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Numerical methods for nonsmooth mechanical systems

Objectives

Objectives of the lecture

I Principles and Design of Event–tracking (Event–Driven) schemes. Pros and cons.

I Principles and Design of Event–capturing (Time–stepping) schemes. Pros and
cons.

I Comparison between Event–tracking and Event–capturing schemes

I Newmark-type schemes for flexible multibody systems and FEM applications.

I Toward higher order schemes and adaptive time–step strategies
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Numerical methods for nonsmooth mechanical systems

Objectives

Event-tracking schemes
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Numerical methods for nonsmooth mechanical systems

Event-tracking schemes

The smooth dynamics and the impact equations

Nonsmooth Lagrangian Dynamics

Definition (Nonsmooth Lagrangian Dynamics)
M(q)dv + F (t, q, v+)dt = di

v+ = q̇+

(1)

where di is the reaction measure and dt is the Lebesgue measure.

Decomposition of measure{
dv = γ dt+ (v+ − v−) dν+ dvs
di = f dt+ p dν+ dis

(2)
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Event-tracking schemes

The smooth dynamics and the impact equations

Impact equations and Smooth Lagrangian dynamics

Substituting the decomposition of measures into the nonsmooth Lagrangian
Dynamics, one obtains

Definition (Impact equations)

M(q)(v+ − v−)dν = pdν, (3)

or
M(q(ti ))(v+(ti )− v−(ti )) = pi , (4)

Definition (Smooth Dynamics between impacts)

M(q)γdt + F (t, q, v)dt = fdt (5)

or

M(q)γ+ + F (t, q, v+) = f + [dt − a.e.] (6)

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 5/127
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Event-tracking schemes

The smooth dynamics and the impact equations

The smooth dynamics and the impact equations

The impact equations
The impact equations can be written at the time, ti of discontinuities:

M(q(ti ))(v+(ti )− v−(ti )) = pi , (7)

This equation will be solved at the time of impact together with an impact law. That
is for an Newton impact law

M(q(ti ))(v+(ti )− v−(ti )) = pi ,

U+
N (ti ) = HT (q(ti ))v+(ti )

U−N (ti ) = HT (q(ti ))v−(ti )

pi = H(q(ti ))PN,i

0 6 U+
N (ti ) + eU−N (ti ) ⊥ PN,i > 0

(8)
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Event-tracking schemes

The smooth dynamics and the impact equations

The smooth dynamics and the impact equations

The impact equations reduced on the local unknowns
One obtains the following LCP at time ti of discontinuities of v :{

U+
N (ti ) = H(q(ti ))(M(q(ti )))−1H(q(ti ))PN,i + U−N (ti )

0 6 U+
N (ti ) + eU−N (ti ) ⊥ PN,i > 0

(9)

if the matrix M(q(ti )) is assumed to be invertible.
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Event-tracking schemes

The smooth dynamics and the impact equations

The smooth dynamics and the impact equations

The smooth dynamics
The following smooth system are then to be solved (dt − a.e.) :

M(q(t))γ+(t) + F (t, q, v+) = f +(t)

g = g(q(t))

f + = H(q)F+(t)

0 6 g ⊥ F+(t) > 0

(10)
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Event-tracking schemes

Reformulations of the unilateral constraints on Different kinematics levels

Reformulations of the unilateral constraints on Different kinematics levels

Differentiation of the constraints w.r.t time
The constraints g = g(q(t)) can de differentiate with respect to time as follows in the
Lagrangian setting:

ġ(q(t+)) = U+
N (t) = ∇gT (q(t))v+(t)

g̈(q(t+)) = U̇+
N (t) = ΓN(t+) = ∇gT (q(t))γ+(t) + d

dt
(∇gT (q(t)))v+(t)

(11)

Comments. Index reduction techniques.
Solving the smooth dynamics requires that the complementarity condition
0 6 g ⊥ F+(t) > 0 must be written now at different kinematic level, i.e. in terms of
right velocity U+

N and in terms of accelerations Γ+
N .
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Event-tracking schemes

Reformulations of the unilateral constraints on Different kinematics levels

Reformulations of the unilateral constraints on Different kinematics levels

At the velocity level
Assuming that U+

N is right-continuous by definition of the right limit of a B.V.
function, the complementarity condition implies, in terms of velocity, the following
relation,

− F+ ∈


0 if g > 0

0 if g = 0,U+
N > 0

]−∞, 0] if g = 0,U+
N = 0

. (12)

A rigorous proof of this assertion can be found in (Glocker, 2001).
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Event-tracking schemes

Reformulations of the unilateral constraints on Different kinematics levels

Reformulations of the unilateral constraints on Different kinematics levels

Equivalent formulations

I Inclusion into NIR+ (U+
N )

− F+ ∈
{

0 if g > 0

NIR+ (U+
N ) if g = 0

(12)

I Inclusion into NTIR+(g)
(U+

N )

− F+ ∈ NTIR+(g)
(U+

N ) (13)

I In a complementarity formalism

if g = 0 0 6 U+
N ⊥ F+ > 0

if g > 0 F+ = 0
(14)
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Event-tracking schemes

Reformulations of the unilateral constraints on Different kinematics levels

Reformulations of the unilateral constraints on Different kinematics levels

At the acceleration level
In the same way, the complementarity condition can be written at the acceleration
level as follows.

− F+ ∈


0 if g > 0

0 if g = 0,U+
N > 0

0 if g = 0,U+
N = 0, Γ+

N > 0

]−∞, 0] if g = 0,U+
N = 0, Γ+

N = 0

(15)

A rigorous proof of this assertion can be found in (Glocker, 2001).
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Event-tracking schemes

Reformulations of the unilateral constraints on Different kinematics levels

Reformulations of the unilateral constraints on Different kinematics levels

Equivalent formulations

I Inclusion into a cone NIR+ (Γ+
N )

− F+ ∈


0 if g > 0

0 if g = 0,U+
N > 0

NIR+ (Γ+
N )

(15)

I Inclusion into NTT
IR+ (g)(U+

N
)(Γ+

n )

− F+ ∈ NTT
IR+ (g)(U+

N
)(Γ+

n ) (16)

I In the complementarity formalism,

if g = 0,U+
N = 0 0 6 Γ+

N ⊥ F+ > 0
otherwise F+ = 0

(17)
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Event-tracking schemes

Reformulations of the unilateral constraints on Different kinematics levels

Reformulations of the unilateral constraints on Different kinematics levels

Trivial inclusions

NK (g(q)) ⊃ NTIR+ (g(q))(U+
N ) ⊃ NTT

IR+ (g(q))(U+
N

)(Γ+
n ) (18)
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Event-tracking schemes

Reformulations of the smooth dynamics at acceleration level.

Reformulations of the smooth dynamics at acceleration level.

The smooth dynamics as an inclusion

M(q(t))γ+(t) + F (t, q, v+) = f +(t)

ΓN = ∇T
q g(q)γ+ + d

dt
(∇T

q g(q))v+

f + = ∇qg(q(t))F+

−F+ ∈ NTT
IR+ (g)(U+

N
)(Γn)

(19)
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Event-tracking schemes

Reformulations of the smooth dynamics at acceleration level.

Reformulations of the smooth dynamics at acceleration level.

The smooth dynamics as a LCP
When the condition, g = 0,U+

N = 0 is satisfied, we obtain the following LCP

M(q(t))γ+(t) + F (t, q, v+) = ∇qg(q(t))F+(t)

Γ+
N = ∇qgT (q)γ+ + d

dt
(∇qgT (q))v+

0 6 Γ+
N ⊥ F+ > 0

(20)

which can be reduced on variable Γ+
N and F+, if M(q(t)) is invertible,

Γ+
N = ∇qgT (q)M−1(q(t))(−F (t, q, v+)) + d

dt
(∇qgT (q))v+

+∇qg(q)M−1∇qg(q(t))F+(t)

0 6 Γ+
N ⊥ F+ > 0

(21)
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Event-tracking schemes

The case of a single contact.

The case of a single contact.

Two modes for the nonsmooth dynamics

1. The constraint is not active. F+ = 0

M(q)γ+ + F ( · , q, v) = 0 (22)

In this case, we associate to this step an integer, statusk = 0.

2. The constraint is active. Bilateral constraint Γ+
N = 0,[

M(q) −∇qg(q)
∇qgT (q) 0

] [
γ+

F+

]
=

[ −F ( · , q, v)
˙∇qgT (q)v+

]
(23)

In this case, we associate to this step an integer, statusk = 1.
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Event-tracking schemes

The case of a single contact.

The case of a single contact.

[Case 1] statusk = 0.
Integrate the system (22) on the time interval [tk , tk+1]

-25pt-

25pt

Case 1.1 gk+1 > 0. The constraint is still not active
statusk+1 ← 0

Case 1.2 gk+1 = 0,UN,k+1 < 0 An impact occurs
Solve the impact equation (9) with U− ← UN,k+1 < 0
UN,k+1 ← U+.
Two cases are then possible:

Case 1.2.1 U+ > 0. The constraint ceases to be active
statusk+1 ← 0.

Case 1.2.2 U+ = 0. The relative post-impact velocity vanishes
Solve the LCP (20) to obtain the new status.
Three cases are then possible:

Case 1.2.2.1 ΓN,k+1 > 0, Fk+1 = 0 The constraint is still not active
statusk+1 ← 0.

