uy = Uy k+1;  Unki1 = Uf
if Uy,k+1 > O then status, , =0
end if
if gky1 =0, Uy k+1 = O then
//The constraint is active gx+1 = 0 without impact (case 1.2.2, case 1.3, case 2.2)
solve the LCP (21)
if Ty k41 =0, Fx1 > 0 then
statusy41 =1
else if 'y x41 > 0, Fiy1 = 0 then
statusy41 =0
else if Iy y41 =0, Fry1 = 0 then
//Undetermined case.
end if

nd if
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Event-tracking schemes

L The multi-contact case and the index-sets

The multi-contact case and the index-sets

Index sets
The index set [ is the set of all unilateral constraints in the system

I={1...v}CNN (24)
The index-set I. is the set of all active constraints of the system,
le={a€l,g®=0}Cl (25)

and the index-set Is is the set of all active constraints of the system with a relative

velocity equal to zero,
Is={a€l,Ug=0}CI (26)
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Event-tracking schemes

L The multi-contact case and the index-sets

The multi-contact case and the index-sets

Impact equations

M(q(t;))(v*(t:) — v~ (t)) = pis
Un (t) = Vg (a(t;)v (1)
Uy (t:) = Vag T (a(t))v™ ()

pi = Vqg(q(t;))Pn,i (27)

Pe =0, Ud () = Up (1), Yael\l

0< U o(t) + ey () L P, >0, Vo€l

Using the fact that P{; =0 for a € / \ /¢, this problem can be reduced on the local
unknowns U (t;), Py,i Va € .
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Event-tracking schemes

L The multi-contact case and the index-sets

The multi-contact case and the index-sets

Modes for the smooth Dynamics

> The smooth unilateral dynamics as a LCP

M(q),y+ + Fint( 5 4q, V) = Fext + ng(q)F+

M =VagT (a7 + L (Vg (q))v*

(28)
Fte =0, Vael\l
OKI* LFhe>0 VYacel
> The smooth bilateral dynamics
M(@)v" 4 Fint(+ 4, v) = Fext + Vag(q)F*
My =Vaeg (@ + £(VegT (q))v*
(29)

FHe =0, VYael\l

+a
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Event-tracking schemes

L The multi-contact case and the index-sets

The multi-contact case and the index-sets. an algorithm

Require: (gk, Un k, e ks Is k)

Ensure: (gki1, Un ki1, le k1s s k1)
Time-integration on [ty, ty41] of the system (29) according to /. x and I, up to an
event.

Compute the temporary index-sets /. 41 and I k1.
if Ic,k+1 N Is,k+1 #* 0 then
//Impacts occur.
Solve the LCP (27).
Update the index-set /. x41 and temporary Is x4 1
Check that Ic,k+1 AN ls,k+1 = (Z)
end if
if Is i1 # 0 then
Solve the LCP (28)
for a € I 41 do
if FN,a7k+1 >0, Fa,k+1 = 0 then
remove o from Is ;41 and /¢ j41
else if Iy o ky1 =0, Fqkt1 = 0 then
//Undetermined case.
end if
end for
end if
// Go to the next time step
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Event-tracking schemes

The multi-contact case and the index-sets

The multi-contact case and the index-sets

Time ntegration of (19)

Compute Index Sets.

Solve the LCP (17)

Impact Equatins.

yes
Actve contact 7

Solve the LCP (18)

End of the simulation 7
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Event-tracking schemes

L Comments and extensions

Comments and extensions

Extensions to Coulomb's friction
The set I, is the set of sticking or rolling contact:

Ir ={ael, Uy =0,|Ur|| =0} C Is, (30)
is the set of sticking or rolling contact, and

I ={a€l, Uy =0,[Ur| >0} C, (31)
is the set of slipping or sliding contact.
Remarks

In the 3D case, checking the events and the transition sticking/sliding and
sliding/sticking is not a easy task.

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble. - 26/127



Numerical methods for nonsmooth mechanical systems
Event-tracking schemes

L Comments and extensions

Comments

Advantages and Weaknesses and the Event Driven schemes

> Advantages :
> Low cost implementation of time integration solvers (re-use of existing ODE solvers).
> Higher-order accuracy on free motion.
> Pseudo-localization of the time of events with finite time-step.
> Weaknesses
> Numerous events in short time.
> Accumulation of impacts.
> No convergence proof
> Robustness with the respect to thresholds “c". Tuning codes is difficult.
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:

Event—Capturing (Time-stepping) schemes
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Numerical methods for nonsmooth mechanical systems
Time-stepping schemes

L Time Discretization of the nonsmooth dynamics
Time Discretization of the nonsmooth dynamics

For sake of simplicity, the linear time invariant case is only considered.

Mdv + (Kq + Cvt) dt = Fext dt + di.
ot (32)
vt =4
Integrating both sides of this equation over a time step ]tx, tx+1] of length h,
tey1 tey1
/ Mdv+/ Cv++qut:/ Fext dt + di,
Ttic tieta] tc ty Ttis oyl
(33)
tht1 .
alten) =a(s) + [ v,
ty
By definition of the differential measure dv,
/ Mdv =M dv =M (v (trs1) — v (&) - (34)
Tthstheyal Ttk oyl

Note that the right velocities are involved in this formulation.
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Time-stepping schemes

L Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

The equation of the nonsmooth motion can be written under an integral form as:

M te) vt = [

ty

—Cv+—Kq+Fextdt+/ di,
Ttk tryal

(35)
tet1 .

alten) =a(s) + [ v,
ty

The following notations will be used:

> gk ~ q(tk) and ger1 = q(tet1),
> v & v (L) and v & v (teg),
Impulse as primary unknown
The impulse di of the reaction on the time interval ]tx, tx41] emerges as a
Ttistieyal
natural unknown. we denote

Pk+1 R di
Ttk tosal
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Time-stepping schemes
L Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

Interpretation
The measure di may be decomposed as follows :

di = f dt + pdv

where
> f dt is the abs. continuous part of the measure di, and
> pdv the atomic part.

Two particular cases:

> Impact at t. €]ty, tyy1] : If f =0 and pdv = pdy, ., then
Pk+1 =P

» Continuous force over |ty, txi1] @ If di = fdt and p = 0 then

ter1
Pk+1 = / f(t)dt
tk
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Time-stepping schemes

L Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

Remark

> A pointwise evaluation of a (Dirac) measure is a non sense. It practice using the
value

fer1 & f(tet1)

yield severe numerical inconsistencies, since
lim fy41 = +o0
h—0

> Since discontinuities of the derivative v are to be expected if some shocks are
occurring, i.e. di has some Dirac atoms within the interval Jt, txt1], it is not
relevant to use high order approximations integration schemes for di. It may be
shown on some examples that, on the contrary, such high order schemes may
generate artefact numerical oscillations.
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Time-stepping schemes

Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

Discretization of smooth terms
6-method is used for the term supposed to be sufficiently smooth,

h[0(Cviy1 + Kakqa) + (1 — 0)(Cvi + Kai)]

