

Introduction à la méthode des éléments discrets (MED/DEM) Webinaire I-Risk

Vincent Acary

INRIA Grenoble Rhône-Alpes Equipe projet TRIPOP

25 novembre 2020

Web' I·RISK

Ce projet est cofinancé par la région Auvergne-Rhône-Alp

Principe de la méthode des éléments discrets

2 Modélisation

- Equations du mouvement
- Lois d'interface

3 Simulation numérique & Outils logiciels

- Méthodes d'intégration en temps
- Méthodes explicites et approches compliantes
- Méthodes implicites et approches rigides

4 Applications de la MED en géotechnique

1 Principe de la méthode des éléments discrets

2 Modélisation

- Equations du mouvement
- Lois d'interface

B Simulation numérique & Outils logiciels

- Méthodes d'intégration en temps
- Méthodes explicites et approches compliantes
- Méthodes implicites et approches rigides

4 Applications de la MED en géotechnique

Principe général

Méthode numérique de simulation du comportement d'un grand nombre de particules en interaction :

<u>I RISK</u>

1 Principe de la méthode des éléments discrets

2 Modélisation

- Equations du mouvement
- Lois d'interface

B Simulation numérique & Outils logiciels

- Méthodes d'intégration en temps
- Méthodes explicites et approches compliantes
- Méthodes implicites et approches rigides

4 Applications de la MED en géotechnique

Principe de la MED	Modélisation	Simulation numérique & Outils logiciels	Applications	Web' I-PIS!
• Equations du mouvem	ent	00000	000000	
Equations du mouren	ionit.		_	

Modélisation

Chaque particule α est représentée par un vecteur de paramètres q_{α} pour laquelle on écrit les équations du mouvement :

$$M(q_{\alpha})\ddot{q}_{\alpha} = F(t, q_{\alpha}, \dot{q}_{\alpha})$$
(1)

où

- \dot{q}_{α} est la vitesse et \ddot{q}_{α} l'accélération
- $M(q_{\alpha})$ est la matrice d'inertie,
- $F(t, q_{\alpha}, \dot{q}_{\alpha})$ les efforts extérieurs et intérieurs.

Modélisation

Une interaction entre une particule α et une particule β est modelisée par une force de réaction R

$$M(q_{\alpha})\ddot{q}_{\alpha} = F(t, q_{\alpha}, \dot{q}_{\alpha}) + R_{\alpha\beta}$$

$$M(q_{\beta})\ddot{q}_{\beta} = F(t, q_{\beta}, \dot{q}_{\beta}) + R_{\beta\alpha}$$
(2)

Loi de l'action et de la réaction

$$R_{\alpha\beta} = -R_{\beta\alpha} = R(t, q_{\alpha}, \dot{q}_{\alpha}, q_{\beta}, \dot{q}_{\beta})$$
(3)

où $R(t, q_{\alpha}, \dot{q}_{\alpha}, q_{\beta}, \dot{q}_{\beta})$ est la loi de comportement de l'interaction.

Principe de la MED	Modélisation	Simulation numérique & Outils logiciels	Applications	Web' I-RISK
Lois d'interface	00000	00000	000000	

Modélisation

La loi de comportement $R(t, q_{\alpha}, \dot{q}_{\alpha}, q_{\beta}, \dot{q}_{\beta})$ est le plus souvent écrite dans un repère local de l'interface (C_{α}, N, T)

Figure – Repère local

On définit une fonction distance normale $\ll \mbox{gap} \gg \mbox{et}$ un déplacement tangent

$$g_{\mathsf{N}} = g_{\mathsf{N}}(q_{\alpha}, q_{\beta}) g_{\mathsf{T}} = g_{\mathsf{T}}(q_{\alpha}, q_{\beta})$$
(4)

et les vitesses relatives associées :

$$u_{\mathsf{N}} = u_{\mathsf{N}}(\dot{q}_{\alpha}, \dot{q}_{\beta}, q_{\alpha}, q_{\beta})$$

$$u_{\mathsf{T}} = u_{\mathsf{T}}(\dot{q}_{\alpha}, \dot{q}_{\beta}, q_{\alpha}, q_{\beta})$$
(5)

$$R = r_{\rm N} \, {\rm N} + r_{\rm T} \, {\rm T} \tag{6}$$

Principe de la MED ○	Modélisation	Simulation numérique & Outils logiciels	Applications	Web' I·RISK
Lois d'interface			_	

Modélisation. Loi de contact normal

Enrichissements possibles

- Modèle de dissipation visqueuse
- Modèle de dissipation par plasticité et/ou endommagement
- Modèle de cohésion

LRIS

Modélisation. Loi de frottement tangente

cohésion, ...