Case 1.2.2.2 ΓN,k+1 = 0, Fk+1 > 0 The constraint has to be activated statusk+1 ← 1.
Case 1.2.2.3 ΓN,k+1 = 0, Fk+1 = 0 This case is undetermined.

We need to know the value of Γ̇+
N

.
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Event-tracking schemes

The case of a single contact.

The case of a single contact.

[Case 1] statusk = 0.
Integrate the system (22) on the time interval [tk , tk+1]

-25pt-

25pt

Case 1.3 gk+1 = 0,UN,k+1 = 0 we have grazing constraint
Solve the LCP (20) to obtain the new status assuming that U+ = U− = UN,k+1 .
Three cases are then possible:

Case 1.3.1 ΓN,k+1 > 0, Fk+1 = 0 The constraint is still not active
statusk+1 ← 0.

Case 1.3.2 ΓN,k+1 = 0, Fk+1 > 0 The constraint has to be activated statusk+1 ← 1.
Case 1.3.3 ΓN,k+1 = 0, Fk+1 = 0 This case is undetermined.

We need to know the value of Γ̇+
N .

Case 1.4 gk+1 = 0,UN,k+1 > 0 Activation of constraints not detected.
Seek for the first time t∗ such that g(q(t∗)) = 0.
tk+1 ← t∗.
Perform all of this procedure keeping with statusk ← 0.

Case 1.5 gk+1 < 0 Activation of constraints not detected.
Seek for the first time t∗ such that g(q(t∗)) = 0.
tk+1 ← t∗.
Perform all of this procedure keeping with statusk ← 0.
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Event-tracking schemes

The case of a single contact.

The case of a single contact.

[Case 2] statusk = 1
Integrate the system (23) on the time interval [tk , tk+1]

-25pt-

25pt

Case 2.1 gk+1 6= 0 or UN,k+1 = 0
Something is wrong in the time integration or the drift from the constraints is too
huge.

Case 2.2 gk+1 = 0,UN,k+1 = 0

In this case, we assume that U+ = U− = UN,k+1 and we compute ΓN,k+1,Fk+1

thanks to the LCP (20) assuming that U+ = U− = UN,k+1. Three cases are then
possible

Case 2.2.1 ΓN,k+1 = 0, Fk+1 > 0
The constraint is still active. We set statusk+1 = 1.

Case 2.2.2 ΓN,k+1 > 0, Fk+1 = 0

The bilateral constraint is no longer valid. We seek for the time t∗ such that F+ = 0.
We set tk+1 = t∗ and we perform the integration up to this instant. We perform all of
these procedure at this new time tk+1

Case 2.2.3 ΓN,k+1 = 0, Fk+1 = 0

This case is undetermined. We need to know the value of Γ̇+
N .
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Event-tracking schemes

The case of a single contact.

The case of a single contact.

Comments

I The Delassus example.
In the one-contact case, a naive approach consists in to suppressing the
constraint if Fk+1 < 0 after a integration with a bilateral constraints.
Ü Work only for the one contact case.

I The role of the “ε”
In practical situation, all of the test are made up to an accuracy threshold. All
statements of the type g = 0 are replaced by |g | < ε. The role of these epsilons
can be very important and they are quite difficult to size.
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Event-tracking schemes

The case of a single contact.

The case of a single contact.

Comments

I If the ODE solvers is able to perform the root finding of the function g = 0 for
statusk = 0 and F+ = 0 for statusk = 1
Ü the case 1.4, 1.5 and the case 2.2.2 can be suppressed.

I If the drift from the constraints is also controlled into the ODE solver by a error
computation,
Ü the case 2.1 can also be suppressed

I Most of the case can be resumed into the following step
I Continue with the same status
I Compute UN,k+1,Pk+1 thanks to the LCP (9)(impact equations).
I Compute ΓN,k+1, Fk+1 thanks to the LCP (20) (Smooth dynamics)

Ü Rearranging the cases, we obtain the following algorithm.
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Event-tracking schemes

The case of a single contact.

The case of a single contact. An algorithm
Require: (gk ,UN,k , statusk )
Ensure: (gk+1,UN,k+1, statusk+1)

Time-integration of the system on [tk , tk+1](22) if statusk = 0 or of the system (23)
if statusk = 1 up to an event.
if gk+1 > 0 then

statusk+1 = 0 //The constraint is still not active. (case 1.1)

end if
if gk+1 = 0,UN,k+1 < 0 then

//The constraint is active gk+1 = 0 and an impact occur UN,k+1 < 0 (case 1.2)

Solve the LCP (9) for U−N = UN,k+1; UN,k+1 = U+
N

if UN,k+1 > 0 then statusk+1 = 0
end if
if gk+1 = 0,UN,k+1 = 0 then

//The constraint is active gk+1 = 0 without impact (case 1.2.2, case 1.3, case 2.2)

solve the LCP (21)
if ΓN,k+1 = 0,Fk+1 > 0 then

statusk+1 = 1
else if ΓN,k+1 > 0,Fk+1 = 0 then

statusk+1 = 0
else if ΓN,k+1 = 0,Fk+1 = 0 then

//Undetermined case.

end if
end if
Go to the next time step
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Event-tracking schemes

The multi-contact case and the index-sets

The multi-contact case and the index-sets

Index sets
The index set I is the set of all unilateral constraints in the system

I = {1 . . . ν} ⊂ IN (24)

The index-set Ic is the set of all active constraints of the system,

Ic = {α ∈ I , gα = 0} ⊂ I (25)

and the index-set Is is the set of all active constraints of the system with a relative
velocity equal to zero,

Is = {α ∈ Ic ,U
α
N = 0} ⊂ Ic (26)
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Event-tracking schemes

The multi-contact case and the index-sets

The multi-contact case and the index-sets

Impact equations

M(q(ti ))(v+(ti )− v−(ti )) = pi ,

U+
N (ti ) = ∇qgT (q(ti ))v+(ti )

U−N (ti ) = ∇qgT (q(ti ))v−(ti )

pi = ∇qg(q(ti ))PN,i

Pα
N,i = 0;Uα,+N (ti ) = Uα,−N (ti ), ∀α ∈ I \ Ic

0 6 U+,α
N (ti ) + eU−,αN (ti ) ⊥ Pα

N,i > 0, ∀α ∈ Ic

(27)

Using the fact that Pα
N,i = 0 for α ∈ I \ Ic , this problem can be reduced on the local

unknowns U+
N (ti ),PN,i ∀α ∈ Ic .

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 22/127
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Event-tracking schemes

The multi-contact case and the index-sets

The multi-contact case and the index-sets

Modes for the smooth Dynamics

I The smooth unilateral dynamics as a LCP

M(q)γ+ + Fint( · , q, v) = Fext +∇qg(q)F+

Γ+
N = ∇qgT (q)γ+ + d

dt
(∇qgT (q))v+

F+,α = 0, ∀α ∈ I \ Is

0 6 Γ+,α
N ⊥ F+,α > 0 ∀α ∈ Is

(28)

I The smooth bilateral dynamics

M(q)γ+ + Fint( · , q, v) = Fext +∇qg(q)F+

Γ+
N = ∇qgT (q)γ+ + d

dt
(∇qgT (q))v+

F+,α = 0, ∀α ∈ I \ Is

Γ+,α
N = 0 ∀α ∈ Is

(29)
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Event-tracking schemes

The multi-contact case and the index-sets

The multi-contact case and the index-sets. an algorithm
Require: (gk ,UN,k , Ic,k , Is,k ),
Ensure: (gk+1,UN,k+1, Ic,k+1, Is,k+1)

Time-integration on [tk , tk+1] of the system (29) according to Ic,k and Is,k up to an
event.
Compute the temporary index-sets Ic,k+1 and Is,k+1.
if Ic,k+1 r Is,k+1 6= ∅ then

//Impacts occur.

Solve the LCP (27).
Update the index-set Ic,k+1 and temporary Is,k+1

Check that Ic,k+1 r Is,k+1 = ∅
end if
if Is,k+1 6= ∅ then

Solve the LCP (28)
for α ∈ Is,k+1 do

if ΓN,α,k+1 > 0,Fα,k+1 = 0 then
remove α from Is,k+1 and Ic,k+1

else if ΓN,α,k+1 = 0,Fα,k+1 = 0 then
//Undetermined case.

end if
end for

end if
// Go to the next time step
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Event-tracking schemes

The multi-contact case and the index-sets

The multi-contact case and the index-sets

Time integration of (19)

End of the simulation ?

if1
Impact ?

Solve the LCP (17)
Impact Equations

Compute Index Sets

Active contact ? Solve the LCP (18)

Compute Index Sets

Compute Index Sets

yes

yes

no
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Event-tracking schemes

Comments and extensions

Comments and extensions

Extensions to Coulomb’s friction
The set Ir is the set of sticking or rolling contact:

Ir = {α ∈ Is ,U
α
N = 0, ‖UT‖ = 0} ⊂ Is , (30)

is the set of sticking or rolling contact, and

It = {α ∈ Is ,U
α
N = 0, ‖UT‖ > 0} ⊂ Is , (31)

is the set of slipping or sliding contact.

Remarks
In the 3D case, checking the events and the transition sticking/sliding and
sliding/sticking is not a easy task.
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Event-tracking schemes

Comments and extensions

Comments

Advantages and Weaknesses and the Event Driven schemes

I Advantages :
I Low cost implementation of time integration solvers (re-use of existing ODE solvers).
I Higher-order accuracy on free motion.
I Pseudo-localization of the time of events with finite time-step.