Q

7351
/ Cv + Kqdt

tk

tey1
/ Fext(t) dt
t

The displacement, assumed to be absolutely continuous is approximated by:

Q

h[0(Fext)k1 + (1 — 0)(Fext )i

k1= Gk + h [Oviyr + (1 = 0)wvi] .
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Time-stepping schemes

L Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

Finally, introducing the expression of qgx11 in the first equation of (34), one obtains:

[M + hOC + h?62K] (viy1 — vk) = —hCvy — hKqx — h?0Kv
+h [0(Fext)k+1) + (1 — 0)(Fext)&] + Pr1 (36)

which can be written :
Vi1 = Veee + M7 pjyn (37)

where,
> the matrix M = [M + hoC + h202K] is usually called the iteration matrix and,

» The vector

Viee = Vk+ M1 = hCv — hKqi — h20Kv,
+h[0(Fext)ir1) + (1 — 0)(Fext )] ]

is the so-called “free” velocity, i.e. the velocity of the system when reaction
forces are null.
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Time-stepping schemes

Time Discretization of the kinematics relations

Time Discretization of the kinematics relations

According to the implicit mind, the discretization of kinematic laws is proposed as
follows.
For a constraint «,

Ug = HYT(qi) vig
Py = HY(aqk) Py Prs1 =D Piiss
«

where

Pe,, ~ / dA®.
Ttisthyal

For the unilateral constraints, it is proposed

gy = &p +h [oUg, + (- 0)Up] .

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble.
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Time-stepping schemes

L Discretization of the unilateral constraints

Discretization of the unilateral constraints

Recall that the unilateral constraint is expressed in terms of velocity as
—di € N7 (g(v") (38)
or in local coordinates as
—dA” € Ny (g(ap (U™) (39)
The time discretization is performed by
—Pi1 € N7 (g9 (@s1)) (Uih) (40)

where i1 is a forecast of the position for the activation of the constraints, for
instance,

. h
qr+1 = gk + 5 vk
In the complementarity formalism, we obtain

if g%(Gks1) <O, then 0< UZ, L PE, >0
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Time-stepping schemes

Summary

Summary of the time discretized equations

= M—1
One step linear problem Vil = Vfree + Pk+1
Gkt1 = Gic + h [Bvigr + (1= O)wi]
U = Ho T
Relations (i<+1 . (qk)avk+l
Piyr = H(ak) PRy

e oy s <
Nonsmooth Law { if g% (Gk1) < 0, then

0< Uy, LP2, >0

One step LCP
Uk+l = HT(qk)Vfree + HT(qk)M_lH(qk) Pk+1

if g2 <0, then 0 < Uy L PRy >0
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[ Moreau’s time—stepping

Moreau's Time stepping scheme

M(qks0)(Vir1 — Vi) — hFiio = H(qs0) Piei1, (41a)
Qk+1 = 9k + hviye, (41b)
U1 = H' (Gks0) vicrs (41c)
—Pri1 € amerg(hM)(Ukﬂ + eUk), (41d)
ktny =y +hyUx, v €10,1]. (41e)

with 6 € [0,1],7 > 0 and X1 = (1 — @)xk41 + axk and iy~ is a prediction of the
constraints.

Properties

» Convergence results for one constraints
» Convergence results for multiple constraints problems with acute kinetic angles

> No theoretical proof of order
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Time-stepping schemes

L Schatzman-Paoli's scheme

Schatzman—Paoli's Time stepping scheme

M(qi + 1)(qkr1 — 20k + q—1) — P> F(tis0, G0, Vkro) = Pri1,

_ Gk+1 — 9k-1

Vi )
k+1 2h

—Pi+1 € Nk (

Qk+1 1 eqx—1
l1+e

where Ny defined the normal cone to K.
For K ={q € R",y = g(q) > 0}

Gk+1 + eqr—1 Gk+1 + eqr—1
0< —— | L Vg | ———— | P, >0
g (o) v (et py,

Properties

» Convergence results for one constraints

(42a)

(42b)

(42c)

(43)

» Convergence results for multiple constraints problems with acute kinetic angles

> No theoretical proof of order
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Time-stepping schemes

Empirical order

Academic examples

The bouncing Ball and the linear impacting oscillator

0

FAAA
=)

0

(a) Bouncing ball example

(b) Linear Oscillator example
Figure: Academic test examples with analytical solutions

Numerical methods for nonsmooth mechanical systems
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Time-stepping schemes

Empirical order

Academic examples

Exact Solution. Bouncing Ball Example
: ..v
3, position
velocity -
5
\
AN N
b SR
oK RS
\ Y
\
5
- 5
3
\
5
N
2 b
0 05 1 15 2 25 3 35
time (s)

4
Figure: Analytical solution. Bouncing ball example
Numerical methods for nonsmooth mechanical systems
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Time-stepping schemes

Empirical order

Academic examples

Exact Solution. Linear Oscillator Example

position
5 Velocity -

0 0.5 1 15 2 25 3 35 4
time (s)

Figure: Analytical solution. Linear Oscillator
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Time-stepping schemes

L Empirical order

Measuring error and convergence

Convergence in the sense of filled-in graph (Moreau (1978))

gr*(f)={(t,x) €[0, T x R",0< t < T and x € [f(t7), fF(t")]}. (44)

Such graphs are closed bounded subsets of [0, T] x IR", hence, we can use the
Hausdorff distance between two such sets with a suitable metric:

d((t,x), (s,y)) = max{[t — 5|, [x — y|}. (45)
Defining the excess of separation between two graphs by
e(grr(f),gr(g)) =  sup inf  d((t,x),(s,¥)), (46)

(t,x)egr*(f) (s:y)Egr*(g)
the Hausdorff distance between two filled-in graphs h* is defined by

h*(gr*(f),gr*(g)) = max{e(gr*(f), gr*(g)), e(er*(g), gr*(f))} (47)
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Time-stepping schemes

L Empirical order

Measuring error and convergence
An equivalent grid-function norm to the function norm in £;

N
lells = hY_ Ifi — £(5)] (48)

i=0

In the same way, the p — norm can be defined by

N 1/p
llell = (hZIﬁ—f(ti)l”> (49)
i=0

The computation of this two last norm is easier to implement for piecewise continuous
analytical function than the Hausdorff distance.

Global order of convergence.

Definition
A one-step time—integration scheme is of order g for a given norm || - || if there exists a

constant C such that
llel| = Ch? + O(hT*1) (50)
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Empirical order

Empirical order of convergence. Moreau's time—stepping scheme

10
Hausdorff distance ——
Uniform norm
L2 norm ---%---
L1 norm &
1
=
s
3 0.1
@
S
5 *
S
2
E 0.01
]
[i4
0.001 -
—
0.0001
0.0001 0.001 0.01 0.1

Time step (log scale)

(a) The bouncing ball example

Figure: Empirical order of convergence of the Moreau's time-stepping scheme.
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Time-stepping schemes

Empirical order

Empirical order of convergence. Moreau's time—stepping scheme

Figure: Empirical order of convergence of the Moreau's time-stepping scheme.