<u>I RISK</u>

1 Principe de la méthode des éléments discrets

2 Modélisation

- Equations du mouvement
- Lois d'interface

3 Simulation numérique & Outils logiciels

- Méthodes d'intégration en temps
- Méthodes explicites et approches compliantes
- Méthodes implicites et approches rigides

4 Applications de la MED en géotechnique

 Simulation numérique & Outils logiciels

Applications

Web' I·RISK

(7)

Méthodes d'intégration en temps

Simulation. Intégration en temps

Equations du mouvement

$$M(q_{\alpha})\dot{v}_{\alpha} = F(t, q_{\alpha}, v_{\alpha}) + \sum_{\beta} R_{\alpha\beta}$$
$$\dot{q}_{\alpha} = v_{\alpha}$$

Discrétisation

 ▶ subdivision de l'intervalle d'étude : [t⁰, t¹,...,t^k, t^{k+1},...,T^N]
 ▶ h = |t^{k+1} - t^k| : pas de temps.

Principe de la MED Modélisation

Simulation numérique & Outils logiciels

Applications

Web' I·RISK

(8)

Méthodes d'intégration en temps

Simulation. Méthodes explicites

Méthodes explicites

$$\begin{split} M(q_{\alpha}^{\mathbf{k}})(v_{\alpha}^{\mathbf{k}+1} - v_{\alpha}^{\mathbf{k}}) &= hF(t^{\mathbf{k}}, q_{\alpha}^{\mathbf{k}}, v_{\alpha}^{\mathbf{k}}) + h\sum_{\beta} R_{\alpha\beta}^{\mathbf{k}} \\ q_{\alpha}^{\mathbf{k}+1} - q_{\alpha}^{\mathbf{k}} &= hv_{\alpha}^{\mathbf{k}} \end{split}$$

Caractéristiques

- ▶ Explicite : q_{α}^{k+1} et v_{α}^{k+1} sont obtenues explicitement
- Résolution d'équations linéaires (souvent triviales) à chaque pas de temps.
- Evaluation des efforts avec les données connues au début du pas de temps

I RIS

Simulation numérique & Outils logiciels

Applications

LRIS

Méthodes d'intégration en temps

Simulation. Méthodes explicites

Avantages/Inconvénients

- Implantation simple
- © Lois d'interaction variées et faciles à ajouter.
- Sien adaptées aux dynamiques rapides
- O Paramètres physiques des lois de contact
- ▶ ۞ Bilan énergétique difficile à respecter
- ► ☺ Stabilité conditionnelle → petit pas de temps

Remarques

- Utilisées le plus souvent avec les modèles compliants et le frottement avec partie visqueuse
- Ajout d'une dissipation visqueuse globale.

Principe de la MED Modélisation

Simulation numérique & Outils logiciels

Applications

Web' I·RISK

Méthodes d'intégration en temps

Simulation. Méthodes implicites

Méthodes implicites

$$M(q_{\alpha}^{k+1})(v_{\alpha}^{k+1} - v_{\alpha}^{k}) = hF(t^{k+1}, q_{\alpha}^{k+1}, v_{\alpha}^{k+1}) + h\sum_{\beta} R_{\alpha\beta}^{k+1}$$

$$q_{\alpha}^{k+1} - q_{\alpha}^{k} = hv_{\alpha}^{k+1}$$
(8)

Caractéristiques

- Implicite : q^{k+1}_α et v^{k+1}_α sont obtenues par résolution d'équations non linéaires
- Evaluation des efforts avec les données inconnues à la fin du pas de temps

Applications

LRISK

Méthodes d'intégration en temps

Simulation. Méthodes implicites

Avantages/Inconvénients

- Solution de paramètres d'interfaces.
- O Méthodes stables : pas de temps plus grands
- Silan énergétiques connus
- Sien adaptées aux évolutions quasi-statiques et aux équilibres
- © Corps déformables avec l'approche éléments finis
- Implantation plus difficile
- Calcul potentiellement plus lourd.