I Weaknesses
I Numerous events in short time.
I Accumulation of impacts.
I No convergence proof
I Robustness with the respect to thresholds “ε”. Tuning codes is difficult.
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Event-tracking schemes

Comments and extensions

Event–Capturing (Time-stepping) schemes
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Time-stepping schemes

Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

For sake of simplicity, the linear time invariant case is only considered.{
Mdv + (Kq + Cv+) dt = Fext dt + di .

v+ = q̇+
(32)

Integrating both sides of this equation over a time step ]tk , tk+1] of length h,

∫
]tk ,tk+1]

Mdv +

∫ tk+1

tk

Cv+ + Kq dt =

∫ tk+1

tk

Fext dt +

∫
]tk ,tk+1]

di ,

q(tk+1) = q(tk ) +

∫ tk+1

tk

v+ dt .

(33)

By definition of the differential measure dv ,∫
]tk ,tk+1]

M dv = M

∫
]tk ,tk+1]

dv = M (v+(tk+1)− v+(tk )) . (34)

Note that the right velocities are involved in this formulation.
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Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

The equation of the nonsmooth motion can be written under an integral form as:
M (v(tk+1)− v(tk )) =

∫ tk+1

tk

−Cv+ − Kq + Fext dt +

∫
]tk ,tk+1]

di ,

q(tk+1) = q(tk ) +

∫ tk+1

tk

v+ dt .

(35)

The following notations will be used:

I qk ≈ q(tk ) and qk+1 ≈ q(tk+1),

I vk ≈ v+(tk ) and vk+1 ≈ v+(tk+1),

Impulse as primary unknown

The impulse

∫
]tk ,tk+1]

di of the reaction on the time interval ]tk , tk+1] emerges as a

natural unknown. we denote

pk+1 ≈
∫

]tk ,tk+1]
di
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Time-stepping schemes

Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

Interpretation
The measure di may be decomposed as follows :

di = f dt + pdν

where

I f dt is the abs. continuous part of the measure di , and

I pdν the atomic part.

Two particular cases:

I Impact at t∗ ∈]tk , tk+1] : If f = 0 and pdν = pδtk+1 then

pk+1 = p

I Continuous force over ]tk , tk+1] : If di = fdt and p = 0 then

pk+1 =

∫ tk+1

tk

f (t) dt
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Time-stepping schemes

Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

Remark

I A pointwise evaluation of a (Dirac) measure is a non sense. It practice using the
value

fk+1 ≈ f (tk+1)

yield severe numerical inconsistencies, since

lim
h→0

fk+1 = +∞

I Since discontinuities of the derivative v are to be expected if some shocks are
occurring, i.e. di has some Dirac atoms within the interval ]tk , tk+1], it is not
relevant to use high order approximations integration schemes for di . It may be
shown on some examples that, on the contrary, such high order schemes may
generate artefact numerical oscillations.
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Time-stepping schemes

Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

Discretization of smooth terms
θ-method is used for the term supposed to be sufficiently smooth,∫ tk+1

tk

Cv + Kq dt ≈ h [θ(Cvk+1 + Kqk+1) + (1− θ)(Cvk + Kqk )]∫ tk+1

tk

Fext(t) dt ≈ h [θ(Fext)k+1 + (1− θ)(Fext)k ]

The displacement, assumed to be absolutely continuous is approximated by:

qk+1 = qk + h [θvk+1 + (1− θ)vk ] .
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Numerical methods for nonsmooth mechanical systems

Time-stepping schemes

Time Discretization of the nonsmooth dynamics

Time Discretization of the nonsmooth dynamics

Finally, introducing the expression of qk+1 in the first equation of (34), one obtains:[
M + hθC + h2θ2K

]
(vk+1 − vk ) = −hCvk − hKqk − h2θKvk

+h [θ(Fext)k+1) + (1− θ)(Fext)k ] + pk+1 , (36)

which can be written :

vk+1 = vfree + M̂−1pk+1 (37)

where,

I the matrix M̂ =
[
M + hθC + h2θ2K

]
is usually called the iteration matrix and,

I The vector

vfree = vk + M̂−1
[
− hCvk − hKqk − h2θKvk

+h [θ(Fext)k+1) + (1− θ)(Fext)k ]
]

is the so-called “free” velocity, i.e. the velocity of the system when reaction
forces are null.
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Time Discretization of the kinematics relations

Time Discretization of the kinematics relations

According to the implicit mind, the discretization of kinematic laws is proposed as
follows.
For a constraint α,

Uαk+1 = HαT (qk ) vk+1 ,

pαk+1 = Hα(qk ) Pαk+1 , pk+1 =
∑
α

pαk+1 ,

where

Pαk+1 ≈
∫

]tk ,tk+1]
dλα.

For the unilateral constraints, it is proposed

gαk+1 = gαk + h
[
θUαk+1 + (1− θ)Uαk

]
.

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 34/127
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Time-stepping schemes

Discretization of the unilateral constraints

Discretization of the unilateral constraints

Recall that the unilateral constraint is expressed in terms of velocity as

−di ∈ NTC (q)(v+) (38)

or in local coordinates as

−dλα ∈ NTIR+
(g(q))(Uα,+) (39)

The time discretization is performed by

−Pαk+1 ∈ NTIR+ (gα(q̃k+1))(Uαk+1) (40)

where q̃k+1 is a forecast of the position for the activation of the constraints, for
instance,

q̃k+1 = qk +
h

2
vk

In the complementarity formalism, we obtain

if gα(q̃k+1) 6 0, then 0 6 Uαk+1 ⊥ Pαk+1 > 0
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Time-stepping schemes

Summary

Summary of the time discretized equations

One step linear problem

{
vk+1 = vfree + M̂−1pk+1

qk+1 = qk + h [θvk+1 + (1− θ)vk ]

Relations

{
Uαk+1 = HαT (qk ) vk+1

pαk+1 = Hα(qk ) Pαk+1

Nonsmooth Law

{
if gα(q̃k+1) 6 0, then

0 6 Uαk+1 ⊥ Pαk+1 > 0

One step LCP

Uk+1 = HT (qk )vfree + HT (qk )M̂−1H(qk ) Pk+1

if gαp 6 0, then 0 6 Uαk+1 ⊥ Pαk+1 > 0

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 36/127
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Time-stepping schemes

Moreau’s time–stepping

Moreau’s Time stepping scheme



M(qk+θ)(vk+1 − vk )− hF̃k+θ = H(qk+θ)Pk+1, (41a)

qk+1 = qk + hvk+θ, (41b)

Uk+1 = HT (qk+θ) vk+1 (41c)

−Pk+1 ∈ ∂ψTIRm
+

(ỹk+γ )(Uk+1 + eUk ), (41d)

ỹk+γ = yk + hγUk , γ ∈ [0, 1]. (41e)

with θ ∈ [0, 1], γ > 0 and xk+α = (1− α)xk+1 + αxk and ỹk+γ is a prediction of the
constraints.

Properties

I Convergence results for one constraints

I Convergence results for multiple constraints problems with acute kinetic angles

I No theoretical proof of order
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Time-stepping schemes

Schatzman–Paoli’s scheme

Schatzman–Paoli’s Time stepping scheme



M(qk + 1)(qk+1 − 2qk + qk−1)− h2F (tk+θ, qk+θ, vk+θ) = pk+1, (42a)

vk+1 =
qk+1 − qk−1

2h
, (42b)

−pk+1 ∈ NK

(
qk+1 + eqk−1

1 + e

)
, (42c)

where NK defined the normal cone to K .
For K = {q ∈ IRn, y = g(q) > 0}

0 6 g

(
qk+1 + eqk−1

1 + e

)
⊥ ∇g

(
qk+1 + eqk−1

1 + e

)
Pk+1 > 0 (43)

Properties

I Convergence results for one constraints

I Convergence results for multiple constraints problems with acute kinetic angles

I No theoretical proof of order
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Time-stepping schemes

Empirical order

Academic examples

The bouncing Ball and the linear impacting oscillator

0

q

m

f

(a) Bouncing ball example

0

m

q

(b) Linear Oscillator example

Figure: Academic test examples with analytical solutions
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Time-stepping schemes

Empirical order

Academic examples
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Figure: Analytical solution. Bouncing ball example
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Time-stepping schemes

Empirical order

Academic examples
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Figure: Analytical solution. Linear Oscillator
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Time-stepping schemes

Empirical order

Measuring error and convergence

Convergence in the sense of filled-in graph (Moreau (1978))

gr?(f ) = {(t, x) ∈ [0,T ]× IRn, 0 6 t 6 T and x ∈ [f (t−), f (t+)])}. (44)

Such graphs are closed bounded subsets of [0,T ]× IRn, hence, we can use the
Hausdorff distance between two such sets with a suitable metric:

d((t, x), (s, y)) = max{|t − s|, ‖x − y‖}. (45)

Defining the excess of separation between two graphs by

e(gr?(f ), gr?(g)) = sup
(t,x)∈gr?(f )

inf
(s,y)∈gr?(g)

d((t, x), (s, y)), (46)

the Hausdorff distance between two filled-in graphs h? is defined by

h?(gr?(f ), gr?(g)) = max{e(gr?(f ), gr?(g)), e(gr?(g), gr?(f ))}. (47)
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Time-stepping schemes

Empirical order

Measuring error and convergence

An equivalent grid-function norm to the function norm in L1

‖e‖1 = h
N∑
i=0

|fi − f (ti )| (48)

In the same way, the p − norm can be defined by

‖e‖p =

(
h

N∑
i=0

|fi − f (ti )|p
)1/p

(49)

The computation of this two last norm is easier to implement for piecewise continuous
analytical function than the Hausdorff distance.