Numerical methods for nonsmooth mechanical systems

Relative error (log scale)

0.1

0.01

0.001

T
Hausdorff distance —+—

0.0001 0.001
Time step (log scale)

(a) The linear oscillator example

0.01 0.1

Vincent Acary , INRIA Rhéne—Alpes, Grenoble.

43/127



e

Numerical methods for nonsmooth mechanical systems

Time-stepping schemes

Empirical order

Empirical order of convergence. Schatzman—Paoli's time—stepping scheme

10
Hausdorff distance ——
Uniform norm
x L2 norm ---%---
L1 norm &
1
- o
o - =R
© e a
o a
0.1 .
= * =
5 .
5 =g
o
2z
2 0.01 =
©
[i4
o
0.001
—
0.0001
0.0001 0.001 0.01 0.1

Time step (log scale)

(a) The bouncing ball example

Figure: Empirical order of convergence of the Schatzman-Paoli's time-stepping scheme.
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Time-stepping schemes

Empirical order

Empirical order of convergence. Schatzman—Paoli's time—stepping scheme

10
Hausdort distance ——
Uniform norm ---x---
L2 norm ------
L1 norm ---g&
-
1
) /
Bl
3 .
j= . RE)
S * g
s 0.1 o
s
s
2z
=
©
o«
o /
0.01
e
0.001
0.0001 0.001 0.01 0.1

Time step (log scale)

(a) The linear oscillator example

Figure: Empirical order of convergence of the Schatzman-Paoli's time-stepping scheme.
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Comparison

State—of-the—art

Numerical time—integration methods for Nonsmooth Multibody systems (NSMBS):

Nonsmooth event capturing methods (Time-stepping methods)

@ robust, stable and proof of convergence
@ low kinematic level for the constraints
@ able to deal with finite accumulation

© very low order of accuracy even in free flight motions

Nonsmooth event tracking methods (Event—driven methods)

@ high level integration of free flight motions

no proof of convergence

S]

© sensibility to numerical thresholds

© reformulation of constraints at higher kinematic levels.
S]

unable to deal with finite accumulation
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L Comparison

:

Newmark-type schemes for flexible multibody systems and FEM
applications.

Joint work with O. Briils, Q.Z. Chen and G. Virlez (Université de Ligge)

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble.
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Newmark-type schemes for flexible multibody systems
Newmark’s scheme.

The Newmark scheme

Linear Time “Invariant” Dynamics without contact
Mv(t) + Kq(t) + Cv(t) = f(t)
4(t) = v(1)

(51)

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble.
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Newmark-type schemes for flexible multibody systems
Newmark’s scheme.

The Newmark scheme (Newmark, 1959)

Principle

Given two parameters v and 3

May i1 = fier1 — Kqry1 — Cviqa
Vkr1l = Vk + hagy

h2
Qk+1 = Gk + hvk + 5 28
Notations

f(ter1) = feyt,

Xpe1 = X(tet1),
Xty = (1 = ¥)xk + YXk41

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble.
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L Newmark's scheme

The Newmark scheme

Implementation
Let us consider the following explicit prediction

vi
qap

The Newmark scheme may be written as

vk + h(1 — v)ak

a1 = MY (—Kg} — Cvf + fit)

Vi1 = v + hyags

Qi1 = q; + h?Baji

with the iteration matrix R
M =M + R?BK + ~hC

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble.
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L Newmark's scheme

The Newmark scheme
Properties

> One-step method in state. (Two steps in position)

» Second order accuracy if and only if v = %

> Unconditional stability for 28 > v > %

Average acceleration

imolici _1 _1
(Trapezoidal rule) implicit | v =3 and =3

central difference explicit v = % and 3 =0
linear acceleration implicit v = % and 3 = %

Fox—Goodwin . 1 1
(Royal Road) implicit | v=3 and 8= 35

Table: Standard value for Newmark scheme ((Hughes, 1987, p 493)Géradin and Rixen (1993))
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L Newmark's scheme

The Newmark scheme

High frequencies dissipation

> In flexible multibody Dynamics or in standard structural dynamics discretized by
FEM, high frequency oscillations are artifacts of the semi-discrete structures.

> In Newmark's scheme, maximum high frequency damping is obtained with
1 1 1,
Z, [ - 57
>3 B=,0+3) (57)
example for v = 0.9, 8 = 0.49
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L Newmark's scheme

The Newmark scheme
From (Hughes, 1987) :

1.1

0.9+

0.8

06—

Newmark methods

08 (y=09)

0.4 [~

03 1 ) ] |
1073 1072 10! 1 10 10?
Aar/T

Figure 9.1.3 Spectral radii for Newmark methods for varying B8 [9].
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L~ HHT scheme

The Hilber—Hughes—Taylor scheme. Hilber et al. (1977)
Objectives
> to introduce numerical damping without dropping the order to one.

Principle
Given three parameters v, 8 and « and the notation

Méiy1 = —(Kaiq1 + Cvir1) + Fig1 (58)
Mayi1 = Mbki11a = —(Kaki14a + Cviyiva) + Frilta
Vel = Vk + hagy (59)
h2
k+1 = gk + hv + ?3k+2[3

Standard parameters (Hughes, 1987, p532) are

a €[-1/3,0],y = (1 —2a/2) and 8 = (1 — a)?/4 (60)

Warning
The notation are abusive. ayy; is not the approximation of the acceleration at )
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HHT scheme

The HHT scheme

Properties

> Two-step method in state. (Three—steps method in position)
> Unconditional stability and second order accuracy with the previous rule. (60)

» For a = 0, we get the trapezoidal rule and the numerical dissipation increases
with |«

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble.
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Newmark-type schemes for flexible multibody systems

L HHT scheme

The HHT scheme

From (Hughes, 1987) :

1.0

0.8 [—

07—

06—

03—

0.2

>~ Trapezoidal rule

a method (« = —0.05)

Newmark (8 = 0.3025, y = 0.6)

= Wikson (§=1,6 = 1.4}

Collocation method
{=0.18, 6 = 1.287301)

a method (e = -0.3)

Collocation method
(8=0.16, 6 = 1.514951).

10-2

Figure 9.3.1 Spectral radii for a-methods, optimal collocation schemes, and Hou-
bolt, Newmark, Park, and Wilson methods [22].
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L Generalized a-methods

Generalized a-methods (Chung and Hulbert, 1993)

Principle

Given three parameters v, 3, am and af and the notation
Maky1 = —(Kqks1 + Cviyr) + Fiqa

Mayi1—a, = Maki1—a;

Vk+1 = Vk + hakiy
K2
Qk+1 = qk + hvie + 5 +28

Standard parameters (Chung and Hulbert, 1993) are chosen as

1

2p0 —1 Poo 1
2

2
am = , af = ———,
" peot+1 poc + 1 )

1 1
7= tar—amand f= (v +

where poo € [0, 1] is the spectral radius of the algorithm at infinity.
Properties

» Two-step method in state.

> Unconditional stability and second order accuracy.