Remarques

Utilisées avec les modèles rigides et le frottement sec

Principe de la MED Modélisation Simulation numérique & Outils logiciels Applications

Principales familles et outils logiciels

Méthodes explicites et approches compliantes

- BALL and TRUBAL : Approche historique (P. Cundall, O.D.L. Strack)
- Logiciels privés :
 - PFC 2Dand PFC 3D : Itasca
 - UDEC and 3DEC : Itasca
 - EDEM, RockyDEM, Becker 3D, ...

Logiciels libres :

- Yade (3S-R, U. Grenoble Alpes, France)
- ESyS-Particle (U. Queensland, Australia)
- LIGGGHTS (Sandia Labs, USA)

Principe de la MED Modélisation Simulation numérique & Outils logiciels O OOOO OOOO OOOO OOOOO OOOOO OOOOO

Web' I·RISK

Principales familles et outils logiciels

Méthodes implicites et approches rigides

- LMGC : Approche historique (M. Jean, J.J. Moreau)
- Logiciels libres :
 - LMGC90 (LMGC, U. Montpellier, France)
 - Siconos (INRIA, U. Grenoble Alpes, France)
 - Chrono Engine (U. Parma, Italy, U. Wisconsin, USA)

Principe de la méthode des éléments discrets

2 Modélisatior

- Equations du mouvement
- Lois d'interface

B Simulation numérique & Outils logiciels

- Méthodes d'intégration en temps
- Méthodes explicites et approches compliantes
- Méthodes implicites et approches rigides

4 Applications de la MED en géotechnique

Modélisation Si

Simulation numérique & Outils logiciels

Applications

Ecoulements granulaires

- Avalanche rocheuses
- Écoulement de laves torrentielles

Modélisation S

Simulation numérique & Outils logiciels

Applications

Web' I·RISK

Trajectographie sur terrain hétérogène

Trajectographie 2D. Prise en compte de la forme.

Benchmark Dôle . C2ROP (F. Bourrier, INRAe. Siconos. INRIA)

Modélisation 9

Simulation numérique & Outils logiciels

Applications

Web' I·RISK

Trajectographie sur terrain hétérogène

Trajectographie 3D. Prise en compte de la forme.

Benchmark Dôle . C2ROP (F. Bourrier, INRAe. Siconos. INRIA)

Modélisation S

Simulation numérique & Outils logiciels

Applications

Web' I·RISK

Trajectographie sur terrain hétérogène

Modèle d'obstacle comme les arbres.

(Toe D., Bourrier F., Dorren L., Berger F., RMRE, 2018)

Modélisation

Simulation numérique & Outils logiciels

Applications

Web' I-RISK

Stabilité des pentes rocheuses et sols hétérogènes

(LMGC90, Mines d'Ales Ali Rafiee, M. Vinches, F. Dubois)

Modélisation Si

Simulation numérique & Outils logiciels

Applications

Web' I·RISK

Stabilité des pentes rocheuses et sols hétérogènes

(LMGC90, Mines d'Ales Ali Rafiee, M. Vinches, F. Dubois)

Modélisation Sin

Simulation numérique & Outils logiciels

Applications

Web' I-RISK

I RISK

Comportement des milieux continus sous sollicitations extrêmes

Application of DEM to evaluate and compare process parameters for a particle failure under different loading

conditions. Manoi Khanal Jürgen Tomas. Granular Matter. July 2010

Modélisation S

Simulation numérique & Outils logiciels

Applications

Web' I·RISK

Comportements des ouvrages de protection

Ouvrages maçonnés.

V. Acary. Siconos. Inria

Simulation numérique & Outils logiciels

Applications

Web' I·RISK

Comportements des ouvrages de protection

Filets de protection.

t = -1 ms

I-RISK

Dugelas, L; Bourrier, F; Olmedo, I; Nicot, F.

Modélisation S

Simulation numérique & Outils logiciels

Applications

Web' I·RISK

Verrous

- Fissuration des blocs en trajectographie
- Modèles déformable non linéaires : plasticité, endommagement
- Calcul scientifique haute-performance (HPC).
- Recalage des modèles et « Data-driven Mechanics »

La méthode des éléments discrets Webinaire I-Risk

Merci de votre attention !