Global order of convergence.

Definition
A one-step time–integration scheme is of order q for a given norm ‖ · ‖ if there exists a
constant C such that

‖e‖ = Chq +O(hq+1) (50)
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Empirical order

Empirical order of convergence. Moreau’s time–stepping scheme
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(a) The bouncing ball example

Figure: Empirical order of convergence of the Moreau’s time-stepping scheme.
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Time-stepping schemes

Empirical order

Empirical order of convergence. Moreau’s time–stepping scheme
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Figure: Empirical order of convergence of the Moreau’s time-stepping scheme.
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Time-stepping schemes

Empirical order

Empirical order of convergence. Schatzman–Paoli’s time–stepping scheme
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Figure: Empirical order of convergence of the Schatzman-Paoli’s time-stepping scheme.
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Empirical order

Empirical order of convergence. Schatzman–Paoli’s time–stepping scheme
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Figure: Empirical order of convergence of the Schatzman-Paoli’s time-stepping scheme.
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Time-stepping schemes

Empirical order

Comparison
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Comparison

State–of–the–art

Numerical time–integration methods for Nonsmooth Multibody systems (NSMBS):

Nonsmooth event capturing methods (Time–stepping methods)

� robust, stable and proof of convergence

� low kinematic level for the constraints

� able to deal with finite accumulation

� very low order of accuracy even in free flight motions

Nonsmooth event tracking methods (Event–driven methods)

� high level integration of free flight motions

� no proof of convergence

� sensibility to numerical thresholds

� reformulation of constraints at higher kinematic levels.

� unable to deal with finite accumulation
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Comparison

Newmark-type schemes for flexible multibody systems and FEM
applications.
Joint work with O. Brüls, Q.Z. Chen and G. Virlez (Université de Liège)
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Newmark-type schemes for flexible multibody systems

Newmark’s scheme.

The Newmark scheme

Linear Time “Invariant”Dynamics without contact

{
Mv̇(t) + Kq(t) + Cv(t) = f (t)

q̇(t) = v(t)
(51)
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Newmark’s scheme.

The Newmark scheme (Newmark, 1959)

Principle
Given two parameters γ and β

Mak+1 = fk+1 − Kqk+1 − Cvk+1

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

(52)

Notations

f (tk+1) = fk+1, xk+1 ≈ x(tk+1),

xk+γ = (1− γ)xk + γxk+1

(53)
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Newmark-type schemes for flexible multibody systems

Newmark’s scheme.

The Newmark scheme

Implementation
Let us consider the following explicit prediction{

v∗k = vk + h(1− γ)ak
q∗k = qk + hvk + 1

2
(1− 2β)h2ak

(54)

The Newmark scheme may be written as
ak+1 = M̂−1(−Kq∗k − Cv∗k + fk+1)

vk+1 = v∗k + hγak+1

qk+1 = q∗k + h2βak+1

(55)

with the iteration matrix
M̂ = M + h2βK + γhC (56)
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Newmark’s scheme.

The Newmark scheme

Properties

I One–step method in state. (Two steps in position)

I Second order accuracy if and only if γ = 1
2

I Unconditional stability for 2β > γ > 1
2

Average acceleration
(Trapezoidal rule)

implicit γ = 1
2

and β = 1
4

central difference explicit γ = 1
2

and β = 0

linear acceleration implicit γ = 1
2

and β = 1
6

Fox–Goodwin
(Royal Road)

implicit γ = 1
2

and β = 1
12

Table: Standard value for Newmark scheme ((Hughes, 1987, p 493)Géradin and Rixen (1993))
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Newmark’s scheme.

The Newmark scheme

High frequencies dissipation

I In flexible multibody Dynamics or in standard structural dynamics discretized by
FEM, high frequency oscillations are artifacts of the semi-discrete structures.

I In Newmark’s scheme, maximum high frequency damping is obtained with

γ � 1

2
, β =

1

4
(γ +

1

2
)2 (57)

example for γ = 0.9, β = 0.49
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Newmark’s scheme.

The Newmark scheme
From (Hughes, 1987) :
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Newmark-type schemes for flexible multibody systems

HHT scheme

The Hilber–Hughes–Taylor scheme. Hilber et al. (1977)

Objectives

I to introduce numerical damping without dropping the order to one.

Principle
Given three parameters γ, β and α and the notation

Mq̈k+1 = −(Kqk+1 + Cvk+1) + Fk+1 (58)
Mak+1 = Mq̈k+1+α = −(Kqk+1+α + Cvk+1+α) + Fk+1+α

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

(59)

Standard parameters (Hughes, 1987, p532) are

α ∈ [−1/3, 0], γ = (1− 2α/2) and β = (1− α)2/4 (60)

Warning
The notation are abusive. ak+1 is not the approximation of the acceleration at tk+1

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 54/127
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Newmark-type schemes for flexible multibody systems

HHT scheme

The HHT scheme

Properties

I Two–step method in state. (Three–steps method in position)

I Unconditional stability and second order accuracy with the previous rule. (60)

I For α = 0, we get the trapezoidal rule and the numerical dissipation increases
with |α|.
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Numerical methods for nonsmooth mechanical systems

Newmark-type schemes for flexible multibody systems

HHT scheme

The HHT scheme
From (Hughes, 1987) :
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Newmark-type schemes for flexible multibody systems

Generalized α-methods

Generalized α-methods (Chung and Hulbert, 1993)

Principle
Given three parameters γ, β, αm and αf and the notation

Mq̈k+1 = −(Kqk+1 + Cvk+1) + Fk+1 (61)
Mak+1−αm = Mq̈k+1−αf

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

(62)

Standard parameters (Chung and Hulbert, 1993) are chosen as

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞

ρ∞ + 1
, γ =

1

2
+ αf − αm and β =

1

4
(γ +

1

2
)2 (63)

where ρ∞ ∈ [0, 1] is the spectral radius of the algorithm at infinity.

Properties

I Two–step method in state.

I Unconditional stability and second order accuracy.

I Optimal combination of accuracy at low-frequency and numerical damping at
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Newmark-type schemes for flexible multibody systems

Generalized α-methods

A first naive approach
Direct Application of the HHT scheme to Linear Time
“Invariant”Dynamics with contact



Mv̇(t) + Kq(t) + Cv(t) = f (t) + r(t), a.e

q̇(t) = v(t)

r(t) = G(q)λ(t)

g(t) = g(q(t)), ġ(t) = GT (q(t))v(t),

0 6 g(t) ⊥ λ(t) > 0,

(64)

results in {
Mq̈k+1 = −(Kqk+1 + Cvk+1) + Fk+1 + rk+1

rk+1 = Gk+1λk+1
(65)



Mak+1 = Mq̈k+1+α

vk+1 = vk + hak+γ

qk+1 = qk + hvk +
h2

2
ak+2β

0 6 gk+1 ⊥ λk+1 > 0,

(66)
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Newmark-type schemes for flexible multibody systems

Generalized α-methods

A first naive approach

Direct Application of the HHT scheme to Linear Time
“Invariant”Dynamics with contact
The scheme is not consistent for mainly two reasons:

I If an impact occur between rigid bodies, or if a restitution law is needed which is
mandatory between semidiscrete structure, the impact law is not taken into
account by the discrete constraint at position level

I Even if the constraint is discretized at the velocity level, i.e.

if ḡk+1, then 0 6 ġk+1 + egk ⊥ λk+1 > 0 (67)

the scheme is consistent only for γ = 1 and α = 0 (first order approximation.)
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Newmark-type schemes for flexible multibody systems

Generalized α-methods

A first naive approach

Velocity based constraints with standard Newmark scheme (α = 0.0)
Bouncing ball example. m = 1, g = 9.81, x0 = 1.0 v0 = 0.0, e = 0.9

h = 0.001, γ = 1.0, β = γ/2 h = 0.001, γ = 1/2, β = γ/2
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Position based constraints with standard Newmark scheme (α = 0.0)
Bouncing ball example. m = 1, g = 9.81, v0 = 0.0, e = 0.9, h = 0.001, γ = 1.0,
β = γ/2

x0 = 1.0 x0 = 1.01
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Dynamics with contact and (possibly) impact



M dv = F (t, q, v) dt + G(q) di

q̇(t) = v+(t),

g(t) = g(q(t)), ġ(t) = GT (q(t))v(t),

if g(t) 6 0, 0 6 g+(t) + eġ−(t) ⊥ di > 0,

(68)
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Splitting the dynamics between smooth and nonsmooth part

M dv = Ma(t) dt + M dv con (69)

with {
Madt = F (t, q, v) dt

M dv con = G(q) di
(70)

Different choices for the discrete approximation of the term Madt and M dv con
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Principles

I As usual is the Newmark scheme, the smooth part of the dynamics
Madt = F (t, q, v) dt is collocated, i.e.