» Optimal combination of accuracy at low-frequency and numerical damping at

Numerical methodh f Ref$i@EpthaENanical systems  Vincent Acary , INRIA Rhéne-Alpes, Grenoble.
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Newmark-type schemes for flexible multibody systems
Generalized ci-methods

A first naive approach

Direct Application of the HHT scheme to Linear Time
“Invariant” Dynamics with contact

Mv(t) + Kq(t) + Cv(t) = f(t) + r(t),a.e
a(t) = v(1)

r(t) = G(q) A1)

g(t) = g(q(t)), &(t) = GT(q(t))v(t),

0 < g(t) LA(t) =0,
results in

Méki1 = —(Kags1 + Cvigr) + Frgr + i1
k41 = Grp1Akt1

May 1 = Maki14a

Vi1 = Vk + hagyy

2

h
Qk+1 = qk + hvi + 5 28

0<gks1 L A1 20,

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble
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L Generalized a-methods

A first naive approach

Direct Application of the HHT scheme to Linear Time
“Invariant” Dynamics with contact

The scheme is not consistent for mainly two reasons:

> If an impact occur between rigid bodies, or if a restitution law is needed which is
mandatory between semidiscrete structure, the impact law is not taken into
account by the discrete constraint at position level

» Even if the constraint is discretized at the velocity level, i.e.

if Bkt1, then 0 < gry1 + egk L Akp1 20 (67)

the scheme is consistent only for v = 1 and o = 0 (first order approximation.)
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Newmark-type schemes for flexible multibody systems

Generalized a-methods

A first naive approach

1.0

0.6
0.4

-0.2,

Velocity based constraints with standard Newmark scheme (o = 0.0)
Bouncing ball example. m=1, g =9.81, xp = 1.0 vp = 0.0, e = 0.9

position

(WA

AWA
\/
\/

[VERVARVAY
v VoV V. VYW

velocity

AN

reaction

®

h=0.001, y=1.0, 8 =v/2

i
3

position

4 velocity

iy

4 reaction

h=0.001, v =1/2, 8 =~/2
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Newmark-type schemes for flexible multibody systems

Generalized a-methods

A first naive approach

Position based constraints with standard Newmark scheme (a = 0.0)
Bouncing ball example. m=1, g =9.81, vp = 0.0, e =0.9, h=0.001, v = 1.0,

B=n/2

10 position 12 position
0.8 1.0
0.6 \\ 08\
ol | oot
02[-{ 02|
0.0 ool VW
-0.2 -0.2,
K velocity I K 4 velocity 1
i
-1 3
[\ AR
S 2R\
-4 -4
I~ reaction 1 > reaction 1
4500 5000
4288 4000
3909 3000
2000
%ggg 2000 |
500 L
8 1 4 1
xo =1.0 xo = 1.01
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Newmark-type schemes for flexible multibody systems
Generalized a-methods

The Nonsmooth Newmark and HHT scheme

Dynamics with contact and (possibly) impact

Mdv = F(t,q,v)dt+ G(q) di
4(t) = v (1),

g(t) = g(a(t)), &(t) = GT(q(t))v(t),
if g(t) <0,

(68)

0< gt (t)+eg=(t) L di >0,

m]
Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble.
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Newmark-type schemes for flexible multibody systems
Generalized a-methods

The Nonsmooth Newmark and HHT scheme

Splitting the dynamics between smooth and nonsmooth part
with

M dv = Ma(t) dt + M dv="

(69)
{Ma dt = F(t,q,v)dt

M dve®" = G(q) di

(70)

Different choices for the discrete approximation of the term Madt and M dv

con

m]
Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble.
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Generalized a-methods

The Nonsmooth Newmark and HHT scheme

Principles

> As usual is the Newmark scheme, the smooth part of the dynamics
Madt = F(t, q,v) dt is collocated, i.e.

Mayi1 = Fry1 (71)
> the impulsive part a first order approximation is done over the time—step

MAVY = Giyr A (72)
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Newmark-type schemes for flexible multibody systems
Generalized a-methods

The Nonsmooth Newmark and HHT scheme

Principles

Mayi1 = Fri1ta

MAVEY = Gry1 Ay

Vil = Vi + hagpy + AV

(73)
— h2 1 con
Gk+1 = qk + hvic + 5 +28 + EhAka

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble.
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Newmark-type schemes for flexible multibody systems
Generalized a-methods

The Nonsmooth Newmark and HHT scheme

Example (Two balls oscillator with impact)

q2

k =10°N/m

q1

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble.
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Generalized a-methods

The Nonsmooth Newmark and HHT scheme

time—step : h = 2e — 3. Moreau (6 = 1.0). Newmark (y =1.0,3 = 0.5). HHT

(e =0.1)

. : 2 I

o \ . \\ v \\/ /\\ | W \\ Ail f/ )
) - : Y2 W TARRVAL VI
. A : | V|

AN : YA
. : \
Position of the first ball Velocity of the first ball
. & = = z 9ac
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Generalized a-methods

The Nonsmooth Newmark and HHT scheme
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Generalized c-methods

The Nonsmooth Newmark and HHT scheme

35 T T :
Nonsmooth generalized-o
— — - Moreau-Jean
30 -—-— Fully implicit Newmark
""""" Exact solution
)
~.25F 4
[l
9]
C
°
£ 201 4
o
151 4
10 . . . . . . .
0 0.5 1 1.5 2 25 3 3.5 4

time (s)
Figure 7. Numerical results for the total energy of the bouncing oscillator.
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L Generalized a-methods

The Nonsmooth Newmark and HHT scheme

9 ho g l

(a) (b)

m

4 Impact

Impact

(d)

Figure 2. Examples: (a) bouncing ball; (b) linear vertical oscillator; (c) bouncing of an elastic bar;
(d) bouncing of a nonlinear beam pendulum; (e)bouncing of a rigid pendulum
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Generalized a-methods

The Nonsmooth Newmark and HHT scheme
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Figure 9. Numerical results for the total energy of the bouncing elastic bar
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Generalized a-methods

The Nonsmooth Newmark and HHT scheme
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Figure 10. Numerical results for the impact of a flexible rotating beam: (a) position, (b) velocity.

Numerical methods for nonsmooth mechanical systems

Vincent Acary , INRIA Rhéne—Alpes, Grenoble.

72/127



Numerical methods for nonsmooth mechanical systems
Newmark-type schemes for flexible multibody systems

L Generalized a-methods

The Nonsmooth Newmark and HHT scheme

Observed properties on examples

> the scheme is consistent and globally of order one.
> the scheme seems to share the stability property as the original HHT

> the scheme dissipates energy only in high-frequency oscillations (w.r.t the
time—step.)
Conclusions & perspectives

> Extension to any multi—step schemes can be done in the same way.
> Improvements of the order by splitting.