Mak+1 = Fk+1 (71)

I the impulsive part a first order approximation is done over the time–step

M∆v con
k+1 = Gk+1 Λk+1 (72)
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Principles 

Mak+1 = Fk+1+α

M∆v con
k+1 = Gk+1 Λk+1

vk+1 = vk + hak+γ + ∆v con
k+1

qk+1 = qk + hvk +
h2

2
ak+2β +

1

2
h∆v con

k+1

(73)
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Example (Two balls oscillator with impact)

m = 1kg

k = 103N/m

q2

q1

m = 1kg
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time–step : h = 2e − 3. Moreau (θ = 1.0). Newmark (γ = 1.0, β = 0.5). HHT
(α = 0.1)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

time(s)

HHT
Newmark

Moreau--Jean

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

time(s)

HHT
Newmark

Moreau--Jean

Position of the first ball Velocity of the first ball

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 67/127
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Figure 7. Numerical results for the total energy of the bouncing oscillator.

An analytically-exact solution for this benchmark is detailed in [20]. For comparison, the same
parameters are applied in this test example: Young’s Modulus E =900 Pa, density of the bar
ρ =1 kg/m3, undeformed initial length L =10 m, initial height to the bottom h0 =5 m, and initial
velocity v0 =10 m/s. The restitution coefficient for the impact is set as 0. The gravity acceleration
g is set to 0 so that only one close impact will occur.

The bar is discretized in space by 200 finite elements. Time step size can be chosen based on
the evaluation of the Courant number – a relevant ratio which links the mesh size and the step size
[20]. The step size with this mesh discretization is then chosen as h =2 · 10−3 s. Other algorithmic
parameters are as: ρ∞ = 0.6 for the nonsmooth generalized-α method; θ = 1 for the Moreau–Jean
method; γ = 1 and β = 0.5625 for the fully implicit Newmark method.
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Figure 8. Comparison the numerical results for the bouncing elastic bar: (a) position, (b) pressure.

Figure 8 shows the position and the pressure on the bottom of the bar. Also, the total energy of the
bouncing elastic bar is analyzed, as shown in Figure 9. The numerical results of the position response
and the pressure are compared to the exact solution. As one can tell from the figures, close contact
analysis is stable for all the three methods. Compared to Moreau-Jean and fully implicit Newmark
methods, the nonsmooth generalized-α method has better accuracy for the position response and
the pressure, in particular for the period near/after the take-off. As for the energy performance

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme
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(a) (b) (c)

(d) (e)

Figure 2. Examples: (a) bouncing ball; (b) linear vertical oscillator; (c) bouncing of an elastic bar;
(d) bouncing of a nonlinear beam pendulum; (e)bouncing of a rigid pendulum

time integration algorithms, namely, the nonsmooth generalized-α, the Moreau-Jean and the fully
implicit Newmark schemes. The numerical parameters are set as: nominal time step h =10−3 s for
all the methods; for the nonsmooth generalized-α method, ρ∞ is chosen as 0.8, for the Moreau–Jean
time stepping method, θ = 1, and for the fully implicit Newmark, γ = 1 and β = 0.5625.

Figure 3 shows the position and velocity of the ball. The errors are computed by comparison with
an analytically-exact solution, see Appendix A [15]. Figure 4 shows the convergence analysis of the
valid methods. The relative error is analyzed on the L1 norm, which is defined as

‖e‖1 =

N∑

i=0

|ei|
/

N∑

i=0

|f(ti)| (33)

where ei = fi − f(ti), fi is the numerical solution and f(ti) is the exact solution.
The convergence analysis is made on the interval [0, 4] s. As one can see from the figure, all the

three methods remain first order accurate in the overall range. However, the nonsmooth generalized-
α and the fully implicit Newmark methods have a slightly better accuracy.

5.2. Bouncing of a linear oscillator

In this example, the bouncing of a vertical linear oscillator model is studied, see Figure 2(b). The
oscillator consists of two masses connected by a spring. It is subjected to the gravity and has two
DOFs in the vertical direction. After the lower mass impacts against the plane, it bounces back with a
restitution coefficient of e = 0.8. In the meanwhile, it is also subjected to a force by the compressed
spring. Thus, a second impact or multiple impacts can occur right after the first impact. In the free-
flight mode after impacts, the system is oscillating with its natural frequency. Physical parameters
used in this model are as: mass m =1 kg and radius R =0.2 m for each ball; the stiffness of the
spring k=104 N/m and the unstretched length l =1 m; the initial velocity is zero and the initial
height h0 =1.001 m; the gravity acceleration g =10 m/s2.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme
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h=2⋅10−4s

Figure 9. Numerical results for the total energy of the bouncing elastic bar

analysis, finer step sizes (h =2 · 10−4 s and h =2 · 10−5 s) are adjusted for the Moreau–Jean method
in order to compare the energy dissipation. The analysis of the Moreau-Jean scheme shows that the
numerical solution tends to converge to a behaviour without energy dissipation after impact. As can
be seen from Figure 9, the nonsmooth generalized-α method has the least energy dissipation after
the impact. One can thus conclude that the nonsmooth generalized-α scheme has better quality of
global energy behaviour, as already shown in Section 5.2.

5.4. Impact of a flexible rotating beam

The following example studies the impact of a flexible rotating beam. The beam works as a flexible
simple pendulum, that is, it is subjected to the gravity force and swings around a pivot point, as
shown in Figure 2(d). The beam is modelled using a geometrically exact, two-dimensional finite
element formulation, based on Timoshenko’s theory. The planar beam finite element is capable of
handling arbitrarily large finite rotations. It is a special case of the 3D model presented in [3]. It is of
interest to verify the nonsmooth time integration methods for such a highly nonlinear application.

The beam studied in this example has a square cross section. The parameters of the beam are
as follows: length l =1 m, width b =0.01 m, height d =0.01 m, cross-sectional area A = bd, cross-
sectional inertia I = bd3/12, reduced cross-sectional area for shear A2 = 5/6A, Young’s modulus
E =2.1 · 1011 N/m2, Poisson ratio ν = 0.3 and density ρ =7800 kg/m3. The acceleration of gravity
is g =9.81 m/s2.

In the beginning, the beam is placed horizontally with the tip pointing to the right. It is released
from standstill and is restricted to planar motion under gravity. A hurdle is placed on the way so that
a unilateral constraint is applied as follows:

√
2/2 ≤ x ⊥ λu ≥ 0. Likewise, the complementarity

condition is expressed at the velocity level as in Equation (4). The coefficient of restitution is set as
e = 0.8.

The beam is discretized into 4 finite elements. The model is first simulated with time step-size
h =5 · 10−4 s. Since it is difficult to obtain the exact solution, a finer step size of h =2 · 10−5 s
is then chosen for the Moreau-Jean method in order to compare the accuracy. This makes sense
as the Moreau-Jean method is commonly known as a validated method and has been proven to
be convergent. Other numerical parameters are as: ρ∞ = 0.65 for the nonsmooth generalized-
α method, θ = 1 for the Moreau–Jean method, and γ = 1 and β = 0.5625 for the fully implicit
Newmark method.

Figure 10 shows the response of position and velocity at the tip of the beam. Comparatively, the
nonsmooth generalized-α scheme tends to have results much closer to the Moreau-Jean method with
a smaller time step size. Higher numerical damping in the Moreau-Jean and fully implicit Newmark
methods leads to higher energy dissipation even during the smooth motion, as can be seen in the

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 71/127



Numerical methods for nonsmooth mechanical systems

Newmark-type schemes for flexible multibody systems

Generalized α-methods

The Nonsmooth Newmark and HHT scheme

14 Q.Z. CHEN ET AL.

velocity response in Figure 10(b). However, higher numerical damping does not necessarily result
in better stability performance. As a matter of fact, if one further increase the time step size to
10−3 s, the nonsmooth generalized-α scheme is still convergent in Newton iteration, but neither
are the other two methods. As for the choice of numerical damping, if one chooses θ = 0.5 for the
Moreau-Jean method, which means that no numerical damping is considered, the results become
divergent. It indicates that controllable numerical damping is necessary in this highly-nonlinear
case. Comparison in the overall scale can be seen in the energy performance, as shown in Figure 11.
The nonsmooth generalized-α method has the best energy performance between impacts, where no
physical dissipation is expected.
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Figure 10. Numerical results for the impact of a flexible rotating beam: (a) position, (b) velocity.
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Moreau−Jean, h=10−5s

Figure 11. Numerical results for the total energy of the bouncing beam

5.5. Bouncing of a rigid pendulum

This example studies the impact of a simple rigid pendulum with both unilateral and bilateral
constraints. The purpose is to validate the proposed time integration methods in the regime
of nonlinear, bilaterally-constrained problems. The pendulum is constrained to swing around a
pivot in the x-y plane. It consists of a massless rod and a concentrated mass at the tip. The

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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Observed properties on examples

I the scheme is consistent and globally of order one.

I the scheme seems to share the stability property as the original HHT

I the scheme dissipates energy only in high-frequency oscillations (w.r.t the
time–step.)

Conclusions & perspectives

I Extension to any multi–step schemes can be done in the same way.

I Improvements of the order by splitting.