» Recast into time—discontinuous Galerkin formulation.
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Time—continuous energy balance equations

Energy analysis

Time—continuous energy balance equations
Let us start with the “LTI" Dynamics

Mdv + (Kqg+ Cv) dt = F dt+ di
n (74)
dg = v*dt
we get for the Energy Balance
divTMv) + (vt +v ) (Kg+Cv)dt = (vt+ v )F dt+ (vt +v7)di
(75)
that is
2d€ = d(vTMv) +2qTKdg = 2v'F dt—2vTCv dt+(vF+v7)T di
(76)
with i 1
&= EVTMV + EqTKq. (77)
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L Time-continuous energy balance equations

Energy analysis

Time—continuous energy balance equations

If we split the differential measure in di = X dt + >, pidt;, we get
2dE= = 2vI(F+A) dt—2vTCv dt+ (v +v7)Tpidy (78)

By integration over a time interval [t, to] such that t; € [to, t1], we obtain an energy
balance equation as

AE = E(t) —E(t)
t t t 1
- / VTF dt 7/ VT Cv dt+/ vIxde+ = ST(vE(E) + v () T
to to fo 245
1
Wext W damping weon Wimpact

(79)
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L Time-continuous energy balance equations

Energy analysis
Work performed by the reaction impulse di

> The term .
1
ween = / v dt (80)
to
is the work done by the contact forces within the time—step. If we consider
perfect unilateral constraints, we have W<" = 0.
> The term

Wimpact _ % Z(v+(ti) +v(t:) " pi (81)

represents the work done by the contact impulse p; at the time of impact t;.
Since p; = G(t;)P; and if we consider the Newton impact law, we have

wimeset = L5 () + v (6))T G (1) P
=S UT )+ U () TR (82)

gzi((l —e)U () TP <0for0<ex1

with the local relative velocity defines as U(t) = G (t)v(t)
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Energy analysis for Moreau—Jean scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the
discrete approximation of the work done by the external forces within the step (supply

rate) by
A/ext T fet1
kr1 = hvic g Fivo = ) Fv dt (83)
k

Then the variation of energy over a time—step performed by the Moreau—Jean is

~ 1
AE =Wty = (5 = 0) [vier = willRy + (g — alli] + Ui Prsr (84)
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Energy analysis for Moreau—Jean scheme

Energy analysis for Moreau—Jean scheme

Proposition
Let us assume that the dynamics is a LTI dynamics. The Moreau—Jean scheme
dissipates energy in the sense that

E(trsn) — E(tk) — W <0 (85)
if 1 1
- <6< <1 (86)
2 1+ e

1 1
In particular, for e = 0, we get 5 <0 <1andfore=1, wegeth = 3
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Energy analysis for Moreau—Jean scheme

Energy analysis for Moreau—Jean scheme

Variant of the Moreau scheme that always dissipates energy
Let us consider the variant of the Moreau scheme
M(vir1 — vi) + hKaryo — hFiro = pry1 = GPry1,
k1 = Gk + hviy)2,
U1 =G viqa

if g, <Othen0< U, +eUy L Py, >0,

a€cT
—o. @

H [e3
otherwise Pk+1
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L Energy analysis for Moreau-Jean scheme

Energy analysis for Moreau—Jean scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Then the variation of
energy performed by the variant scheme over a time—step is

- 1
AE - WY, = (5 = 0)[(qrs1 — q)lI% + U;<T+1/2Pk+1 (88)
The scheme dissipates energy in the sense that

E(trr1) — E(tk) — WS <0 (89)

(90)

N =
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Energy Analysis for the Newmark scheme

Energy analysis for Newmark's scheme

Lemma

Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the

discrete approximation of the work done by the external forces within the step by
A/ext T fett

W = (Gk+1 — qk)* Fiey = Fv dt (91)

tk

Then the variation of energy over a time—step performed by the scheme is

- 1
A€ - Wkefl (5 = I(Gks1 — CIk)”%(
h
5(2/3 =) [(qrs1 — a) T K (Vis1 — vi) — (Vierr — vie) T [Fir — Fi]]

1 h
+§PE+1(Uk+1 + Uk) + 5(25 — M (aks1 — ak) " GPrpa
(92)
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L Energy Analysis for the Newmark scheme

Energy analysis for Newmark's scheme
Define an discrete “algorithmic energy” (discrete storage function) of the form
W2
}C(q7 v, 3) = g(q’ V) + Z(zﬁ - ’Y)aT Ma. (93)
The following result can be given
Proposition

Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the
discrete approximation of the work done by the external forces within the step by

A/ext T s
W = (Gk+1 — qk)* Fiey = / Fv dt (94)
t
Then the variation of energy over a time—step performed by the nonsmooth Newmark
scheme is
AKX — W = L 2 4 Mg 21+ UL, ,P
-Wgy = —(v— 5) llak+1 — awlli + 5( =M (akr1 — a)llyy | + k12 Pk+1
(95)
Moreover, the nonsmooth Newmark scheme is stable in the following sense
AK — Wt <0 (96)

for
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Energy Analysis for the Newmark scheme

Energy analysis for HHT scheme

Augmented dynamics
Let us introduce the modified dynamics

Ma(t) + Cu(t) + Ka(t) = F() + ° [Kw(t) + Cx(t) - y(1)]
and the following auxiliary dynamics that filter the previous one
vh(t) + w(t) = wvhq(t)

vhx(t) +x(t) = vhi(t)
vhy(t) + y(t) vhF(t)
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L Energy Analysis for the Newmark scheme

Energy analysis for HHT scheme

Discretized Augmented dynamics
The equation (99) are discretized as follows

v(Wig1 — wi) + %(Wkﬂ +wk) = v(qkr1— qk)
v(Xkr1 — xk) + 1(Xk+1 +xk) = (Vi — v) (100)
v =y + 5k ty) = v(Fn = Fi)
or rearranging the terms
(% +V)Wiep1 + (1 —v)wi = v(Gk+1 — qk)
Crmant G- = v —w) (101)
(5 + V)Ykt1 + (5 -y = v(Fky1— Fi)

1
With the special choice v = 5 we obtain the HHT scheme collocation that is
Mayi1 + (1 — o) [Kqrs1 + Cvis1] + ofKagk + Cvi] = (1 — a)Fiey1 + aF - (102)
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Energy Analysis for the Newmark scheme

Energy analysis for HHT scheme

Discretized storage function

With
h2
H(a,v,a,w) = E(q,v) + (28 = 7)a" Ma +2a(1 = 7)w T Kw. (103)
we get
281 = 2U[, ,Prn

1
- R(y- 5)(2,3 = (ak1 — a3,
1
- 2(y- 2 a)llqrs1 — Qk”%(
1
- 20(1-2(y- 5))||Wk+1 — will%

+  2(Figy—a) T (qrs1 — ) + 2a(1 — 2(y — %))(qk+1 — k)" (Va1 — yx)
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Energy Analysis for the Newmark scheme

Energy analysis for HHT scheme

Discretized storage function
With

2
H(qz v,a, W) = g(qv V) + %(216 - 7)31— Ma + 2&(1 - ’Y)WT Kw. (103)

1
and with o = v — > we obtain

281 = 2U[, ,Prn

- ()28 — V)l(akr1 — )l
- 2a(1l - 2a)|wirr — wil%
+  2(Figy—a) T(qrs1 — @) + 20(1 — 2a)(qrs1 — k) T (Vi1 — vk)

(104)
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L Energy Analysis for the Newmark scheme

Energy analysis for HHT scheme

Conclusions

> For the Moreau—Jean, a simple variant allows us to obtain a scheme which always
dissipates energy.