I Recast into time–discontinuous Galerkin formulation.
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Time–continuous energy balance equations
Let us start with the “LTI” Dynamics{

M dv + (Kq + Cv) dt = F dt + di

dq = v± dt
(74)

we get for the Energy Balance

d(v>Mv) + (v+ + v−)(Kq + Cv) dt = (v+ + v−)F dt + (v+ + v−) di
(75)

that is

2dE := d(v>Mv) + 2q>Kdq = 2v>F dt − 2v>Cv dt + (v+ + v−)> di
(76)

with

E :=
1

2
v>Mv +

1

2
q>Kq. (77)
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Time–continuous energy balance equations

If we split the differential measure in di = λ dt +
∑

i piδti , we get

2dE = = 2v>(F + λ) dt − 2v>Cv dt + (v+ + v−)>piδti (78)

By integration over a time interval [t0, t0] such that ti ∈ [t0, t1], we obtain an energy
balance equation as

∆E := E(t1)− E(t0)

=

∫ t1

t0

v>F dt︸ ︷︷ ︸
W ext

−
∫ t1

t0

v>Cv dt︸ ︷︷ ︸
W damping

+

∫ t1

t0

v>λ dt︸ ︷︷ ︸
W con

+
1

2

∑
i

(v+(ti ) + v−(ti ))>pi︸ ︷︷ ︸
W impact

(79)
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Work performed by the reaction impulse di

I The term

W con =

∫ t1

t0

v>λ dt (80)

is the work done by the contact forces within the time–step. If we consider
perfect unilateral constraints, we have W con = 0.

I The term

W impact =
1

2

∑
i

(v+(ti ) + v−(ti ))>pi (81)

represents the work done by the contact impulse pi at the time of impact ti .
Since pi = G(ti )Pi and if we consider the Newton impact law, we have

W impact =
1

2

∑
i (v

+(ti ) + v−(ti ))>G(ti )Pi

=
1

2

∑
i (U

+(ti ) + U−(ti ))>Pi

=
1

2

∑
i ((1− e)U−(ti ))>Pi 6 0 for 0 6 e 6 1

(82)

with the local relative velocity defines as U(t) = G>(t)v(t)
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Energy analysis for Moreau–Jean scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the
discrete approximation of the work done by the external forces within the step (supply
rate) by

W̄ ext
k+1 = hv>k+θFk+θ ≈

∫ tk+1

tk

Fv dt (83)

Then the variation of energy over a time–step performed by the Moreau–Jean is

∆E − W̄ ext
k+1 = (

1

2
− θ)

[
‖vk+1 − vk‖2

M + ‖(qk+1 − qk )‖2
K

]
+ U>k+θPk+1 (84)
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Energy analysis for Moreau–Jean scheme

Proposition
Let us assume that the dynamics is a LTI dynamics. The Moreau–Jean scheme
dissipates energy in the sense that

E(tk+1)− E(tk )− W̄ ext
k+1 6 0 (85)

if
1

2
6 θ 6

1

1 + e
6 1 (86)

In particular, for e = 0, we get
1

2
6 θ 6 1 and for e = 1, we get θ =

1

2
.
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Energy analysis for Moreau–Jean scheme

Variant of the Moreau scheme that always dissipates energy
Let us consider the variant of the Moreau scheme

M(vk+1 − vk ) + hKqk+θ − hFk+θ = pk+1 = GPk+1, (87a)

qk+1 = qk + hvk+1/2, (87b)

Uk+1 = G> vk+1 (87c)

if ḡαk+1 6 0 then 0 6 Uαk+1 + eUαk ⊥ Pαk+1 > 0,

otherwise Pαk+1 = 0.
, α ∈ I (87d)
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Numerical methods for nonsmooth mechanical systems

Newmark-type schemes for flexible multibody systems

Energy analysis for Moreau–Jean scheme

Energy analysis for Moreau–Jean scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Then the variation of
energy performed by the variant scheme over a time–step is

∆E − W̄ ext
k+1 = (

1

2
− θ)‖(qk+1 − qk )‖2

K + U>
k+1/2

Pk+1 (88)

The scheme dissipates energy in the sense that

E(tk+1)− E(tk )− W̄ ext
k+1 6 0 (89)

if

θ >
1

2
(90)
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Energy analysis for Newmark’s scheme

Lemma
Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the
discrete approximation of the work done by the external forces within the step by

W̄ ext
k+1 = (qk+1 − qk )>Fk+γ ≈

∫ tk+1

tk

Fv dt (91)

Then the variation of energy over a time–step performed by the scheme is

∆E − W̄ ext
k+1 = (

1

2
− γ)‖(qk+1 − qk )‖2

K

+
h

2
(2β − γ)

[
(qk+1 − qk )>K(vk+1 − vk )− (vk+1 − vk )> [Fk+1 − Fk ]

]
+

1

2
P>k+1(Uk+1 + Uk ) +

h

2
(2β − γ)(ak+1 − ak )>GPk+1

(92)
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Numerical methods for nonsmooth mechanical systems

Newmark-type schemes for flexible multibody systems

Energy Analysis for the Newmark scheme

Energy analysis for Newmark’s scheme
Define an discrete “algorithmic energy” (discrete storage function) of the form

K(q, v , a) = E(q, v) +
h2

4
(2β − γ)a>Ma. (93)

The following result can be given

Proposition
Let us assume that the dynamics is a LTI dynamics with C = 0. Let us define the
discrete approximation of the work done by the external forces within the step by

W̄ ext
k+1 = (qk+1 − qk )>Fk+γ ≈

∫ tk+1

tk

Fv dt (94)

Then the variation of energy over a time–step performed by the nonsmooth Newmark
scheme is

∆K− W̄ ext
k+1 = −(γ − 1

2
)

[
‖qk+1 − qk‖2

K +
h

2
(2β − γ)‖(ak+1 − ak )‖2

M

]
+ U>

k+1/2
Pk+1

(95)
Moreover, the nonsmooth Newmark scheme is stable in the following sense

∆K− W̄ ext
k+1 6 0 (96)

for

2β > γ >
1

2
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Energy Analysis for the Newmark scheme

Energy analysis for HHT scheme

Augmented dynamics
Let us introduce the modified dynamics

Ma(t) + Cv(t) + Kq(t) = F (t) +
α

ν
[Kw(t) + Cx(t)− y(t)] (98)

and the following auxiliary dynamics that filter the previous one

νhẇ(t) + w(t) = νhq̇(t)
νhẋ(t) + x(t) = νhv̇(t)

νhẏ(t) + y(t) = νhḞ (t)
(99)
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Discretized Augmented dynamics
The equation (99) are discretized as follows

ν(wk+1 − wk ) +
1

2
(wk+1 + wk ) = ν(qk+1 − qk )

ν(xk+1 − xk ) +
1

2
(xk+1 + xk ) = ν(vk+1 − vk )

ν(yk+1 − yk ) +
1

2
(yk+1 + yk ) = ν(Fk+1 − Fk )

(100)

or rearranging the terms

(
1

2
+ ν)wk+1 + (

1

2
− ν)wk = ν(qk+1 − qk )

(
1

2
+ ν)xk+1 + (

1

2
− ν)xk = ν(vk+1 − vk )

(
1

2
+ ν)yk+1 + (

1

2
− ν)yk = ν(Fk+1 − Fk )

(101)

With the special choice ν =
1

2
, we obtain the HHT scheme collocation that is

Mak+1 + (1− α)[Kqk+1 + Cvk+1] + α[Kqk + Cvk ] = (1− α)Fk+1 + αFk (102)
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Energy analysis for HHT scheme

Discretized storage function
With

H(q, v , a,w) = E(q, v) +
h2

4
(2β − γ)a>Ma + 2α(1− γ)w>Kw . (103)

we get

2∆H = 2U>
k+1/2

Pk+1

− h2(γ − 1

2
)(2β − γ)‖(ak+1 − ak )‖2

M

− 2(γ − 1

2
− α)‖qk+1 − qk‖2

K

− 2α(1− 2(γ − 1

2
))‖wk+1 − wk‖2

K

+ 2(Fk+γ−α)>(qk+1 − qk ) + 2α(1− 2(γ − 1

2
))(qk+1 − qk )>(yk+1 − yk )
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Energy analysis for HHT scheme

Discretized storage function
With

H(q, v , a,w) = E(q, v) +
h2

4
(2β − γ)a>Ma + 2α(1− γ)w>Kw . (103)

and with α = γ − 1

2
, we obtain

2∆H = 2U>
k+1/2

Pk+1

− h2(α)(2β − γ)‖(ak+1 − ak )‖2
M

− 2α(1− 2α)‖wk+1 − wk‖2
K

+ 2(Fk+γ−α)>(qk+1 − qk ) + 2α(1− 2α)(qk+1 − qk )>(yk+1 − yk )

(104)
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Energy analysis for HHT scheme

Conclusions

I For the Moreau–Jean, a simple variant allows us to obtain a scheme which always
dissipates energy.

I For the Newmark and the HHT scheme with retrieve the dissipation properties as
the smooth case. The term associated with impact is added is the balance.

I Open Problem: We get dissipation inequality for discrete with quadratic storage
function and plausible supply rate. The nest step is to conclude to the stability of
the scheme with this argument.
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Energy Analysis for the Newmark scheme

Adaptive time-step strategies for time–stepping schemes
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Smooth ODE time integration

Smooth ODEs

One–step numerical solvers for ODEs
Let us consider a ODE

ẋ = f (x , t), (105)

where f is a mapping with sufficient regularity.
The one–step time–stepping method over the time–step [tk , tk+1 = tk + h] is
generically denoted by

xk+1 = xk + hΦ(tk , h, xk ). (106)

Order of consistency
The one–step time–stepping method is said to be consistent if Φ(t, 0, x , x) = f (x , t)
and has a consistency order p if there exists a constant C such that

ek+1 = x(tk+1)− xk+1 = Chp+1 +O(hp+2), (107)

assuming that xk = x(tk ).
If the time–stepping method has an order of consistency p and converges, then the
global order of convergence is p,
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Smooth ODEs

Basic practical error evaluation

1. Two “small” time steps of size h/2 =⇒ x1/2.

2. One “big” time-step h =⇒ x1.

e1 = x(t0 + h)− x1 = C hp+1 +O(hp+2),
e1/2 = x(t0 + h)− x1/2 = 2C (h/2)p+1 +O(hp+2).