» For the Newmark and the HHT scheme with retrieve the dissipation properties as
the smooth case. The term associated with impact is added is the balance.

> Open Problem: We get dissipation inequality for discrete with quadratic storage
function and plausible supply rate. The nest step is to conclude to the stability of
the scheme with this argument.

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble. - 86/127



e
Numerical methods for nonsmooth mechanical systems
|—Newmark»type schemes for flexible multibody systems
[ Energy Analysis for the Newmark scheme
:

Adaptive time-step strategies for time—stepping schemes

Numerical methods for nonsmooth mechanical systems

Vincent Acary , INRIA Rhéne—Alpes, Grenoble.

A
87/127



Numerical methods for nonsmooth mechanical systems
Adaptive schemes
- Smooth ODE time integration

Smooth ODEs

One-step numerical solvers for ODEs
Let us consider a ODE
x = f(x,t), (105)

where f is a mapping with sufficient regularity.
The one—step time—stepping method over the time—step [tk, tkt1 = tyx + h] is
generically denoted by

Xk41 = Xk + h¢(fk7 h, Xk). (106)

Order of consistency
The one—step time—stepping method is said to be consistent if ®(t,0,x,x) = f(x, t)
and has a consistency order p if there exists a constant C such that

ek+1 = X(tk+1) — Xk41 = ChPH1 + O(hp+2), (107)
assuming that x, = x(tx).

If the time—stepping method has an order of consistency p and converges, then the
global order of convergence is p,
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Smooth ODEs

Basic practical error evaluation

1. Two “small” time steps of size h/2 = x1/2-
2. One “big” time-step h = x1.

e = X(to + h) —x1=C hPt1 + (9(’7’;7+2)7

e1yo = x(to + h) — x5 = 2C (h/2)P+1 + O(P+2). (108)

This procedure permits us to evaluate the constant C and to obtain and a local error
estimate such that:

X1/2 — X1

hPt2)., 109
S+ O (109)

e :X(t0+h)7X2 =
Enhanced practical error evaluation

» Runge—Kutta Embedded pairs (Dormand-Price, Felhberg)
> Milne’s device

» Nordsieck's method
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- Smooth ODE time integration

Smooth ODEs

Automatic control of the time—step
|lex|| < etol = atol + rtol o max(xg, x) (110)
The measure of the error is given by
error = ||eg o invtol| (111)

with invtol = [1/etol;,i = 1...n]. The optima step size is then obtained by

1

error

hopt = h(

)1/(P+1) (112)

Usually, the step size is not allowed to decrease of to increase too fast, thanks to the
following heuristic rule

1

error

hpew = h min(amax» max(amim a(

)Py (113)

where a, ami, and amax are some user parameters.
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Local error estimates for the Moreau's time—stepping

Notation

€y

_ | vt +h) = vie
e |

q(tx + h) — qit1

e:X(tk+h)—Xk+1=[

(114)
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L L ocal error estimates for the Moreau's Time—stepping scheme

Local error estimates for the Moreau's time—stepping

Assumption 1 : Existence and uniqueness
A unique global solution over [0, T] for Moreau’s sweeping process is assumed such

that g(-) is absolutely continuous and admits a right velocity v*(-) at every instant t
of [0, T] and such that the function v € LBV/([0, T],R").

=» Assumption 92 is ensured in the framework introduced by Ballard (Ballard, 2000)
who proves the existence and uniqueness of a solution in a general framework mainly
based on the analyticity of data.

Assumption 2 : Smoothness of data

The following smoothness on the data will be assumed: a) the inertia operator M(q)
is assumed to be of class CP and definite positive, b) the force mapping F(t, g, v) is
assumed to be of class CP, c) the constraint functions g(q) are assumed to be of class
CP*1 and d) the Jacobian matrix G(q) = V;—g(q) is assumed to have full-row rank.
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Local error estimates for the Moreau's time—stepping

Lemma
Let | = [ty, txr1]. Let us assume that the function f € BV/(I,R"). Then we have the
following inequality for the 6—method, 6 € [0,1],

/ " () ds — h(OF(trer) + (1 — 0)F(1))]| < CO)(tin — 1) var(£. 1), (115)

tk

where var(f,1) € R is the variation of f on | and C(0) =6 if0 > 1/2 and
C(0) =1 — 0 otherwise. Furthermore, the value of C(0) yields a sharp bound in (115).
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L Local error estimates for the Moreau's Time-stepping scheme

Local error estimates for the Moreau's time—stepping

Proposition
Under Assumptions 1 and 2, the local order of consistency of the Moreau
time—stepping scheme for the generalized coordinates is

eq = O(h)

and at least for the velocities
e, =0(1)

Comments
The bounds are reached if an impact is located within the time—step and the
activation of the constraint is not correct.
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L L ocal error estimates for the Moreau's Time—stepping scheme

One impact at time t. € (tk, tx+1]

Assumption
di = pé;,, orequivalently dl = Pé;, ,with P = G(t«)p. (116)
Notation
Z={o,a€{l.m}} (117)
o ={a €Z,P* 2 0,U™"(t.) — U (t:) = —(1 + e) U™~ (t«)} (118)
Ip={a €T, P 20U — Ul = —(1+e)Uf'} (119)
Lemma

Let us assume that we have only one elastic impact at time t, € (tk, tyt1] i.e. ,
di = pds, + r(t)dt.

1. If T. = I, then the local order of consistency of the scheme is given by
e = K/h+O(h?) (120)
2. If Iy # I,, then the local order of consistency of the scheme is given by

ev = K+O(h) (121)
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Local error estimates for the Moreau's time—stepping
Example (The bouncing ball)

W(e) = F(6) + A1), d(t) = v(o), 122)
0<q(t) LA() >0, vi(t)=—ev(2), if q(t) =0,
With chosen parameters as f = —2, e = 1/2 and the initial data as to = 0,gp = 1 and

vo = 0. The analytical solution reads as
» for t € [0,1),

— _ 42
{ =5t (129
1 1
» for t € 3—2'17_1,3—?),
3 1 1
o) =9 = -0+ (-%). -
ot = -2e-3) - 2,

> and for t € [3,+00)

{ q(t) =0, (125)
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Local error estimates for the Moreau's time—stepping

Example (The bouncing ball (continued))

Let us consider a time interval such that the impacting time t. belongs to (tx, tk+1].
The error is given by

if pkr1=0

ey = —(1+ e)[vk + hfo]
eq = —a — h(e(1 — o + 1))vi — 2[e(1 — 0)o + %(1 — o) 4 0]
if pry1>0

€y
€q

where o = (tx — t«)/h € (0,1].