(108)

This procedure permits us to evaluate the constant C and to obtain and a local error
estimate such that:

e2 = x(t0 + h)− x2 =
x1/2 − x1

2p − 1
+O(hp+2). (109)

Enhanced practical error evaluation

I Runge–Kutta Embedded pairs (Dormand-Price, Felhberg)

I Milne’s device

I Nordsieck’s method
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Smooth ODEs

Automatic control of the time–step

‖ek‖ 6 etol = atol + rtol ◦max(x0, xk ) (110)

The measure of the error is given by

error = ‖ek ◦ invtol‖ (111)

with invtol = [1/etoli , i = 1 . . . n]. The optima step size is then obtained by

hopt = h(
1

error
)1/(p+1) (112)

Usually, the step size is not allowed to decrease of to increase too fast, thanks to the
following heuristic rule

hnew = h min(αmax ,max(αmin, α(
1

error
)1/(p+1))) (113)

where α, αmin and αmax are some user parameters.
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Local error estimates for the Moreau’s time–stepping

Notation

e = x(tk + h)− xk+1 =

[
ev
eq

]
=

[
v+(tk + h)− vk+1

q(tk + h)− qk+1

]
(114)
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Local error estimates for the Moreau’s time–stepping

Assumption 1 : Existence and uniqueness
A unique global solution over [0,T ] for Moreau’s sweeping process is assumed such
that q( · ) is absolutely continuous and admits a right velocity v+( · ) at every instant t
of [0,T ] and such that the function v+ ∈ LBV ([0,T ],Rn).

Ü Assumption 92 is ensured in the framework introduced by Ballard (Ballard, 2000)
who proves the existence and uniqueness of a solution in a general framework mainly
based on the analyticity of data.

Assumption 2 : Smoothness of data
The following smoothness on the data will be assumed: a) the inertia operator M(q)
is assumed to be of class Cp and definite positive, b) the force mapping F (t, q, v) is
assumed to be of class Cp , c) the constraint functions g(q) are assumed to be of class
Cp+1 and d) the Jacobian matrix G(q) = ∇T

q g(q) is assumed to have full-row rank.
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Local error estimates for the Moreau’s time–stepping

Lemma
Let I = [tk , tk+1]. Let us assume that the function f ∈ BV (I ,Rn). Then we have the
following inequality for the θ–method, θ ∈ [0, 1],∥∥∥∥∥

∫ tk+1

tk

f (s) ds − h(θf (tk+1) + (1− θ)f (tk ))

∥∥∥∥∥ 6 C(θ)(tk+1 − tk ) var(f , I ), (115)

where var(f , I ) ∈ R is the variation of f on I and C(θ) = θ if θ > 1/2 and
C(θ) = 1− θ otherwise. Furthermore, the value of C(θ) yields a sharp bound in (115).
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Local error estimates for the Moreau’s time–stepping

Proposition
Under Assumptions 1 and 2, the local order of consistency of the Moreau
time–stepping scheme for the generalized coordinates is

eq = O(h)

and at least for the velocities
ev = O(1)

.

Comments
The bounds are reached if an impact is located within the time–step and the
activation of the constraint is not correct.
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One impact at time t∗ ∈ (tk , tk+1]

Assumption

di = pδt∗ , or equivalently dI = Pδt∗ ,with P = G(t∗)p. (116)

Notation

I = {α, α ∈ {1..m}} (117)

I∗ = {α ∈ I,Pα > 0,Uα,+(t∗)− Uα,−(t∗) = −(1 + e)Uα,−(t∗)} (118)

Ip = {α ∈ I,Pαk+1 > 0,Uαk+1 − Uαk = −(1 + e)Uαk } (119)

Lemma
Let us assume that we have only one elastic impact at time t∗ ∈ (tk , tk+1] i.e. ,
di = pδt∗ + r(t)dt.

1. If I∗ = Ip , then the local order of consistency of the scheme is given by

ev = Kvh +O(h2) (120)

2. If I∗ 6= Ip , then the local order of consistency of the scheme is given by

ev = Kv +O(h) (121)
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Local error estimates for the Moreau’s time–stepping

Example (The bouncing ball)

{
v̇(t) = f (t) + λ(t), q̇(t) = v(t),

0 6 q(t) ⊥ λ(t) > 0, v+(t) = −ev−(t), if q(t) = 0,
(122)

With chosen parameters as f = −2, e = 1/2 and the initial data as t0 = 0, q0 = 1 and
v0 = 0. The analytical solution reads as

I for t ∈ [0, 1), {
q(t) = −t2 + 1,
v(t) = −2t,

(123)

I for t ∈
[

3− 1

2n−1
, 3− 1

2n

)
,


q(t) = −(t − 3)2 − 3

2n
(t − 1) +

1

2n−1

(
3− 1

2n

)
,

v(t) = −2(t − 3)− 3

2n
,

(124)

I and for t ∈ [3,+∞) {
q(t) = 0,
v(t) = 0,

(125)
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Local error estimates for the Moreau’s time–stepping

Example (The bouncing ball (continued))
Let us consider a time interval such that the impacting time t∗ belongs to (tk , tk+1].
The error is given by

if pk+1 = 0{
ev = −(1 + e)[vk + hf σ]

eq = −qk − h(e(1− σ + 1))vk − fh2[e(1− σ)σ +
1

2
(1− σ)2 + θ]

if pk+1 > 0{
ev = −hf [1− σ − eσ]

eq = −qk − h((1 + e)(1− θ)− eσ)vk − fh2(e(1− σ)σ +
1

2
(1− σ)2)

,

(126)
where σ = (tk − t∗)/h ∈ (0, 1].

The approximate solution of the Moreau scheme depends on the forecast of the active
constraints, i.e. ḡk+1 = qk + γhvk .
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Local error estimates for the Moreau’s time–stepping

Example (The bouncing ball (continued))

Using the fact that q(t∗) = qk + vkσh +
1

2
(σh)2 = 0, we obtain that

qk = −σvkh − 1
2
f (σh)2 and

if pk+1 = 0,{
ev = −(1 + e)[vk + hf σ]

eq = −h(e(1− σ + 1)− σ)vk − fh2[e(1− σ)σ +
1

2
(1− σ)2 − 1

2
(σ)2 + θ]

i.e. ev = O(1) and eq = O(h)

if pk+1 > 0,{
ev = −hf [1− σ − eσ]

eq = −h((1 + e)(1− θ − σ))vk − fh2(e(1− σ)σ +
1

2
(1− σ)2 − 1

2
(σ)2)

i.e. ev = O(h) and eq = O(h)

(126)
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Local error estimates for the Moreau’s time–stepping

Example (The bouncing ball (continued))
Near the finite accumulation of impact at time t = 3.
Let us consider a time step such that [tk , tk+1] = [3− h, 3 + h] and n0 such that
h ∈ [1/2n0 , 1/2n0−1]. The local error in velocity is given if the impact is detected
pk+1 > 0 by

ev = v(3 + h)− vk+1 = −2h − 3

2n0
. (126)

As h→ 0, we have n0 →∞, and
1

2n0
= O(h) and then ev = O(h).
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Local error estimates for the Moreau’s time–stepping

To summarize

I In any case, we have O(h) in the error in coordinates and it cannot be improved
if a jump occurs.

I The local error in velocity is at least ev = O(1) if the impact is not well–forecast.
In practice, this situation is usual. It illustrates the possible convergence problem
that we can have in uniform norm

I Finite accumulation The order of the time–integration should be at least 0. Idea
of the proof : use the fact that the velocity vanishes and is of bounded variations
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Numerical methods for nonsmooth mechanical systems

Adaptive schemes

Adaptive time–step strategies

Practical error estimates for the Moreau’s time–stepping

Order “0” case
Standard error estimates do not apply for Order 0.
We propose to extend it to the order 0 of consistency by assuming that the the local
error estimate is given by

e1/2 = 2(x1/2 − x1) +O(h2) (127)

where x1 is the result of the time integration with one time–step of length h and x1/2

with two time-steps of length h/2.
The adaptive time–step control used for smooth ODE is then apply directlyHairer
et al. (1993).
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Order “0” time–step adjustment for the Moreau’s time–stepping
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Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 0
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Order “0” time–step adjustment for the Moreau’s time–stepping
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Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 0
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Order “1” time–step adjustment for the Moreau’s time–stepping
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Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 1
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Order “1” time–step adjustment for the Moreau’s time–stepping
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Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 1
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Order “2” time–step adjustment for the Moreau’s time–stepping
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Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 2
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Order “2” time–step adjustment for the Moreau’s time–stepping
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Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 2
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Sizing the error in the violation of constraints

The violation of constraints is sized by the following rule:

eviolation = ‖min(0, g(q)) ◦ invtol‖∞ (128)

Assuming that the scheme is of order 1 almost everywhere in smooth phase and may
be controlled by eviolation when an nonsmooth vent occurs, the step size adjustment
is implemented by the means of the following error estimation

error = max(eviolation, ‖ek ◦ invtol‖∞) (129)
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Results on two academic test examples
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Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 0 + violation error
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Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 0 + violation error
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Figure: Precision Work diagram for the Moreau’s time-stepping scheme. Order 1 + violation error
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Variable order approach. Principle

Guess the order of consistency of the integration at each step.
Adapt the practical error estimation
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Adaptive schemes

Variable order approach

Results on two academic test examples
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MoreauTS Precision-Work Diagram. Bouncing Ball Example

Adaptive time-steps
Constant time-steps

(a) The bouncing ball example

Figure: Precision Work diagram for the Moreau’s time-stepping scheme.
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Results on two academic test examples
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MoreauTS Precision-Work Diagram. Linear Oscillator Example
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(a) The linear oscillator example

Figure: Precision Work diagram for the Moreau’s time-stepping scheme.
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Adaptive schemes

Variable order approach

Time–stepping schemes of any order
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Higher Order Schemes

Principle

First attempt

In Studer et al. (2008) ; Studer (2009) the first attempt to increase the efficiency of
Moreau’s scheme by an extrapolation method has been published.
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Higher Order Schemes

Principle

Higher Order Time–stepping schemes

Background
Work of Mannshardt (1978) on time–integration schemes of any order for ODE/DAEs
with discontinuities (with tranversality assumption)

Principle

I Let us assume only one event per time–step at instants t∗.