—hf[l — o — eo]
—qk — h((1 + e)(1 — 0) — ec)vk — fh%(e(1 — o)o + %(1 —0)?)
(126)

The approximate solution of the Moreau scheme depends on the forecast of the active
constraints, i.e. gky1 = qk + vhvg.
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L Local error estimates for the Moreau's Time-stepping scheme
Local error estimates for the Moreau's time—stepping

Example (The bouncing ball (continued))
Using the fact that q(t«) = qx + vkoh + 5(0/7)2 = 0, we obtain that
g = —ovkh — 1f(oh)? and

if  pkr1 =0,

ev = —(1+4 e)[vk + hfo]

eq=—h(e(l —o+1)— o) — fh?[e(l — o)o + %(1 —0)? — %(cr)2 + 0]

i,e. e =0O(1) and eg = O(h)
if  pkr1 >0,

e, = —hf[l — o — eo]

eq=—h((1+e)(1—6—0a))vk — h(e(l — o) + %(1 —0)? — %(0)2)

i,e. e, = O(h)and eg = O(h)
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Local error estimates for the Moreau's time—stepping

Example (The bouncing ball (continued))

Near the finite accumulation of impact at time t = 3.

Let us consider a time step such that [ty, tk1+1] = [3 — h,3 + h] and ng such that
h € [1/2m,1/2M~1]. The local error in velocity is given if the impact is detected
Pk+1 > 0 by 5

ey = V(3 + h) — Vk41 = —2h — 2TO (126)

1
As h — 0, we have ng — oo, and o = O(h) and then e, = O(h).
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L L ocal error estimates for the Moreau's Time—stepping scheme

Local error estimates for the Moreau's time—stepping

To summarize

> In any case, we have O(h) in the error in coordinates and it cannot be improved
if a jump occurs.

> The local error in velocity is at least e, = O(1) if the impact is not well-forecast.
In practice, this situation is usual. It illustrates the possible convergence problem
that we can have in uniform norm

> Finite accumulation The order of the time—integration should be at least 0. Idea
of the proof : use the fact that the velocity vanishes and is of bounded variations
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= Adaptive time—step strategies

Practical error estimates for the Moreau's time—stepping

Order “0" case
Standard error estimates do not apply for Order 0.

We propose to extend it to the order 0 of consistency by assuming that the the local
error estimate is given by

e1)2 = 2(x1/2 — x1) + O(h?) (127)

where x; is the result of the time integration with one time—step of length h and x; /»
with two time-steps of length h/2.

The adaptive time—step control used for smooth ODE is then apply directlyHairer

et al. (1993).
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Adaptive time—step strategies

Order “0" time—step adjustment for the Moreau’s time—stepping

1e+06 . . .
Adaptive time-steps —+—
Constant time-steps ---x---
X\
\X~
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Error (log scale)

(a) The bouncing ball example

Figure: Precision Work diagram for the Moreau's time-stepping scheme. Order 0
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Adaptive time—step strategies

Order “0" time—step adjustment for the Moreau’s time—stepping

1e+06 T T
Adaptive time-steps —+—

: Constant time-steps ---x---
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< 10000
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(a) The linear oscillator example

Figure: Precision Work diagram for the Moreau's time-stepping scheme. Order 0
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Adaptive time—step strategies

Order “1" time—step adjustment for the Moreau’s time—stepping

MoreauT$ Precision-Work Diagram. Bouncing Ball Example
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(a) The bouncing ball example

Figure: Precision Work diagram for the Moreau's time-stepping scheme. Order 1
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Adaptive schemes

Adaptive time—step strategies

Order “1" time—step adjustment for the Moreau’s time—stepping

MoreauTS Precision-Work Diagram. Linear Oscillator Example
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(a) The linear oscillator example

Figure: Precision Work diagram for the Moreau's time-stepping scheme. Order 1
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Adaptive time—step strategies

Order “2" time—step adjustment for the Moreau’s time—stepping

MoreauTsS Precision-Work Diagram. Bouncing Ball Example
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(a) The bouncing ball example

Figure: Precision Work diagram for the Moreau's time-stepping scheme. Order 2
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Adaptive time—step strategies

Order “2" time—step adjustment for the Moreau’s time—stepping

MoreauTs Precision-Work Diagram. Linear Oscillator Example
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(a) The linear oscillator example

Figure: Precision Work diagram for the Moreau's time-stepping scheme. Order 2

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble. - 102/127



Numerical methods for nonsmooth mechanical systems
LAdaptive schemes

L= A control based on violation

Sizing the error in the violation of constraints

The violation of constraints is sized by the following rule:

eviolation = || min(0, g(q)) o invtol|| (128)
Assuming that the scheme is of order 1 almost everywhere in smooth phase and may
be controlled by eyiolation When an nonsmooth vent occurs, the step size adjustment

is implemented by the means of the following error estimation

error = max(eyiolation; ||€k © invtol||sc) (129)
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Adaptive schemes

A control based on violation

Results on two academic test examples

MoreauTsS Precision-Work Diagram. Bouncing Ball Example
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(a) The bouncing ball example

Figure: Precision Work diagram for the Moreau's time-stepping scheme. Order 0 + violation error
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Adaptive schemes

A control based on violation

Results on two academic test examples

MoreauTs Precision-Work Diagram. Linear Oscillator Example
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(a) The linear oscillator example

Figure: Precision Work diagram for the Moreau's time-stepping scheme. Order 0 + violation error
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Results on two academic test examples

MoreauTsS Precision-Work Diagram. Bouncing Ball Example
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(a) The bouncing ball example

Figure: Precision Work diagram for the Moreau's time-stepping scheme. Order 1 + violation error
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Adaptive schemes

A control based on violation

Results on two academic test examples

MoreauTS Precision-Work Diagram. Linear Oscillator Example
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(a) The linear oscillator example

Figure: Precision Work diagram for the Moreau's time-stepping scheme. Order 1 + violation error

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble. - 105/127



Numerical methods for nonsmooth mechanical systems
Adaptive schemes

Variable order approach

Variable order approach. Principle

Guess the order of consistency of the integration at each step
Adapt the practical error estimation
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Adaptive schemes

Variable order approach

Results on two academic test examples

MoreauTS$ Precision-Work Diagram. Bouncing Ball Example
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(a) The bouncing ball example

Figure: Precision Work diagram for the Moreau's time-stepping scheme.
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Adaptive schemes

Variable order approach

Results on two academic test examples

MoreauTS Precision-Work Diagram. Linear Oscillator Example
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(a) The linear oscillator example

Figure: Precision Work diagram for the Moreau's time-stepping scheme.
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:

Time—stepping schemes of any order
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:
First attempt

In Studer et al. (2008) ; Studer (2009) the first attempt to increase the efficiency of
Moreau's scheme by an extrapolation method has been published.
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Higher Order Schemes
L Principle

Higher Order Time—stepping schemes

Background
Work of Mannshardt (1978) on time—integration schemes of any order for ODE/DAEs
with discontinuities (with tranversality assumption)

Principle

> Let us assume only one event per time—step at instants t..
» Choose any ODE/DAE solvers of order p

> Perform a rough location of the event inside the time step of length h
Find an interval [ta, tp] such that

ty € [ta, tp] and |t — ta] = CHPTL + O(KPF2) (130)

Dichotomy, Newton, Local Interpolants, Dense output,. ..
> Perform an integration on [, t;] with the ODE solver of order p
> Perform an integration on [t,, tp] with Moreau’s time—stepping scheme

> Perform an integration on [tp, tx+1] with the ODE solver of order p
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Higher Order Schemes

L Principle

Integration of the smooth dynamics

Mainly for the sake of simplicity, the numerical integration over a smooth period is
made with a Runge-Kutta (RK) method on the following index-1 DAE,

M(q(£))v(t) = F(t, q(t), v(1)) + G(q)A(t),
q(t) = v(t), (131)
v(t) = G(a(t))v(t) = 0.