I Choose any ODE/DAE solvers of order p

I Perform a rough location of the event inside the time step of length h
Find an interval [ta, tb] such that

t∗ ∈ [ta, tb] and |tb − ta| = Chp+1 +O(hp+2) (130)

Dichotomy, Newton, Local Interpolants, Dense output,. . .

I Perform an integration on [tk , ta] with the ODE solver of order p

I Perform an integration on [ta, tb] with Moreau’s time–stepping scheme

I Perform an integration on [tb, tk+1] with the ODE solver of order p
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Higher Order Schemes

Principle

Integration of the smooth dynamics

Mainly for the sake of simplicity, the numerical integration over a smooth period is
made with a Runge–Kutta (RK) method on the following index-1 DAE,

M(q(t))v̇(t) = F (t, q(t), v(t)) + G(q)λ(t),

q̇(t) = v(t),

γ(t) = G(q(t))v̇(t) = 0.

(131)

In practice, the time–integration is performed for the following system
M(q(t))v̇(t) = F (t, q(t), v(t)) + G(q)λ(t),

q̇(t) = v(t),

0 6 γ(t) = G(q(t))v̇(t) ⊥ λ(t) > 0

(132)

on the time–interval I where the index set I(t) of active constraints is assumed to be
constant on I and λ(t) > 0 for all t ∈ I .
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Higher Order Schemes

Principle

Integration of the smooth dynamics

Using the standard notation for the RK methods (see Hairer et al. (1993) for details),
the complementarity problem that we have to solve at each time–step reads

tki = tk + cih,

vk+1 = vk + h
∑s

i=1 biV
′
ki ,

qk+1 = qk + h
∑s

i=1 biVki ,

V ′ki = M−1(Qki ) [F (tki ,Qki ,Vki ) + G(Qki )λki ] ,

Vki = vk + h
∑s

j=1 aijV
′
nj ,

Qki = qk + h
∑s

j=1 aijVnj ,

0 6 γki = G(Qki )V
′
ki ⊥ λki > 0.

(133)
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Higher Order Schemes

Principle

Assumption 3
Let I a smooth period time–interval. We assume that

1. the local order of the RK method (133) is p that is

eq = ev = O(hp+1) (134)

2. starting from inconsistent initial value q̃k such that q̃k − qk = O(hp+1), the error
made by the RK method (133) is

q̃k+1 − qk+1 = O(hp+1) (135)
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Higher Order Schemes

Principle

Theorem
Let us assume that Assumptions 1, 2 and 3 hold. The local error of consistency of the
scheme is of order p in the generalized coordinates that is

eq = O(hp+1). (136)

Numerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 114/127
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Higher Order Schemes

Principle

Results on the linear oscillator
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(a) The linear oscillator example with implicit Runge Kutta Method

Figure: Precision Work diagram for the Moreau’s time-stepping scheme coupled with Runge–Kutta
method.
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Results on the linear oscillator
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(a) The linear oscillator example with half explicit Runge Kutta Method

Figure: Precision Work diagram for the Moreau’s time-stepping scheme coupled with Runge–Kutta
method.
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Higher Order Schemes

Principle

Higher Order Time–stepping schemes

Finite accumulation

I Repeat the whole process on the remaining part of the interval [tb, tk ]

I By induction, repeat this process up to the end of the original time step.

Acary (2009)
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Higher Order Schemes

Principle

Results on the Bouncing Ball
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(a) The Bouncing Ball example with implicit Runge Kutta Method

Figure: Precision Work diagram for the Moreau’s time-stepping scheme.
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Higher Order Schemes

Principle

Results on the Bouncing Ball
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(a) The Bouncing Ball example half explicit Runge Kutta Method

Figure: Precision Work diagram for the Moreau’s time-stepping scheme.
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Higher Order Schemes

Principle

Splitting based Schemes
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Splitting based Schemes

Principle

Splitting–based methods.

Principle for smooth ODEs
Let us consider a smooth ODE which can be written as

ẋ(t) = f (x , t) + g(x , t) (137)

A example of splitting–based method is given by the following procedure

1. Perform the integration of f on [tk , tk+1] to obtain x̃(tk+1) that is

x̃(tk+1) = x(tk ) +

∫ tk+1

tk

f (x , t) dt (138)

2. Perform the integration of g on [tk , tk+1] with initial value x̃(tk+1) to obtain
x̂(tk+1) that is

x̂(tk+1) = x̃(tk+1) +

∫ tk+1

tk

g(x , t) dt (139)

Properties

I x(tk + 1) 6= x̂(tk+1) is the general case. (except special linear case, constant
dynamics, . . . )

I x̂(tk+1)→ x(tk+1) when tk+1 → tkNumerical methods for nonsmooth mechanical systems Vincent Acary , INRIA Rhône–Alpes, Grenoble. – 119/127
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Splitting based Schemes

Principle

Splitting–based methods.

Splitting–based for Moreau scheme without continuous contact forces

I The first part is 
M(q)v̇ = F (t, q, v),

q̇ = v ,

q(tk ) = qk , v(tk ) = vk

(140)

yielding to the approximations q1 = q(tk+1) and v1 = v(tk+1) which can
integrated by any smooth ODE solvers.

I The second one is given by

M(q)v̇ = G(q)λ,

q̇ = 0,

y = g(q)

−λ ∈ ∂ψTIR+
(y)(ẏ(t+) + eẏ(t−))

q(tk ) = q1; v(tk ) = v1;

(141)

and leads to the approximation qk+1 = q(tk+1) andqk+1 = q(tk+1).
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Splitting based Schemes

Principle

Splitting–based methods with constants time–step.
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(a) The bouncing ball example

Figure: Empirical order of convergence of the Splitting RKF45 time-stepping scheme
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Principle

Splitting–based methods with constants time–step.
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(a) The linear oscillator example

Figure: Empirical order of convergence of the Splitting RKF45 time-stepping scheme
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Splitting based Schemes

Principle

Splitting–based methods with adaptive time–step.
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Splitting RKF45 Precision-Work Diagram. Linear Oscillator Example

Constant time-steps
Adaptive time-steps MoreauTS

Adaptive time-steps Splitting RKF45

(a) The linear oscillator example

Figure: Empirical order of convergence of the Splitting RKF45 time-stepping scheme
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Splitting based Schemes

Principle

Splitting–based methods.

Splitting–based for Moreau scheme with continuous contact forces

I The first part is 

M(q)v̇ = F (t, q, v) + r(t),

q̇ = v ,

y = g(q)

−r(t) ∈ ∂ψTIR+
(y)(ẏ(t))

q(tk ) = qk , v(tk ) = vk

(142)

yielding to the approximations q1 = q(tk+1) and v1 = v(tk+1) which can
integrated by any smooth ODE solvers.

I The second one is given by

M(q)v̇ = G(q)λ,

q̇ = 0,

y = g(q)

−λ ∈ ∂ψTIR+
(y)(ẏ(t+) + eẏ(t−))

q(tk ) = q1; v(tk ) = v1;

(143)

and leads to the approximation qk+1 = q(tk+1) andqk+1 = q(tk+1).
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Splitting based Schemes

Principle

Time–discontinuous Galerkin Method
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Time–discontinuous Galerkin Method

Principle

Principle

Schindler and Acary (2011)
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Principle

Objectives
The smooth dynamics and the impact equations
Reformulations of the unilateral constraints on Different kinematics levels
Reformulations of the smooth dynamics at acceleration level.
The case of a single contact.
The multi-contact case and the index-sets
Comments and extensions

Event-tracking schemes
Time Discretization of the nonsmooth dynamics
Time Discretization of the kinematics relations
Discretization of the unilateral constraints
Summary
Moreau’s time–stepping
Schatzman–Paoli’s scheme
Empirical order

Time-stepping schemes
Comparison

Newmark’s scheme.
HHT scheme
Generalized α-methods

Newmark-type schemes for flexible multibody systems
Time–continuous energy balance equations
Energy analysis for Moreau–Jean scheme
Energy Analysis for the Newmark scheme
Smooth ODE time integration
Local error estimates for the Moreau’s Time–stepping scheme
Adaptive time–step strategies
A control based on violation
Variable order approach

Adaptive time-step strategies for time–stepping schemes
Principle

Time–stepping schemes of any order
Principle

Splitting based Time–stepping schemes
Principle

Time–discontinuous Galerkin Method
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