In practice, the time—integration is performed for the following system

M(q(£))¥(t) = F(t, q(t), v(1)) + G(a)A(D),
a(t) = v(t), (132)
0.<(t) = G(a(1)u(t) L A(t) > 0

on the time—interval | where the index set Z(t) of active constraints is assumed to be
constant on / and A(t) > 0 forall t € /.
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L Principle

Integration of the smooth dynamics

Using the standard notation for the RK methods (see Hairer et al. (1993) for details),
the complementarity problem that we have to solve at each time—step reads

tyi = tx + cih,

Vierr = vk + h Y0 bV,

Gk+1 = Gk + h D271 bi Vi,

Vi = M~Y(Qu) [F(tui, Quir Vii) + G(Qki) Akl 5 (133)
Vii = vk + hzjs':1 ajj Vr:j’

Qui = qx +h327 1 a; Vi,

0 < ki = G(Qui)VY; L Aii > 0.
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L Principle

Assumption 3
Let / a smooth period time—interval. We assume that
1. the local order of the RK method (133) is p that is

eq = e, = O(hPT1) (134)

2. starting from inconsistent initial value §j such that §x — qx = O(hPT1), the error
made by the RK method (133) is

k41 — Qi1 = O(APT) (135)
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:

Theorem

Let us assume that Assumptions 1, 2 and 3 hold. The local error of consistency of the
scheme is of order p in the generalized coordinates that is
eq = O(hp+1).

(136)
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L Principle

Results on the linear oscillator
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(a) The linear oscillator example with implicit Runge Kutta Method

Figure: Precision Work diagram for the Moreau's time-stepping scheme coupled with Runge—Kutta
method.
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L Principle

Results on the linear oscillator

(Moreau) —_—
(Moreau RK1) -
(Moreau RK2) ------
0.01 (Moreau RK32) &~ o
(Moreau RK4) ---m-
NN o (Moreau DOPRI54) ---o---
X f % (Moreau DPRK56) ----o---
0.0001 B -
L* a
* =
_ 1e06 X ot
o) e @ ~
8 * o -~
\_coi’ 1e-08 o ,./
5 'y
5 -~ g
1e-10 o
o o o .
1e-12 K
o .
te-t4 fp S
1e-16
0.0001 0.001 0.01 0.1

time step (log scale)

(a) The linear oscillator example with half explicit Runge Kutta Method

Figure: Precision Work diagram for the Moreau's time-stepping scheme coupled with Runge—Kutta
method.
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Higher Order Schemes

[ Principle

:

Higher Order Time—stepping schemes

Finite accumulation

> Repeat the whole process on the remaining part of the interval [tp, tx]
Acary (2009)

» By induction, repeat this process up to the end of the original time step
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Results on the Bouncing Ball
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(a) The Bouncing Ball example with implicit Runge Kutta Method

Figure: Precision Work diagram for the Moreau's time-stepping scheme.

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble.

117/127



Numerical methods for nonsmooth mechanical systems

Higher Order Schemes

L Principle

Results on the Bouncing Ball
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Figure: Precision Work diagram for the Moreau's time-stepping scheme.
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Splitting based Schemes

L Principle

Splitting—based methods.
Principle for smooth ODEs

Let us consider a smooth ODE which can be written as
x(t) = f(x, t) + g(x, t) (137)

A example of splitting—based method is given by the following procedure

1. Perform the integration of f on [tx, tx11] to obtain X(tx11) that is
Byl
K(tein) = x(t) + / F(x, t) dt (138)
tk

2. Perform the integration of g on [t, tx+1] with initial value X(tx1) to obtain
R(tk+1) that is

M) = Ao+ [ g, 1) (139)

Properties

> x(tx + 1) # R(tks1) is the general case. (except special linear case, constant
dynamics, ...)
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L Principle

Splitting—based methods.

Splitting—based for Moreau scheme without continuous contact forces

> The first part is
g=v, (140)
q(tx) = Q. v(tk) = vk
yielding to the approximations g1 = q(tx+1) and vi = v(tx+1) which can
integrated by any smooth ODE solvers.
> The second one is given by
M(q)v = G(q)A,
g =0,
y=gl(q) (141)
A€My (n((tT) +ey(t7))
q(t) = q1; v(tk) = vi;

and leads to the approximation qx+1 = q(tk+1) andgi+1 = q(tx+1)-
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Principle

Splitting—based methods with constants time—step.

Splitting RKF45 Order of convergence. Bouncing Ball example
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(a) The bouncing ball example

Figure: Empirical order of convergence of the Splitting RKF45 time-stepping scheme
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Principle

Splitting—based methods with constants time—step.

Splitting RKF45 Order of convergence. Linear Oscillator Example
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(a) The linear oscillator example

Figure: Empirical order of convergence of the Splitting RKF45 time-stepping scheme

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhéne—Alpes, Grenoble. - 121/127



e
Numerical methods for nonsmooth mechanical systems

Splitting based Schemes

Principle

Splitting—based methods with adaptive time—step.

Splitting RKF45 Precision-Work Diagram. Linear Oscillator Example
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(a) The linear oscillator example

Figure: Empirical order of convergence of the Splitting RKF45 time-stepping scheme
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Splitting—based methods.

Splitting—based for Moreau scheme with continuous contact forces

> The first part is

M(q)v = F(t, q,v) + r(t),

q )

y =g(q) (142)
—r(t) € Iy, () (¥(1))

q(tk) = qr, v(ty) = vk

yielding to the approximations g1 = q(tx+1) and vi = v(tx+1) which can
integrated by any smooth ODE solvers.

> The second one is given by
M(q)v = G(q)A,
=0,
vy =g(q) (143)
=X € 0P, () (t7) + ey(t7))
q(tx) = qu; v(te) = vi;
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Schindler and Acary (2011)
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Objectives
The smooth dynamics and the impact equations
Reformulations of the unilateral constraints on Different kinematics levels
Reformulations of the smooth dynamics at acceleration level.
The case of a single contact.
The multi-contact case and the index-sets
Comments and extensions

Event-tracking schemes
Time Discretization of the nonsmooth dynamics
Time Discretization of the kinematics relations
Discretization of the unilateral constraints
Summary
Moreau's time—stepping
Schatzman—Paoli's scheme
Empirical order

Time-stepping schemes

Comparison
Newmark's scheme.
HHT scheme
Generalized a-methods

Newmark-type schemes for flexible multibody systems
Time—continuous energy balance equations
Energy analysis for Moreau—Jean scheme
Energy Analysis for the Newmark scheme
Smooth ODE time integration
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